

Exercise Session 4

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise
Repetition theory
Amortized Analysis
Skip Lists
About the Bonus Task
Code-Example: Dynamic Vector

1. Feedback of last exercise

Throwing eggs

- What would be your strategy if you would have an arbitrary number of eggs?

Throwing eggs

- What would be your strategy if you would have an arbitrary number of eggs?
- Binary search. Worst case: $\log _{2} n$ tries.

Throwing eggs

■ What would be your strategy if you would have an arbitrary number of eggs?

- Binary search. Worst case: $\log _{2} n$ tries.

■ What would you do if you only had one egg?

Throwing eggs

■ What would be your strategy if you would have an arbitrary number of eggs?

- Binary search. Worst case: $\log _{2} n$ tries.

■ What would you do if you only had one egg?

- Start from the bottom. n tries.

Throwing Eggs

Strategy using two eggs
■ First approach: intervals of equal length: partition n into k intervals: maximum number of trials

Throwing Eggs

Strategy using two eggs
■ First approach: intervals of equal length: partition n into k intervals: maximum number of trials $f(k)=k+n / k-1$ Minimize maximum number of trials:

Throwing Eggs

Strategy using two eggs
■ First approach: intervals of equal length: partition n into k intervals: maximum number of trials $f(k)=k+n / k-1$ Minimize maximum number of trials: $f^{\prime}(k)=1-n / k^{2}=0 \Rightarrow k=\sqrt{n}$. $n=100 \Rightarrow 19$ Trials. $\Theta(\sqrt{n})$
■ Second approach: take first throw trial into account by considering decreasing interval sizes. Choose smallest s such that $s+s-1+s-2+\ldots+1=s(s+1) / 2 \geq 100 \Rightarrow s=14$. Maximum number of trials: $s \in \Theta(\sqrt{n})$
Asymptotically both approaches are equally good. Practically the second way is better.

Selection algorithm

■ What happens if many elements are equal?
■ $99,99, \ldots, 99$, Pivot 99 , smaller partition is empty, larger $n-1$ times 99
■ May degrade runtime to n^{2}
■ Solution?

Selection algorithm

■ On equality with pivot, alternate between partitions

Selection algorithm

■ On equality with pivot, alternate between partitions
■ Modify algorithm to return number of elements equal to pivot

2.1 Amortized Analysis

Amortized Analysis

Three Methods

- Aggregate Analysis
- Account Method
- Potential Method

Example: simple dictionary

Supports operations insert and find. Idea:

- Collection of arrays A_{i} with Length 2^{i}

■ Every array is either entirely empty or entirely full and stores items in a sorted order

- Between the arrays there is no further relationship
data $\{1,8,10,18,20,24,36,48,50,75,99\}, n=11$

```
A0: [50]
A1: [8,99]
A2: \emptyset
A3: [1,10,18,20,24,36,48,75]
```


Example: simple dictionary

data $\{1,8,10,18,20,24,36,48,50,75,99\}, n=11$

$$
\begin{array}{ll}
A_{0}: & {[50]} \\
A_{1}: & {[8,99]} \\
A_{2}: & \emptyset \\
A_{3}: & {[1,10,18,20,24,36,48,75]}
\end{array}
$$

Algorithm Find:

Example: simple dictionary

data $\{1,8,10,18,20,24,36,48,50,75,99\}, n=11$

$$
\begin{array}{ll}
A_{0}: & {[50]} \\
A_{1}: & {[8,99]} \\
A_{2}: & \emptyset \\
A_{3}: & {[1,10,18,20,24,36,48,75]}
\end{array}
$$

Algorithm Find: Run through all arrays and make a binary search each Worst-case Runtime :

Example: simple dictionary

data $\{1,8,10,18,20,24,36,48,50,75,99\}, n=11$

$$
\begin{array}{ll}
A_{0}: & {[50]} \\
A_{1}: & {[8,99]} \\
A_{2}: & \emptyset \\
A_{3}: & {[1,10,18,20,24,36,48,75]}
\end{array}
$$

Algorithm Find: Run through all arrays and make a binary search each Worst-case Runtime : $\Theta\left(\log ^{2} n\right)$,

$$
\log 1+\log 2+\log 4+\cdots+\log 2^{k}=\sum_{i=0}^{k} \log _{2} 2^{i}=\frac{k \cdot(k+1)}{2} \in \Theta\left(\log ^{2} n\right)
$$

$\left(k=\left\lfloor\log _{2} n\right\rfloor\right)$

Example: simple dictionary

Algorithm Insert(x):

Example: simple dictionary

Algorithm Insert (x):
■ New array $A_{0}^{\prime} \leftarrow[x], i \leftarrow 0$
■ while $A_{i} \neq \emptyset$, set $A_{i+1}^{\prime}=\operatorname{Merge}\left(A_{i}, A_{i}^{\prime}\right), A_{i} \leftarrow \emptyset, i \leftarrow i+1$
$■$ Set $A_{i} \leftarrow A_{i}^{\prime}$

Insert(11)

$A_{0}:[50]$	$A_{0}^{\prime}:$	$[11]$	
$A_{1}:[8,99]$	$A_{1}^{\prime}:$	$[11,50]$	
$A_{2}:$	\emptyset	$A_{2}^{\prime}:[8,11,50,99]$	
$A_{3}:[1,10,18, \ldots, 75]$			$\Rightarrow$$A_{0}: \emptyset$ $A_{1}:$ $A_{2}:$ $A_{3}:$$[8,11,50,99]$
		$[10,18, \ldots, 75]$	

Costs Insert

In the following: $n=2^{k}, k=\log _{2} n$
Assumption: creating new array A_{i}^{\prime} with length 2^{i} (and, for $i>0$ subsequent merge of A_{i-1}^{\prime} and A_{i-1}) has costs $\Theta\left(2^{i}\right)$

In the worst case inserting an element into the data structure provides $\log _{2} n$ such operations. \Rightarrow Worst-case Costs Insert:

$$
\sum_{i=0}^{k} 2^{i}=2^{k+1}-1 \in \Theta(n)
$$

Aggregate Analysis

Level	Costs	Example Array
0	1	$[*]$
1	2	$[*, *]$
2	4	$[*, *, *, *]$
3	8	\emptyset
4	16	$[*, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *]$

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Aggregate Analysis

Level	Costs	Example Array
0	1	$[*]$
1	2	$[*, *]$
2	4	$[*, *, *, *]$
3	8	\emptyset
4	16	$[*, *, *, *, *, *, *, *, *, *, *, *, *, *, *, *]$

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Total costs: $1 \cdot \frac{n}{1}+2 \cdot \frac{n}{2}+4 \cdot \frac{n}{4}+\cdots+2^{k} \cdot \frac{n}{2^{k}}=(k+1) n \in \Theta(n \log n)$. Amortized cost per operation: $\Theta((n \log n) / n)=\Theta(\log n)$.

Account Method

■ Every element $i(1 \leq i \leq n)$ pays $a_{i}=\log _{2} n$ coins when it is inserted into the data structure.
■ The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} ($k=\left\lfloor\log _{2}\right\rfloor n$).
■ The account provides enough credit to pay for all Merge operations of the n elements.
\Rightarrow Amortized costs for insertion $\mathcal{O}(\log n)$

Potential Method

We know from the account method that each element on the way to higher levels requires $\log n$ coins, i.e. that an element on level i still needs to posess $k-i$ coins. We use the potential

$$
\Phi_{j}=\sum_{0 \leq i \leq k: A_{i} \neq \emptyset}(k-i) \cdot 2^{i}
$$

Potential Method

For the change of the potential $\Phi_{j}-\Phi_{j-1}$ we only have to consider the lower l levels that are occupied at time point $j-1$ (in analogy to the binary counter). Let l be the smallest index such that array A_{l} is empty. After merging array $A_{0} \ldots A_{l-1}$ arrays $A_{i}, 0 \leq i<l$ are now empty and array A_{l} is now full. Therefore:

$$
\Phi_{j}-\Phi_{j-1}=(k-l) \cdot 2^{l}-\sum_{i=0}^{l-1}(k-i) \cdot 2^{i}
$$

Real costs:

$$
t_{j}=\sum_{i=0}^{l} 2^{i}=2^{l+1}-1
$$

Potential Method

$$
\begin{aligned}
\Phi_{j}-\Phi_{j-1} & =(k-l) \cdot 2^{l}-\sum_{i=0}^{l-1}(k-i) \cdot 2^{i} \\
& =(k-l) \cdot 2^{l}-k \cdot\left(2^{l}-1\right)+\sum_{i=0}^{l-1} i \cdot 2^{i} \\
& =(k-l) \cdot 2^{l}-k \cdot\left(2^{l}-1\right)+l \cdot 2^{l}-2^{l+1}+2 \\
& =k-2^{l+1}+2 \\
\Phi_{j}-\Phi_{j-1}+t_{j} & =k-2^{l+1}+2+2^{l+1}-1=k+1 \in \Theta(\log n)
\end{aligned}
$$

$\sum i \cdot \lambda^{i}$

Always the same trick:

$$
\begin{aligned}
\lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i}-\sum_{i=0}^{n} i \cdot \lambda^{i} & =\sum_{i=0}^{n} i \cdot \lambda^{i+1}-\sum_{i=0}^{n} i \cdot \lambda^{i}=\sum_{i=1}^{n+1}(i-1) \cdot \lambda^{i}-\sum_{i=0}^{n} i \cdot \lambda^{i} \\
& =n \cdot \lambda^{n+1}+\sum_{i=1}^{n}(i-1) \cdot \lambda^{i}-i \cdot \lambda=n \cdot \lambda^{n+1}-\sum_{i=1}^{n} \lambda^{i} \\
& =n \cdot \lambda^{n+1}-\frac{\lambda^{n+1}-1}{\lambda-1}+1 \\
(\lambda-1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} & =n \cdot \lambda^{n+1}-\frac{\lambda^{n+1}-1}{\lambda-1}+1
\end{aligned}
$$

For $\lambda=2$:

$$
\sum_{i=0}^{n} i \cdot 2^{i}=n \cdot 2^{n+1}-2^{n+1}+1+1=(n-1) \cdot 2^{n+1}+2
$$

2.2 Skip Lists

Randomized Skip List

Idea: insert a key with random height H with $\mathbb{P}(H=i)=\frac{1}{2^{i+1}}$.

Randomized Skip List: finding element

$$
x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}
$$

Randomized Skip List: finding element

$$
x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}
$$

Randomized Skip List: finding element

$$
x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}
$$

Randomized Skip List: finding element

$$
x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}
$$

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Randomized Skip List: finding element

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.
Example: search for a key x with $x_{5}<x<x_{6}$.

Skip Lists Interface

template<typename T> class SkipList \{ public:

SkipList();
~SkipList();
void insert(const T\& value);
void erase(const T\& value);
// iterator implementation ...
\};

Partially implemented:

■ A class Node saves an element value of type T and a std::vector called forward with pointers to successive nodes.
■ First Node (without value): head.
\square forward [0] points to the following element in the list.

- We use this in an already implemented iterator.

3. About the Bonus Task

Implementing insert and erase

insert(const T\& value)

- create new node

■ choose random number of levels

■ for each level, find the first smaller node

■ set pointers from previous nodes and new node

Implementing insert and erase

insert(const T\& value)

- create new node
- choose random number of levels

■ for each level, find the first smaller node

■ set pointers from previous nodes and new node
erase(const T\& value)
■ find first smaller node
■ check if next node has the according value

■ set pointers accordingly
■ delete node if necessary

Implementing insert and erase

insert(const T\& value)

- create new node
- choose random number of levels

■ for each level, find the first smaller node

■ set pointers from previous nodes and new node
erase(const T\& value)
■ find first smaller node
■ check if next node has the according value

■ set pointers accordingly
■ delete node if necessary
Warning: The same value can appear multiple times.

Important: Every new needs its delete and only one!

Recap dynamic allocated memory

Important: Every new needs its delete and only one!
Therefore "Rule of three":
■ constructor

- copy constructor

■ destructor

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore "Rule of three":
■ constructor

- copy constructor

■ destructor

Being lazy " Rule of two":
■ never copy (unsure)
■ make copy constructor private (save) or deleted

4. Code-Example: Dynamic Vector

Preparation for Deque-Exercise

Questions?

