
Exercise Session 4
Data Structures and Algorithms, D-MATH, ETH Zurich



Program of today

Feedback of last exercise

Repetition theory
Amortized Analysis
Skip Lists

About the Bonus Task

Code-Example: Dynamic Vector

1



1. Feedback of last exercise

2



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

3



Throwing Eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials

f(k) = k + n/k − 1
Minimize maximum number of trials: f ′(k) = 1− n/k2 = 0 ⇒ k =

√
n.

n = 100⇒ 19 Trials. Θ(
√
n)

Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s+ s− 1 + s− 2 + ...+ 1 = s(s+ 1)/2 ≥ 100⇒ s = 14. Maximum
number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Throwing Eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k − 1
Minimize maximum number of trials:

f ′(k) = 1− n/k2 = 0 ⇒ k =
√
n.

n = 100⇒ 19 Trials. Θ(
√
n)

Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s+ s− 1 + s− 2 + ...+ 1 = s(s+ 1)/2 ≥ 100⇒ s = 14. Maximum
number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Throwing Eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k − 1
Minimize maximum number of trials: f ′(k) = 1− n/k2 = 0 ⇒ k =

√
n.

n = 100⇒ 19 Trials. Θ(
√
n)

Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s+ s− 1 + s− 2 + ...+ 1 = s(s+ 1)/2 ≥ 100⇒ s = 14. Maximum
number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.

4



Selection algorithm

What happens if many elements are equal?
99, 99, . . . , 99, Pivot 99, smaller partition is empty, larger n− 1 times 99
May degrade runtime to n2

Solution?

5



Selection algorithm

On equality with pivot, alternate between partitions

Modify algorithm to return number of elements equal to pivot

6



Selection algorithm

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot

6



2.1 Amortized Analysis

7



Amortized Analysis

Three Methods
Aggregate Analysis
Account Method
Potential Method

8



Example: simple dictionary

Supports operations insert and find. Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

9



Example: simple dictionary

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find:

Run through all arrays and make a binary search each
Worst-case Runtime : Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑

i=0
log2 2i = k · (k + 1)

2 ∈ Θ(log2 n).

(k = blog2 nc)

10



Example: simple dictionary

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime :

Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑

i=0
log2 2i = k · (k + 1)

2 ∈ Θ(log2 n).

(k = blog2 nc)

10



Example: simple dictionary

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime : Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑

i=0
log2 2i = k · (k + 1)

2 ∈ Θ(log2 n).

(k = blog2 nc)

10



Example: simple dictionary

Algorithm Insert(x):

New array A′0 ← [x], i← 0

while Ai 6= ∅, set A′i+1 =Merge(Ai, A
′
i), Ai ← ∅, i← i+ 1

Set Ai ← A′i

Insert(11)

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, . . . , 75]

A′0: [11]
A′1: [11, 50]
A′2: [8, 11, 50, 99] ⇒

A0: ∅
A1: ∅
A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

11



Example: simple dictionary

Algorithm Insert(x):
New array A′0 ← [x], i← 0
while Ai 6= ∅, set A′i+1 =Merge(Ai, A

′
i), Ai ← ∅, i← i+ 1

Set Ai ← A′i

Insert(11)

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, . . . , 75]

A′0: [11]
A′1: [11, 50]
A′2: [8, 11, 50, 99] ⇒

A0: ∅
A1: ∅
A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

11



Costs Insert

In the following: n = 2k, k = log2 n

Assumption: creating new array A′i with length 2i (and, for i > 0
subsequent merge of A′i−1 and Ai−1) has costs Θ(2i)

In the worst case inserting an element into the data structure provides
log2 n such operations. ⇒ Worst-case Costs Insert:

k∑
i=0

2i = 2k+1 − 1 ∈ Θ(n).

12



Aggregate Analysis
Level Costs Example Array
0 1 [∗]
1 2 [∗, ∗]
2 4 [∗, ∗, ∗, ∗]
3 8 ∅
4 16 [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8)
every eighth time etc.

Total costs: 1 · n
1 + 2 · n

2 + 4 · n
4 + · · ·+ 2k · n

2k = (k + 1)n ∈ Θ(n log n).
Amortized cost per operation: Θ((n log n)/n) = Θ(log n).

13



Aggregate Analysis
Level Costs Example Array
0 1 [∗]
1 2 [∗, ∗]
2 4 [∗, ∗, ∗, ∗]
3 8 ∅
4 16 [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8)
every eighth time etc.

Total costs: 1 · n
1 + 2 · n

2 + 4 · n
4 + · · ·+ 2k · n

2k = (k + 1)n ∈ Θ(n log n).
Amortized cost per operation: Θ((n log n)/n) = Θ(log n).

13



Account Method

Every element i (1 ≤ i ≤ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = blog2cn).
The account provides enough credit to pay for all Merge operations of
the n elements.

⇒ Amortized costs for insertion O(log n)

14



Potential Method

We know from the account method that each element on the way to
higher levels requires log n coins, i.e. that an element on level i still needs
to posess k − i coins. We use the potential

Φj =
∑

0≤i≤k:Ai 6=∅
(k − i) · 2i

15



Potential Method
For the change of the potential Φj − Φj−1 we only have to consider the
lower l levels that are occupied at time point j − 1 (in analogy to the
binary counter). Let l be the smallest index such that array Al is empty.

After merging array A0 . . . Al−1 arrays Ai, 0 ≤ i < l are now empty and array
Al is now full. Therefore:

Φj − Φj−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

Real costs:

tj =
l∑

i=0
2i = 2l+1 − 1

16



Potential Method

Φj − Φj−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

= (k − l) · 2l − k · (2l − 1) +
l−1∑
i=0

i · 2i

= (k − l) · 2l − k · (2l − 1) + l · 2l − 2l+1 + 2
= k − 2l+1 + 2

Φj − Φj−1 + tj = k − 2l+1 + 2 + 2l+1 − 1 = k + 1 ∈ Θ(log n)

17



∑
i · λi

Always the same trick:

λ ·
n∑

i=0
i · λi −

n∑
i=0

i · λi =
n∑

i=0
i · λi+1 −

n∑
i=0

i · λi =
n+1∑
i=1

(i− 1) · λi −
n∑

i=0
i · λi

= n · λn+1 +
n∑

i=1
(i− 1) · λi − i · λ = n · λn+1 −

n∑
i=1

λi

= n · λn+1 − λn+1 − 1
λ− 1 + 1

(λ− 1) ·
n∑

i=0
i · λi = n · λn+1 − λn+1 − 1

λ− 1 + 1

For λ = 2:
n∑

i=0
i · 2i = n · 2n+1 − 2n+1 + 1 + 1 = (n− 1) · 2n+1 + 2

18



2.2 Skip Lists

19



Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

20



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0

1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1

2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2

3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

21



Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();
~SkipList();

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...
};

22



Partially implemented:

A class Node saves an element value of type T and a std::vector
called forward with pointers to successive nodes.
First Node (without value): head.
forward[0] points to the following element in the list.
We use this in an already implemented iterator.

23



3. About the Bonus Task

24



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the first
smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can ap-
pear multiple times.

25



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the first
smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can ap-
pear multiple times.

25



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the first
smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can ap-
pear multiple times.

25



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save) or deleted

26



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save) or deleted

26



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save) or deleted

26



4. Code-Example: Dynamic Vector

Preparation for Deque-Exercise

27



Questions?

28


	Feedback of last exercise
	Repetition theory
	Amortized Analysis
	Skip Lists

	About the Bonus Task
	Code-Example: Dynamic Vector

