EHzürich

Exercise Session 4

Data Structures and Algorithms, D-MATH, ETH Zurich

Feedback of last exercise

Repetition theory Amortized Analysis Skip Lists

About the Bonus Task

Code-Example: Dynamic Vector

1. Feedback of last exercise

What would be your strategy if you would have an arbitrary number of eggs?

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search.** Worst case: $\log_2 n$ tries.

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search.** Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search.** Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. n tries.

Throwing Eggs

Strategy using two eggs

■ First approach: intervals of equal length: partition *n* into *k* intervals: maximum number of trials

Throwing Eggs

Strategy using two eggs

First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k - 1Minimize maximum number of trials: Strategy using two eggs

- First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k − 1 Minimize maximum number of trials: f'(k) = 1 − n/k² = 0 ⇒ k = √n. n = 100 ⇒ 19 Trials. Θ(√n)
- Second approach: take first throw trial into account by considering decreasing interval sizes. Choose smallest s such that $s + s 1 + s 2 + ... + 1 = s(s + 1)/2 \ge 100 \Rightarrow s = 14$. Maximum number of trials: $s \in \Theta(\sqrt{n})$

Asymptotically both approaches are equally good. Practically the second way is better.

- What happens if many elements are equal?
- \blacksquare 99, 99, ..., 99, Pivot 99, smaller partition is empty, larger n-1 times 99
- \blacksquare May degrade runtime to n^2
- Solution?

• On equality with pivot, alternate between partitions

On equality with pivot, alternate between partitionsModify algorithm to return number of elements equal to pivot

2.1 Amortized Analysis

Three Methods

- Aggregate Analysis
- Account Method
- Potential Method

Supports operations insert and find. Idea:

- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order
- Between the arrays there is no further relationship

data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

$$\begin{array}{lll} A_0: & [50] \\ A_1: & [8,99] \\ A_2: & \emptyset \\ A_3: & [1,10,18,20,24,36,48,75] \end{array}$$

data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

Algorithm **Find**:

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

Algorithm **Find**: Run through all arrays and make a binary search each Worst-case Runtime :

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

Algorithm **Find**: Run through all arrays and make a binary search each Worst-case Runtime : $\Theta(\log^2 n)$,

$$\log 1 + \log 2 + \log 4 + \dots + \log 2^k = \sum_{i=0}^k \log_2 2^i = \frac{k \cdot (k+1)}{2} \in \Theta(\log^2 n).$$

 $(k = \lfloor \log_2 n \rfloor)$

Algorithm **Insert(x)**:

Algorithm Insert(x):

• New array
$$A'_0 \leftarrow [x], i \leftarrow 0$$

- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- Set $A_i \leftarrow A'_i$

Insert(11)

A_0 :	[50]	A'_0 :	[11]		A_0 :	Ø
A_1 :	[8, 99]	A'_1 :	[11, 50]	\rightarrow	A_1 :	Ø
A_2 :	Ø	A'_2 :	$\left[8, 11, 50, 99\right]$	\Rightarrow	A_2 :	\emptyset [8, 11, 50, 99]
A_3 :	$[1, 10, 18, \dots, 75]$				A_3 :	$[1, 10, 18, \ldots, 75]$

In the following: $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A'_i with length 2^i (and, for i > 0 subsequent merge of A'_{i-1} and A_{i-1}) has costs $\Theta(2^i)$

In the worst case inserting an element into the data structure provides $\log_2 n$ such operations. \Rightarrow **Worst-case Costs Insert**:

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1 \in \Theta(n).$$

Aggregate Analysis

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Aggregate Analysis

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Total costs: $1 \cdot \frac{n}{1} + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + \dots + 2^k \cdot \frac{n}{2^k} = (k+1)n \in \Theta(n \log n)$. **Amortized cost per operation**: $\Theta((n \log n)/n) = \Theta(\log n)$.

- Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure.
- The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} $(k = \lfloor \log_2 \rfloor n)$.
- The account provides enough credit to pay for all Merge operations of the n elements.
- \Rightarrow **Amortized costs** for insertion $\mathcal{O}(\log n)$

We know from the account method that each element on the way to higher levels requires $\log n$ coins, i.e. that an element on level *i* still needs to posess k - i coins. We use the **potential**

$$\Phi_j = \sum_{0 \le i \le k: A_i \ne \emptyset} (k-i) \cdot 2^i$$

Potential Method

For the **change of the potential** $\Phi_j - \Phi_{j-1}$ we only have to consider the lower *l* levels that are occupied at time point j - 1 (in analogy to the binary counter). Let *l* be the smallest index such that array A_l is empty.

After merging array $A_0 \dots A_{l-1}$ arrays $A_i, 0 \le i < l$ are now empty and array A_l is now full. Therefore:

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

Real costs:

$$t_j = \sum_{i=0}^{l} 2^i = 2^{l+1} - 1$$

Potential Method

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + l \cdot 2^l - 2^{l+1} + 2$$
$$= k - 2^{l+1} + 2$$
$$\Phi_j - \Phi_{j-1} + t_j = k - 2^{l+1} + 2 + 2^{l+1} - 1 = k + 1 \in \Theta(\log n)$$

$\overline{\sum}\,i\cdot\lambda^i$

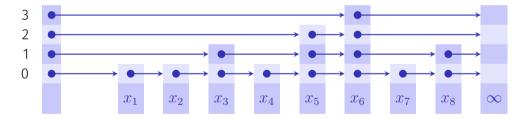
Always the same trick:

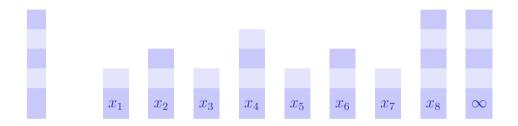
$$\begin{split} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} &- \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \\ &= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \\ (\lambda - 1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} = n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \end{split}$$

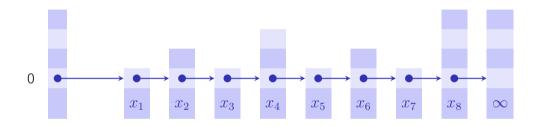
For $\lambda = 2$:

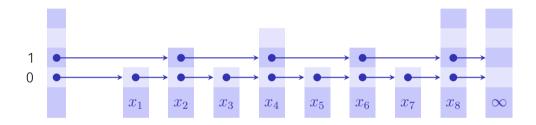
$$\sum_{i=0}^{n} i \cdot 2^{i} = n \cdot 2^{n+1} - 2^{n+1} + 1 + 1 = (n-1) \cdot 2^{n+1} + 2$$

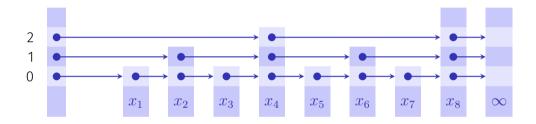
Idea: insert a key with random height H with $\mathbb{P}(H = i) = \frac{1}{2^{i+1}}$.

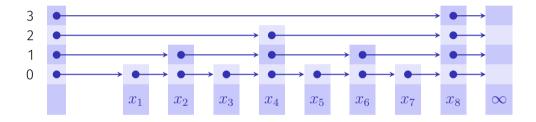




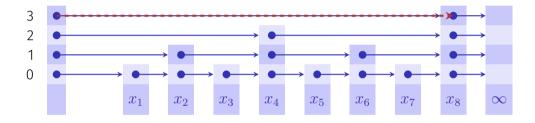


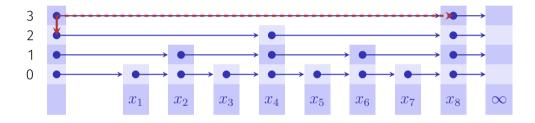


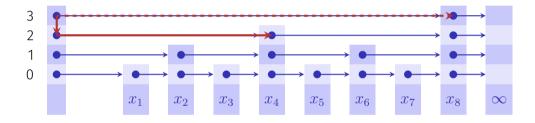


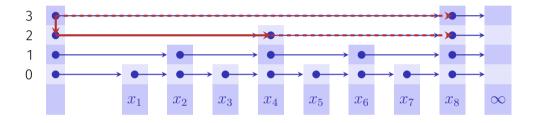


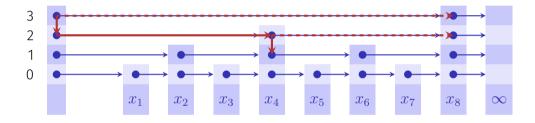
 $x_1 \le x_2 \le x_3 \le \dots \le x_9.$ Example: search for a key x with $x_5 < x < x_6.$

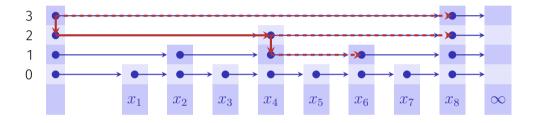


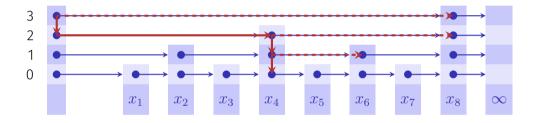


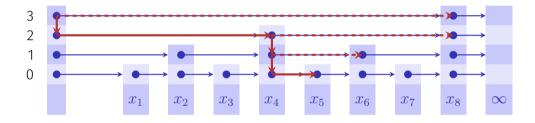


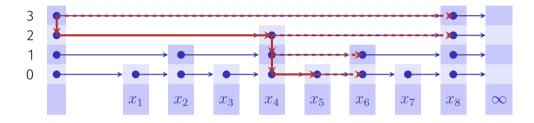












```
template<typename T> class SkipList {
public:
   SkipList();
   ~SkipList();
```

```
void insert(const T& value);
void erase(const T& value);
```

```
// iterator implementation ...
};
```

- A class Node saves an element value of type T and a std::vector called forward with pointers to successive nodes.
- First Node (without value): head.
- **forward**[0] points to the following element in the list.
- We use this in an already implemented iterator.

3. About the Bonus Task

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Warning: The same value can appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

Being lazy "Rule of two":

- never copy (unsure)
- make copy constructor private (save) or deleted

4. Code-Example: Dynamic Vector

Preparation for Deque-Exercise

Questions?