Exercise Session 4
Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise

Repetition theory
Amortized Analysis
Skip Lists

About the Bonus Task

Code-Example: Dynamic Vector

k

X

r

Throwing eggs

m What would be your strategy if you would have an arbitrary number of
eggs’?

Throwing eggs

m What would be your strategy if you would have an arbitrary number of
eggs’?

m Binary search. Worst case: log, n tries.

Throwing eggs

m What would be your strategy if you would have an arbitrary number of
eggs’?

m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

Throwing eggs

m What would be your strategy if you would have an arbitrary number of
eggs’?

m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

m Start from the bottom. n tries.

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k intervals:
maximum number of trials

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k+n/k —1
Minimize maximum number of trials:

Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k+n/k —1
Minimize maximum number of trials: f'(k) =1 —n/k* =0 = k= /n.
n =100 = 19 Trials. ©(y/n)

m Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s+s—1+s—2+..+1=s(s+1)/2>100= s = 14. Maximum
number of trials: s € ©(y/n)

Asymptotically both approaches are equally good. Practically the second way is
better.

Selection algorithm

m What happens if many elements are equal?

m 99,99,...,99, Pivot 99, smaller partition is empty, larger n — 1 times 99
m May degrade runtime to n?

m Solution?

Selection algorithm

m On equality with pivot, alternate between partitions

Selection algorithm

m On equality with pivot, alternate between partitions
m Modify algorithm to return number of elements equal to pivot

2.1 Amortized Analysis

Amortized Analysis

Three Methods

m Aggregate Analysis
m Account Method
m Potential Method

Example: simple dictionary

Supports operations insert and find. Idea:

m Collection of arrays A; with Length 2!

m Every array is either entirely empty or entirely full and stores items in a
sorted order

m Between the arrays there is no further relationship

data {1,8, 10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

1,10, 18,20, 24, 36, 48, 75]

A3: [

Example: simple dictionary

data {1,8,10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

Aol [50]

A [8,99]

AQI (Z)

As: [1,10,18,20,24, 36,48, 75]

Algorithm Find:

Example: simple dictionary

data {1,8,10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

Aol [50]

A [8,99]

AQI (Z)

As: [1,10,18,20,24, 36,48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime :

Example: simple dictionary

data {1, 8, 10, 18, 20, 24, 36, 48,50, 75,99}, n = 11

Aol [50]
Al [8 99]
AQI

As: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime : ©(log® n),

k- (k+1)

logl +1log?2 +1logd + -+ log2F =3 log, 2! =
ogl+log2+logd+---+log Zogz 5

€ O(log?n).

(k = |logyn])

Example: simple dictionary

Algorithm Insert(x):

Example: simple dictionary

Algorithm Insert(x):

m New array Aj < [z], i+ 0

m while 4; # 0, set A}, =Merge(A;, 4}), A; 0, i<+ i+ 1
m Set A; + Al

Insert(11)
Ap: [50] Al [11] Ag: 0
A [8,99] Al [11,50] N Az 0
Ay 0 Al [8,11,50,99) As: [8,11,50,99)
Az [1,10,18,...,75] Az [1,10,18,...,75]

Costs Insert

In the following: n = 2%, k = log, n
Assumption: creating new array A} with length 2¢ (and, fori > 0
subsequent merge of A, and A;_;) has costs ©(2%)

In the worst case inserting an element into the data structure provides
log, n such operations. = Worst-case Costs Insert:

k
Y 2t =21 —1€0(n).

=0

Aggregate Analysis

Level Costs Example Array

0 1 []

1 2 [*, %]

2 4 [, *, *, %]

3 8 0

4 16 [, s, %, 5k, %, sk, ok, ok ok, ok ok, sk Kk k]

9T Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty Ty

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8)
every eighth time etc.

Aggregate Analysis

Level Costs Example Array

0 1 []

1 2 [*, %]

2 4 [, *, *, %]

3 8 0

4 16 [, s, %, 5k, %, sk, ok, ok ok, ok ok, sk Kk k]

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8)
every eighth time etc.

Total costs: 1- 4 +2- 5 +4- 4 +---4+2F. 5 = (k+ 1)n € O(nlogn).
Amortized cost per operation: O((nlogn)/n) = ©(logn).

Account Method

m Every element i (1 <14 < n) pays a; = log, n coins when it is inserted into
the data structure.

m The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array A1

(k = [logy|n).
m The account provides enough credit to pay for all Merge operations of
the n elements.

= Amortized costs for insertion O(logn)

Potential Method

We know from the account method that each element on the way to
higher levels requires log n coins, i.e. that an element on level i still needs
to posess k — i coins. We use the potential

o= > (k—9)2

0<i<k:A;#0

Potential Method

For the change of the potential ;, — ®; ; we only have to consider the
lower [levels that are occupied at time point j — 1 (in analogy to the
binary counter). Let [be the smallest index such that array A; is empty.

After merging array Aq...A;_; arrays A;,0 < ¢ <[are now empty and array
Ay is now full. Therefore:

O, — @, =(k—1)-2"=> (k—i)- 2

Real costs:

Z l+1

16

Potential Method

-1
S, -, =(k—-1)-2"=> (k—i)-2

=0
-1
=(k-0-2"—k-2=1)+>i-2
=0
=k-0-2"—k-(2" 1) +1-2" =2 12

—k—2"1 12
P — 0, +t;j=k—2""+2+4+2" —1=F+1€O(logn)

Always the same trick:

n+1

A.zn:z'.x‘—znji.x Zz AL Zz N="(i—1)-A Zz X
=0 =0 i=1

=n-)\"+1+Zz—1 A —j A =n AT - Z)J
1=1 1=1

At
— ,)\"+1_7 1
" o1
. AL 1
A=1)- S i A=At oS T
() iz;z n 1 +

For A =2:

dir2i=ne2 o 14 1= (n—1)- 2" 42
=0

2.2 Skip Lists

Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 5.

2i+1
3 @ o
2 @ [©
17 @ [[[©
0 e [[[o [© © o

T 9 T3 T4 Ty Tg Ty xTs (0,9)

20

Randomized Skip List: finding element

T i) T3 T4 s Tg Ty xTs (0,9)

Randomized Skip List: finding element

T i) T3 T4 s Tg Ty xTs (0,9)

Randomized Skip List: finding element

1 @ @ [[4 @
0 e o o o [o ® ® ®
T i) T3 T4 s Tg Ty xTs (0,9)

Randomized Skip List: finding element

2 e o o
1 @ O [[©
0 e ® ® ® ® [© © o
T i) T3 T4 s Tg Ty xTs (0,9)

Randomized Skip List: finding element

3 @ ©
2 e ® o
1 @ © o [©
0 e [[[o [© © o

X1) x3 Tyg Ty L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3 @ -
2 e ® o
1 @ © o [©
0 e [[[o [© © o

X1) x3 Tyg Ty L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3 ;)
2 ® o
1 @ O [[©
0 e ® ® ® ® [© © o

T i) T3 T4 s Tg Ty xTs

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3 I)
2 >9 o
1 @ O [[©
0 e ® ® ® ® [© © o

T i) T3 T4 s Tg Ty xTs

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3 I)
2 5% 39
1 @ O [[©
0 e ® ® ® ® [© © o

T i) T3 T4 s Tg Ty xTs

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3
: 4
1
0

-
;I 39

© © [©
o o o © O o © © o
X1) x3 Tyg X5 L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3
: 4
1
0

-
;I 39

© © ->9 ©
o o o © O o © © o
X1) x3 Tyg X5 L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3
: 4
1
0

-
39

© © ->9 ©
o o o © o © © o
X1) x3 Tyg X5 L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3
: 4
1
0

-
39

© © ->9 ©
o o o © >9 © © o
X1) x3 Tyg X5 L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

Randomized Skip List: finding element

3
: 4
1
0

-
39

© © ->9 ©
o o o © 3% - © o
X1) x3 Tyg X5 L6 X7 €rg

1 STy <23 < e < T
Example: search for a key z with x5 < < .

21

Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();

~SkipList();

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...

22

Partially implemented:

m A class Node saves an element value of type T and a std: :vector
called forward with pointers to successive nodes.

m First Node (without value): head.
m forward[0] points to the following element in the list.
m We use this in an already implemented iterator.

23

3. About the Bonus Task

Implementing insert and erase

insert(const T& value)
m create new node

B choose random number of
levels

m for each level, find the first
smaller node

m set pointers from previous
nodes and new node

25

Implementing insert and erase

insert(const T& value) erase(const T& value)
B create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the first m set pointers accordingly
smaller node m delete node if necessary

m set pointers from previous
nodes and new node

25

Implementing insert and erase

insert(const T& value) erase(const T& value)
B create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the first m set pointers accordingly
smaller node m delete node if necessary
m set pointers from previous Warning: The same value can ap-

nodes and new node pear multiple times.

25

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

26

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three™
m constructor
m copy constructor
m destructor

26

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three™ Being lazy “ Rule of two™
m constructor m never copy (unsure)
m copy constructor m make copy constructor

m destructor private (save) or deleted

26

4. Code-Example: Dynamic Vector

Preparation for Deque-Exercise

27

Questions?

	Feedback of last exercise
	Repetition theory
	Amortized Analysis
	Skip Lists

	About the Bonus Task
	Code-Example: Dynamic Vector

