
Exercise Session 3
Data Structures and Algorithms, D-MATH, ETH Zurich



Program of today

Feedback of last exercise

Analyse the running time of (recursive) Functions

Solving Simple Recurrence Equations

Sorting Algorithms

1



1. Feedback of last exercise

2



2. Analyse the running time of (recursive)
Functions

3



Analysis

How many calls to f()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

f();

The code fragment implies Θ(n2) calls to f(): the outer loop is executed
n/9 times and the inner loop contains i calls to f()

4



Analysis

How many calls to f()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

f();

The code fragment implies Θ(n2) calls to f(): the outer loop is executed
n/9 times and the inner loop contains i calls to f()

4



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains blog2(n)c+ 1 calls to f(). Summing up
yields Θ(n log(n)) calls.

5



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()

The second inner loop contains blog2(n)c+ 1 calls to f(). Summing up
yields Θ(n log(n)) calls.

5



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains blog2(n)c+ 1 calls to f(). Summing up
yields Θ(n log(n)) calls.

5



How many calls to f()?

void g(unsigned n) {
if (n>0){

g(n-1);
f();

}
}

M(n) = M(n− 1) + 1 = M(n− 2) + 2 = ... = M(0) + n = n ∈ Θ(n)

6



How many calls to f()?

void g(unsigned n) {
if (n>0){

g(n-1);
f();

}
}

M(n) = M(n− 1) + 1 = M(n− 2) + 2 = ... = M(0) + n = n ∈ Θ(n)

6



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
f()

}
}

M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) ∈ Θ(log n)

7



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
f()

}
}

M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) ∈ Θ(log n)

7



How many calls to f()?

// pre: n is a power of 2
void g(int n){

if (n>0){
f();
g(n/2);
f();
g(n/2);

}
}

M(n) = 2M
(

n

2

)
+ 2 = 4M

(
n

4

)
+ 4 + 2 = 8M

(
n

8

)
+ 8 + 4

= n + n/2 + ... + 2 ∈ Θ(n)

8



How many calls to f()?

// pre: n is a power of 2
void g(int n){

if (n>0){
f();
g(n/2);
f();
g(n/2);

}
}

M(n) = 2M
(

n

2

)
+ 2 = 4M

(
n

4

)
+ 4 + 2 = 8M

(
n

8

)
+ 8 + 4

= n + n/2 + ... + 2 ∈ Θ(n)
8



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
g(n/2);

}
for (int i = 0; i < n; ++i){

f();
}

}

M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k + 1)n ∈ Θ(n log n)

9



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
g(n/2);

}
for (int i = 0; i < n; ++i){

f();
}

}

M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k + 1)n ∈ Θ(n log n)
9



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 +∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

10



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1

T (n) = 1 +∑n−1
i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

10



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 +∑n−1

i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

10



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 +∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

10



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 +∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

10



Induction

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n−1∑
i=0

2i

= 1 + 2n − 1 = 2n

11



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

You can also see it directly:

T (n) = 1 +
n−1∑
i=0

T (i)

⇒ T (n− 1) = 1 +
n−2∑
i=0

T (i)

⇒ T (n) = T (n− 1) + T (n− 1) = 2T (n− 1)
12



3. Solving Simple Recurrence Equations

13



Recurrence Equation

T (n) =

2T (n2 ) + n
2 + 1, n > 1

3 n = 1

Specify a closed (non-recursive), simple formula for T (n) and prove it
using mathematical induction. Assume that n is a power of 2.

14



Recurrence Equation

T (2k) = 2T (2k−1) + 2k/2 + 1
= 2(2(T (2k−2) + 2k−1/2 + 1) + 2k/2 + 1 = ...

= 2kT (2k−k) + 2k/2 + ... + 2k/2︸ ︷︷ ︸
k

+1 + 2 + ... + 2k−1

= 3n + n

2 log2 n + n− 1

⇒ Assumption T (n) = 4n + n
2 log2 n− 1

15



Induction

1. Hypothesis T (n) = f(n) := 4n + n
2 log2 n− 1

2. Base Case T (1) = 3 = f(1) = 4− 1.

3. Step T (n) = f(n) −→ T (2 · n) = f(2n) (n = 2k for some k ∈ N):

T (2n) = 2T (n) + n + 1
i.h.= 2(4n + n

2 log2 n− 1) + n + 1

= 8n + n log2 n− 2 + n + 1
= 8n + n log2 n + n log2 2− 1
= 8n + n log2 2n− 1
= f(2n).

16



Master Method

T (n) =

aT (n
b
) + f(n) n > 1

f(1) n = 1
(a, b ∈ N+)

1. f(n) = O(nlogb a−ε) für eine Konstante ε > 0 =⇒ T (n) ∈ Θ(nlogb a)

2. f(n) = Θ(nlogb a) =⇒ T (n) ∈ Θ(nlogb a logn)

3. f(n) = Ω(nlogb a+ε) for some constant ε > 0, und wenn af(nb ) ≤ cf(n) for
some constant c < 1 and all su�ciently large n =⇒ T (n) ∈ Θ(f(n))

17



Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + Θ(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=⇒ T (n) = Θ(n log n)

18



Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + Θ(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=⇒ T (n) = Θ(n log n)

18



Examples

Naive Matrix Multiplication Divide & Conquer1

T (n) = 8T (n/2) + Θ(n2)

a = 8, b = 2, f(n) = cn2 ∈ O(nlog2 8−1) [1]=⇒ T (n) ∈ Θ(n3)

1Treated in the course later on
19



Examples

Naive Matrix Multiplication Divide & Conquer1

T (n) = 8T (n/2) + Θ(n2)

a = 8, b = 2, f(n) = cn2 ∈ O(nlog2 8−1) [1]=⇒ T (n) ∈ Θ(n3)

1Treated in the course later on
19



Examples

Strassens Matrix Multiplication Divide & Conquer2

T (n) = 7T (n/2) + Θ(n2)

a = 7, b = 2, f(n) = cn2 ∈ O(nlog2 7−ε) [1]=⇒ T (n) ∈ Θ(nlog2 7) ≈ Θ(n2.8)

2Treated in the course later on
20



Examples

Strassens Matrix Multiplication Divide & Conquer2

T (n) = 7T (n/2) + Θ(n2)

a = 7, b = 2, f(n) = cn2 ∈ O(nlog2 7−ε) [1]=⇒ T (n) ∈ Θ(nlog2 7) ≈ Θ(n2.8)

2Treated in the course later on
20



Examples

T (n) = 2T (n/4) + Θ(n)

a = 2, b = 4, f(n) = cn ∈ Ω(nlog4 2+0.5), 2f(n/4) = cn2 ≤
c
2n1 [3]=⇒ T (n) ∈ Θ(n)

21



Examples

T (n) = 2T (n/4) + Θ(n)

a = 2, b = 4, f(n) = cn ∈ Ω(nlog4 2+0.5), 2f(n/4) = cn2 ≤
c
2n1 [3]=⇒ T (n) ∈ Θ(n)

21



Examples

T (n) = 2T (n/4) + Θ(n2)

a = 2, b = 4, f(n) = cn2 ∈ Ω(nlog4 2+1.5), 2f(n/4) = n2

8 ≤
1
8n2 [3]=⇒

T (n) ∈ Θ(n2)

22



Examples

T (n) = 2T (n/4) + Θ(n2)

a = 2, b = 4, f(n) = cn2 ∈ Ω(nlog4 2+1.5), 2f(n/4) = n2

8 ≤
1
8n2 [3]=⇒

T (n) ∈ Θ(n2)

22



4. Sorting Algorithms

23



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms
(a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence
provide the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

24



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms
(a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence
provide the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

24



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms
(a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence
provide the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

24



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13

2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

25



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13

2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

25



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13
2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15

25



Algorithm NaturalMergesort(A)

Input: Array A with length n > 0
Output: Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r ] do r ← r + 1
Merge(A, l,m, r);

else
r ← n

until l = 1

26



Quicksort with logarithmic memory consumption
Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail
recursion!): the if-statement became a while-statement.

27



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

28



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

28



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

28



Questions?

29


	Feedback of last exercise
	Analyse the running time of (recursive) Functions
	Solving Simple Recurrence Equations
	Sorting Algorithms

