#### **EH**zürich



# Exercise Session 3

Data Structures and Algorithms, D-MATH, ETH Zurich

Feedback of last exercise

Analyse the running time of (recursive) Functions

Solving Simple Recurrence Equations

Sorting Algorithms

1. Feedback of last exercise

# 2. Analyse the running time of (recursive) Functions

```
How many calls to f()?
```

```
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

```
How many calls to f()?
```

```
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

The code fragment implies  $\Theta(n^2)$  calls to f(): the outer loop is executed n/9 times and the inner loop contains *i* calls to f()

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f() The second inner loop contains  $\lfloor \log_2(n) \rfloor + 1$  calls to f(). Summing up yields  $\Theta(n \log(n))$  calls.

```
void g(unsigned n) {
    if (n>0){
        g(n-1);
        f();
    }
}
```

```
void g(unsigned n) {
    if (n>0){
        g(n-1);
        f();
    }
}
```

$$M(n) = M(n-1) + 1 = M(n-2) + 2 = \dots = M(0) + n = n \in \Theta(n)$$

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
    if (n>0){
      g(n/2);
      f()
    }
}
```

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
    if (n>0){
        g(n/2);
        f()
    }
}
```

$$M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2^k) \in \Theta(\log n)$$

```
// pre: n is a power of 2
void g(int n){
    if (n>0){
      f();
      g(n/2);
      f();
      g(n/2);
    }
}
```

```
// pre: n is a power of 2
void g(int n){
    if (n>0){
      f();
      g(n/2);
      f();
      g(n/2);
    }
}
```

$$M(n) = 2M\left(\frac{n}{2}\right) + 2 = 4M\left(\frac{n}{4}\right) + 4 + 2 = 8M\left(\frac{n}{8}\right) + 8 + 4$$
$$= n + n/2 + \dots + 2 \in \Theta(n)$$

```
// pre: n is a power of 2
// n = 2<sup>k</sup>
void g(int n){
  if (n>0){
    g(n/2);
   g(n/2);
  }
  for (int i = 0; i < n; ++i){</pre>
    f();
  }
}
```

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
  if (n>0){
   g(n/2);
   g(n/2);
 }
 for (int i = 0; i < n; ++i){</pre>
   f();
 }
3
```

 $M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = \dots = (k+1)n \in \Theta(n \log n)$ 

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1</pre>
```

```
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {

g(i)

}

f();

}

T(0) = 1

T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1 \\ T(n) = 1 + \sum_{i=0}^{n-1} T(i) 
\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4}{T(n) \mid 1 \mid 2 \mid 4 \mid 8 \mid 16}
```

Hypothesis:  $T(n) = 2^n$ .

Hypothesis:  $T(n) = 2^n$ . Induction step:

$$T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}$$
$$= 1 + 2^{n} - 1 = 2^{n}$$

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

You can also see it directly:

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i)$$
  

$$\Rightarrow T(n-1) = 1 + \sum_{i=0}^{n-2} T(i)$$
  

$$\Rightarrow T(n) = T(n-1) + T(n-1) = 2T(n-1)$$

# 3. Solving Simple Recurrence Equations

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \frac{n}{2} + 1, & n > 1\\ 3 & n = 1 \end{cases}$$

Specify a closed (non-recursive), simple formula for T(n) and prove it using mathematical induction. Assume that n is a power of 2.

$$T(2^{k}) = 2T(2^{k-1}) + 2^{k}/2 + 1$$
  
= 2(2(T(2^{k-2}) + 2^{k-1}/2 + 1) + 2^{k}/2 + 1 = ...  
= 2^{k}T(2^{k-k}) + \underbrace{2^{k}/2 + ... + 2^{k}/2}\_{k} + 1 + 2 + ... + 2^{k-1}  
= 3n +  $\frac{n}{2}\log_{2} n + n - 1$ 

 $\Rightarrow \text{Assumption } T(n) = 4n + \frac{n}{2}\log_2 n - 1$ 

### Induction

1. Hypothesis 
$$T(n) = f(n) := 4n + \frac{n}{2} \log_2 n - 1$$
  
2. Base Case  $T(1) = 3 = f(1) = 4 - 1$ .  
3. Step  $T(n) = f(n) \longrightarrow T(2 \cdot n) = f(2n)$  ( $n = 2^k$  for some  $k \in \mathbb{N}$ ):

$$T(2n) = 2T(n) + n + 1$$
  

$$\stackrel{i.h.}{=} 2(4n + \frac{n}{2}\log_2 n - 1) + n + 1$$
  

$$= 8n + n\log_2 n - 2 + n + 1$$
  

$$= 8n + n\log_2 n + n\log_2 2 - 1$$
  

$$= 8n + n\log_2 2n - 1$$
  

$$= f(2n).$$

### Master Method

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & n > 1\\ f(1) & n = 1 \end{cases} \quad (a, b \in \mathbb{N}^+)$$

1.  $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$  für eine Konstante  $\epsilon > 0 \Longrightarrow T(n) \in \Theta(n^{\log_b a})$ 

2. 
$$f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) \in \Theta(n^{\log_b a} \log n)$$

3.  $f(n) = \Omega(n^{\log_b a + \epsilon})$  for some constant  $\epsilon > 0$ , und wenn  $af(\frac{n}{b}) \le cf(n)$  for some constant c < 1 and all sufficiently large  $n \Longrightarrow T(n) \in \Theta(f(n))$ 

#### Maximum Subarray / Mergesort

 $T(n) = 2T(n/2) + \Theta(n)$ 

#### Maximum Subarray / Mergesort

$$T(n) = 2T(n/2) + \Theta(n)$$
  
$$a = 2, b = 2, f(n) = cn = cn^{1} = cn^{\log_2 2} \stackrel{[2]}{\Longrightarrow} T(n) = \Theta(n \log n)$$

#### Naive Matrix Multiplication Divide & Conquer<sup>1</sup>

$$T(n) = 8T(n/2) + \Theta(n^2)$$

<sup>&</sup>lt;sup>1</sup>Treated in the course later on

#### Naive Matrix Multiplication Divide & Conquer<sup>1</sup>

$$T(n) = 8T(n/2) + \Theta(n^2)$$
$$a = 8, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 8 - 1}) \stackrel{[1]}{\Longrightarrow} T(n) \in \Theta(n^3)$$

<sup>&</sup>lt;sup>1</sup>Treated in the course later on

#### Strassens Matrix Multiplication Divide & Conquer<sup>2</sup>

$$T(n) = 7T(n/2) + \Theta(n^2)$$

<sup>&</sup>lt;sup>2</sup>Treated in the course later on

#### Strassens Matrix Multiplication Divide & Conquer<sup>2</sup>

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$a = 7, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 7 - \epsilon}) \stackrel{[1]}{\Longrightarrow} T(n) \in \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$

<sup>&</sup>lt;sup>2</sup>Treated in the course later on

$$T(n) = 2T(n/4) + \Theta(n)$$

$$T(n) = 2T(n/4) + \Theta(n)$$
  
$$a = 2, b = 4, f(n) = cn \in \Omega(n^{\log_4 2 + 0.5}), 2f(n/4) = c\frac{n}{2} \le \frac{c}{2}n^1 \stackrel{[3]}{\Longrightarrow} T(n) \in \Theta(n)$$

$$T(n) = 2T(n/4) + \Theta(n^2)$$

$$T(n) = 2T(n/4) + \Theta(n^2)$$
  
 $a = 2, b = 4, f(n) = cn^2 \in \Omega(n^{\log_4 2 + 1.5}), 2f(n/4) = \frac{n^2}{8} \le \frac{1}{8}n^2 \stackrel{[3]}{\Longrightarrow}$   
 $T(n) \in \Theta(n^2)$ 

## 4. Sorting Algorithms

### Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

| 5 | 4 | 1 | 3 | 2 |  | 5 | 4 | 1 | 3 | 2 |  | 5 | 4 | 1 | 3 | 2 |  |
|---|---|---|---|---|--|---|---|---|---|---|--|---|---|---|---|---|--|
| 1 | 4 | 5 | 3 | 2 |  | 4 | 1 | 3 | 2 | 5 |  | 4 | 5 | 1 | 3 | 2 |  |
| 1 | 2 | 5 | 3 | 4 |  | 1 | 3 | 2 | 4 | 5 |  | 1 | 4 | 5 | 3 | 2 |  |
| 1 | 2 | 3 | 5 | 4 |  | 1 | 2 | 3 | 4 | 5 |  | 1 | 3 | 4 | 5 | 2 |  |
| 1 | 2 | 3 | 4 | 5 |  |   |   |   |   |   |  | 1 | 2 | 3 | 4 | 5 |  |
|   |   |   |   |   |  |   |   |   |   |   |  |   |   |   |   |   |  |
|   |   |   |   |   |  |   |   |   |   |   |  |   |   |   |   |   |  |

### Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

| 5 | 4 | 1 | 3 | 2 |  | 5 | 4 | 1 | 3 | 2 |  | 5 | 4 | 1 | 3 | 2 |  |
|---|---|---|---|---|--|---|---|---|---|---|--|---|---|---|---|---|--|
| 1 | 4 | 5 | 3 | 2 |  | 4 | 1 | 3 | 2 | 5 |  | 4 | 5 | 1 | 3 | 2 |  |
| 1 | 2 | 5 | 3 | 4 |  | 1 | 3 | 2 | 4 | 5 |  | 1 | 4 | 5 | 3 | 2 |  |
| 1 | 2 | 3 | 5 | 4 |  | 1 | 2 | 3 | 4 | 5 |  | 1 | 3 | 4 | 5 | 2 |  |
| 1 | 2 | 3 | 4 | 5 |  |   |   |   |   |   |  | 1 | 2 | 3 | 4 | 5 |  |
|   |   |   |   |   |  |   |   |   |   |   |  |   |   |   |   |   |  |
|   |   |   |   |   |  |   |   |   |   |   |  |   |   |   |   |   |  |

### Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

|    | 5    | 4    | 1 | 3 | 2 |   |    | 5    | 4    | 1   | 3 | 2 |   |    | 5    | 4   | 1 | 3 | 2 |  |
|----|------|------|---|---|---|---|----|------|------|-----|---|---|---|----|------|-----|---|---|---|--|
|    | 1    | 4    | 5 | 3 | 2 | - |    | 4    | 1    | 3   | 2 | 5 |   |    | 4    | 5   | 1 | 3 | 2 |  |
|    | 1    | 2    | 5 | 3 | 4 | - |    | 1    | 3    | 2   | 4 | 5 |   |    | 1    | 4   | 5 | 3 | 2 |  |
|    | 1    | 2    | 3 | 5 | 4 | - |    | 1    | 2    | 3   | 4 | 5 |   | -  | 1    | 3   | 4 | 5 | 2 |  |
|    | 1    | 2    | 3 | 4 | 5 | - |    |      |      |     |   |   |   | -  | 1    | 2   | 3 | 4 | 5 |  |
| se | lect | tior | ) |   |   |   | bı | ıbbl | lesc | ort |   |   | i | ns | sert | ion |   |   |   |  |

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

| 8 | 7 | 10 | 15 | 3 | 6        | 9 | 5  | 2  | 13 |
|---|---|----|----|---|----------|---|----|----|----|
| 2 | 7 | 5  | 6  | 3 | <u>8</u> | 9 | 15 | 10 | 13 |
|   |   |    |    |   |          |   |    |    |    |
|   |   |    |    |   |          |   |    |    |    |

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

| 8 | 7 | 10 | 15 | 3 | 6        | 9 | 5  | 2  | 13 |
|---|---|----|----|---|----------|---|----|----|----|
| 2 | 7 | 5  | 6  | 3 | <u>8</u> | 9 | 15 | 10 | 13 |
|   |   |    |    |   |          |   |    |    |    |
|   |   |    |    |   |          |   |    |    |    |

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

| 8 | 7 | 10 | 15 | 3        | 6        | 9 | 5  | 2  | 13         |
|---|---|----|----|----------|----------|---|----|----|------------|
| 2 | 7 | 5  | 6  | 3        | <u>8</u> | 9 | 15 | 10 | 13         |
| 2 | 7 | 5  | 6  | 3        | 8        | 9 | 15 | 10 | 13         |
| 2 | 3 | 5  | 6  | <u>7</u> | <u>8</u> | 9 | 13 | 10 | <u>1</u> 5 |

### Algorithm NaturalMergesort(A)

```
Input: Array A with length n > 0
Output: Array A sorted
repeat
    r \leftarrow 0
    while r < n do
        l \leftarrow r+1
        m \leftarrow l; while m < n and A[m+1] \ge A[m] do m \leftarrow m+1
        if m < n then
            r \leftarrow m+1; while r < n and A[r+1] > A[r] do r \leftarrow r+1
            Merge(A, l, m, r);
        else
          r \leftarrow n
until l = 1
```

### Quicksort with logarithmic memory consumption

```
Input: Array A with length n. 1 \le l \le r \le n.

Output: Array A, sorted between l and r.

while l < r do

Choose pivot p \in A[l, ..., r]

k \leftarrow Partition(A[l, ..., r], p)
```

```
Choose pivot p \in A[l, ..., r]

k \leftarrow Partition(A[l, ..., r], p)

if k - l < r - k then

Quicksort(A[l, ..., k - 1])

l \leftarrow k + 1

else

Quicksort(A[k + 1, ..., r])

r \leftarrow k - 1
```

The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

### Stable and in-situ sorting algorithms

 Stable sorting algorithms don't change the relative position of two equal elements.



### Stable and in-situ sorting algorithms

 Stable sorting algorithms don't change the relative position of two equal elements.



### Stable and in-situ sorting algorithms

Stable sorting algorithms don't change the relative position of two equal elements.



In-situ algorithms require only a constant amount of additional memory. Which of the sorting algorithms are stable? Which are in-situ? (How) can we make them stable / in-situ?

# Questions?