

Exercise Session 2

Data Structures and Algorithms, D-MATH, ETH Zurich

Program of today

Feedback of last exercise
C++ Container Library
Templates Recap
Repetition theory
Induction
Use Case
Subarray Sum Problem

Landau Notation

■ Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

Landau Notation

■ Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

■ $\Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R} \mid \exists a>0, b>0, n_{0} \in \mathbb{N}: a \cdot f(n) \leq g(n) \leq\right.$ $\left.b \cdot f(n) \forall n \geq n_{0}\right\}$

Landau Notation

■ Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.
■ $\Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R} \mid \exists a>0, b>0, n_{0} \in \mathbb{N}: a \cdot f(n) \leq g(n) \leq\right.$ $\left.b \cdot f(n) \forall n \geq n_{0}\right\}$

■ $\Theta(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R} \mid \exists c>0, n_{0} \in \mathbb{N}: \frac{1}{c} \cdot f(n) \leq g(n) \leq c \cdot f(n) \forall n \geq n_{0}\right\}$

Landau Notation

Prove or disprove the following statements, where $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$.
(a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$.
(e) $\log _{a}(n) \in \Theta\left(\log _{b}(n)\right)$ for all constants $a, b \in \mathbb{N} \backslash\{1\}$
(g) If $f_{1}, f_{2} \in \mathcal{O}(g)$ and $f(n):=f_{1}(n) \cdot f_{2}(n)$, then $f \in \mathcal{O}(g)$.

Landau Notation

Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$. $2^{16}, \log \left(n^{4}\right), \log ^{8}(n), \sqrt{n}, n \log n,\binom{n}{3}, n^{5}+n, \frac{2^{n}}{n^{2}}, n!, n^{n}$.

Sum of elements in two-dimensional array

Problems / Questions?

2. C++ Container Library

C++ Containers

Sequence-Container

vector	array	deque	list	forward_list
contiguous dynamic memory	contiguous static memory	Non-cont. dyn. memory	Non-cont. dyn. memory	Non-cont. dyn. memory
$\begin{aligned} & \text { random ac- } \\ & \text { cess } \end{aligned}$	$\begin{aligned} & \text { random ac- } \\ & \text { cess } \end{aligned}$	$\begin{aligned} & \text { random ac- } \\ & \text { cess } \end{aligned}$		
fast push/pop back		fast push/pop front/back	fast push/pop front/back	fast push/pop front
bid. iteration	bid. iteration	bid. iteration	bid. iteration	forward iteration

Sets and Multisets

■ std: : set<E> contains unique elements
■ std: :multiset<E> allows duplicate elements

- Iteration yields all elements in decreasing order (in non-deterministic order if unordered_multiset)
■ std: :multiset<E>: :count (elem) returns the number of occurences of a given element

Sets and Multisets

■ std: : set<E> contains unique elements
■ std: :multiset<E> allows duplicate elements

- Iteration yields all elements in decreasing order (in non-deterministic order if unordered_multiset)
■ std: :multiset<E>: :count (elem) returns the number of occurences of a given element

Example of std: :multiset
Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose count ("Xenon") = 3
count("Xylose") = 1

Maps and Multimaps

■ std: : map<K, v> contains pairs (key, value), where a key maps to at most one value
■ std: :multimap<K,V> allows duplicate pairs

- Iteration yields all pairs in descending key order (in non-deterministic order, if unordered_multimap)
■ std: :multimap<K, V>: :count(key) returns the number of occurrences of a given key
■ std::multimap<K,V>::equal_range(key) returns all values (in non-det. order) for a given key

Maps and Multimaps

■ std: :map<K, v> contains pairs (key, value), where a key maps to at most one value
■ std: :multimap<K,V> allows duplicate pairs
■ Iteration yields all pairs in descending key order (in non-deterministic order, if unordered_multimap)
■ std::multimap<K,V>: :count(key) returns the number of occurrences of a given key
■ std::multimap<K,V>::equal_range(key) returns all values (in non-det. order) for a given key

Example of std::multimap<K,V>
Content: $\{2$, er\} $\{2, \mathrm{du}\}$ \{2, es\} \{3, Axt\} $\{3$, sie\} $\{4$, Igel\} count (2) = 3
Values for key 2: er du es
3. Templates Recap

Motivation

Goal: generic binary tree without duplicating code

```
class Node { ... }; // Node of a binary search tree
auto n1 = Node<int>(5);
auto n2 = Node<std::string>("Zürich");
n1.insert(1);
n2.contains(2); // Compiler error
```


Motivation

Goal: generic binary tree without duplicating code

```
class Node { ... }; // Node of a binary search tree
auto n1 = Node<int>(5);
auto n2 = Node<std::string>("Zürich");
n1.insert(1);
n2.contains(2); // Compiler error
```

Idea:
■ Make classes and functions parametric in types (= template parameters)
■ ... just as they are already parametric in values (= function parameters)

Types as Template Parameters

1. In the concrete implementation of a class replace the type that should become generic (e.g. int) by a representative element, e.g. T.
2. Put in front of the class the construct template<typename $\mathrm{T}>$ Replace \mathbf{T} by the representative name).

The construct template<typename T > can be understood as "for all types $\mathrm{T}^{\prime \prime}$.

Class template

```
template <typename K>
class Node {
    K key;
    Node* left, right;
public:
    Node(K k, Node* l, Node* r): key(k), left(l), right(r) {}
    bool contains(K search_key) const {
        return search_key != key
            || left != nullptr && left->contains(search_key)
            || right != nullptr && right->contains(search_key)
    }
};
```


Function Template: Analogous Approach

1. To make a concrete implementation generic, replace the specific type (e.g. int) with a name, e.g. T,
2. Put in front of the function the construct template<typename $T>$ (Replace T by the chosen name)

Examples

- For free functions
template <typename T>
void swap (T\& x, T\& y) \{ template <typename Iter>
T temp $=\mathrm{x}$;
$\mathrm{x}=\mathrm{y}$;
y = temp;
\}
\}
- For operators
template <typename T>
ostream\& operator<<(ostream\& out, const Node<T> root) \{
\}

Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding instantiated class (or function) \rightarrow static code generation

$$
\begin{aligned}
& \text { Node<int> n1 = . . ; } \\
& \text { Node<std::string> n2 = ...; } \\
& \text { Node<Student> n3 = ...; }
\end{aligned}
$$

Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding instantiated class (or function) \rightarrow static code generation

Question: what does this imply for seperate compilation?
■ Should templates go into h (declarations) or .cpp (definitions) files?

- Is it possible to ship the compiled implementation (binary file compiled from .cpp) alongside the header file?

Type testing

■ Templates: syntactic checks

- Instances: checks as usual

```
template <typename T>
T abs(T v) {
    return 0 <= v ? v : -v;
}
// main
foo(8); // OK
template <typename T>
void swap(T& x, T& y) {
}
// main
double a = 1.0;
double b = 7;
swap(a, b); // OK
```

```
emplate <typename T>
```

emplate <typename T>
T abs(T v) {
T abs(T v) {
return 0 <= v ? v : -v; // Error
return 0 <= v ? v : -v; // Error
}
}
// main
// main
foo("hi"); // Error
foo("hi"); // Error
template <typename T>
template <typename T>
void swap(T\& x, T\& y) {
void swap(T\& x, T\& y) {
}
}
// main
// main
double a = 1.0;
double a = 1.0;
string b = "seven";
string b = "seven";
swap(a, b); // Error

```
swap(a, b); // Error
```


Other Languages

All languages try to foster code reuse but chose different solutions.

- C++, Rust:
- static code generation

■ no runtime overhead
■ difficult to integrate into OOP
■ C\#, Scala (, Java)
■ type parameters are turned into runtime values

- well-suited for OOP
- minor runtime overhead

■ Python, JavaScript:

- dynamic typing (duck typing)

■ no syntactic overhead

- potentially significant runtime overhead
3.1 auto vs templates

auto

■ Placeholder type specifier
■ Must be uniquely determined by direct context: initialiser code, or returns
■ User could write type themself, but leave it to the compiler

```
std::vector<int> vec = ...;
auto it = vec.cbegin();
// placeholder for td::vector<int>::const_iterator
```

■ Failing examples:

```
auto x; // x has no initializer
x = 0.0;
auto first_or_else(std::vector<int> data, unsigned int or_else) {
    if (data.size() == 0) return or_else;
    else return data[0];
}
```


Templates

- Parameters are unknown until instantiated

```
template <typename N>
char sign(N v) {
    if (0 <= v) return '+';
    else return '-';
}
```

template <typename T1, typename T2>
struct Pair \{
T1 fst;
T2 snd;
\};

■ Instantiation may happen anywhere
Pair<int, double> p1 = Pair\{1, 0.1\}; auto p2 = Pair<std::string, bool>\{"Brazil", true\};

Combining templates and auto

```
auto auto inside template must be determined after instantiation
template <typename C>
void print(C container) {
    for (auto& e : container)
    std::cout << e << ' ';
}
std::vector<int> numbers = {1, 2, 3};
print(numbers); // now auto can be determined
std::vector<std::string> airports = {"LAX", "LDN", "ZHR"};
print(airports); // now auto can be determined
```


Combining templates and auto

auto auto inside template must be determined after instantiation template <typename C> void print(C container) \{
for (auto\& e : container)
std::cout << e << ';
\}

Question: Is it possible to not use auto here?

Combining templates and auto

auto auto inside template must be determined after instantiation
template <typename C>
void print (C container) \{
for (auto\& e : container)
std::cout << e << ',
\}
Question: Is it possible to not use auto here?
Answer: Yes, for exampl by replacing auto with an additional template parameter E

From auto to templates

- Before C++20 aufo function parameters are forbidden void print(auto x) \{...\} // Compiler error

From auto to templates

- Before C++20 aufo function parameters are forbidden void print(auto x) \{...\} // Compiler error Question: Why do you think that is?

From auto to templates

- Before C++20 aufo function parameters are forbidden void print(auto x) \{...\} // Compiler error
Question: Why do you think that is? Answer: Cannot determine type from context

From auto to templates

- Before C++20 aufo function parameters are forbidden void print(auto x) \{...\} // Compiler error
Question: Why do you think that is? Answer: Cannot determine type from context
■ Since C++20 aufo function parameters are allowed
void print (auto x) \{...\} // ok
Clearly, it is still not possible to determine what auto stands for.

From auto to templates

- Before C++20 aufo function parameters are forbidden void print (auto x) \{...\} // Compiler error
Question: Why do you think that is?
Answer: Cannot determine type from context
■ Since C++20 aufo function parameters are allowed
void print (auto x) \{...\} // ok
Clearly, it is still not possible to determine what auto stands for. Question: What could be the meaning of auto in this case??

From auto to templates

- Before C++20 aufo function parameters are forbidden

```
void print(auto x) {...} // Compiler error
```

Question: Why do you think that is? Answer: Cannot determine type from context
■ Since C++20 aufo function parameters are allowed
void print (auto x) \{...\} // ok
Clearly, it is still not possible to determine what auto stands for. Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter

```
template <typename T>
void Print(T x){ ... }
```


4. Repetition theory

Induction: what is required?

■ Prove statements, for example $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

Induction: what is required?

■ Prove statements, for example $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
■ Base clause:
■ The given (in)equality holds for one or more base cases.
■ e.g. $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$.

Induction: what is required?

■ Prove statements, for example $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
■ Base clause:
■ The given (in)equality holds for one or more base cases.

- e.g. $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$.

■ Induction hypothesis: we assume that the statement holds for some n

Induction: what is required?

■ Prove statements, for example $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
■ Base clause:

- The given (in)equality holds for one or more base cases.
- e.g. $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$.

■ Induction hypothesis: we assume that the statement holds for some n
■ Induction step ($n \rightarrow n+1$):

- From the validity of the statement for n (induction hypothesis) it follows the one for $n+1$.
■ e.g.: $\sum_{i=1}^{n+1} i=n+1+\sum_{i=1}^{n} i=n+1+\frac{n(n+1)}{2}=\frac{(n+2)(n+1)}{2}$.

Induction: Example

■ Show $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$.

Induction: Example

■ Show $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$.
■ Base clause:

$$
n=0: \sum_{i=0}^{0} r^{i}=1=\frac{1-r^{1}}{1-r} .
$$

Induction: Example

- Show $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$.
- Base clause:

$$
n=0: \sum_{i=0}^{0} r^{i}=1=\frac{1-r^{1}}{1-r} .
$$

■ Induction step $(n \rightarrow n+1)$:

$$
\begin{aligned}
\sum_{i=0}^{n+1} r^{i} & =r^{n+1}+\sum_{i=0}^{n} r^{i} \\
& =r^{n+1}+\frac{1-r^{n+1}}{1-r}=\frac{r^{n+1}-r^{n+2}+1-r^{n+1}}{1-r}=\frac{1-r^{n+2}}{1-r}
\end{aligned}
$$

[Besides..]

It can be shown easily in a direct manner

$$
\begin{aligned}
\frac{r^{n+1}-1}{r-1} & \stackrel{!}{=} \sum_{i=0}^{n} r^{i} \\
(r-1) \cdot \sum_{i=0}^{n} r^{i} & =\sum_{i=0}^{n} r^{i+1}-\sum_{i=0}^{n} r^{i} \\
& =\sum_{i=1}^{n+1} r^{i}-\sum_{i=0}^{n} r^{i}=\sum_{i=0}^{n+1} r^{i}-1-\sum_{i=0}^{n} r^{i} \\
& =r^{n+1}-1
\end{aligned}
$$

5. Use Case

5.1 Subarray Sum Problem

Naïve Solution, prefix sums, binary search, Sliding Window

Street section of a given length

Street section of a given length

Street section of a given length

Given: distances between all crossroads on a street

Street section of a given length

Given: distances between all crossroads on a street

Wanted: street section of length 150 meters between crossroads

Street section of a given length

Given: distances between all crossroads on a street

86 m

Wanted: street section of length 150 meters between crossroads

Subarray Sum Problem

Subarray Sum Problem

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers
Wanted: a subsequence with sum k :
pair (l, r) with $0 \leq l \leq r \leq n-1$ such that $\sum_{i=l}^{r} a[i]=k$

Subarray Sum Problem

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers Wanted: a subsequence with sum k :

$$
\text { pair }(l, r) \text { with } 0 \leq l \leq r \leq n-1 \text { such that } \sum_{i=l}^{r} a[i]=k
$$

Example: $n=9, k=7$

Subarray Sum Problem

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers Wanted: a subsequence with sum k :

$$
\text { pair }(l, r) \text { with } 0 \leq l \leq r \leq n-1 \text { such that } \sum_{i=l}^{r} a[i]=k
$$

Example: $n=9, k=7$ Solution: $l=1, r=3$.

Strategies?

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers
Wanted: a subsequence with sum k : pair (l, r) with $0 \leq l \leq r \leq n-1$ such that $\sum_{i=l}^{r} a[i]=k$

Strategies

$$
\begin{array}{ll}
\Theta\left(n^{3}\right) & \text { Three loops } \\
\Theta\left(n^{2}\right) & ? \\
\Theta(n \log n) & ? \\
\Theta(n) & ?
\end{array}
$$

Strategies?

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers
Wanted: a subsequence with sum k : pair (l, r) with $0 \leq l \leq r \leq n-1$ such that $\sum_{i=l}^{r} a[i]=k$

Strategies

$$
\begin{array}{ll}
\Theta\left(n^{3}\right) & \text { Three loops } \\
\Theta\left(n^{2}\right) & \text { Prefix Sums } \\
\Theta(n \log n) & ? \\
\Theta(n) & ?
\end{array}
$$

Strategies?

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers
Wanted: a subsequence with sum k : pair (l, r) with $0 \leq l \leq r \leq n-1$ such that $\sum_{i=l}^{r} a[i]=k$

Strategies

$$
\begin{array}{ll}
\Theta\left(n^{3}\right) & \text { Three loops } \\
\Theta\left(n^{2}\right) & \text { Prefix Sums } \\
\Theta(n \log n) & \text { Binary Search } \\
\Theta(n) & ?
\end{array}
$$

Strategies?

Given: a sequence $a[0], \ldots, a[n-1]$ of non-negative integers
Wanted: a subsequence with sum k : pair (l, r) with $0 \leq l \leq r \leq n-1$ such that $\sum_{i=l}^{r} a[i]=k$

Strategies

$$
\begin{array}{ll}
\Theta\left(n^{3}\right) & \text { Three loops } \\
\Theta\left(n^{2}\right) & \text { Prefix Sums } \\
\Theta(n \log n) & \text { Binary Search } \\
\Theta(n) & \text { Sliding Window }
\end{array}
$$

Subarray Sum Problem: Sliding Window

Sliding Window Idea

Subarray Sum Problem: Sliding Window

Sliding Window Idea

- start with left and right pointer at 0

Subarray Sum Problem: Sliding Window

Sliding Window Idea

- start with left and right pointer at 0

■ repeat until the end of the sequence:

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0
■ repeat until the end of the sequence:
■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer
■ window as desired (sum $=k) \Rightarrow$ done!

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0
■ repeat until the end of the sequence:
■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0
■ repeat until the end of the sequence:
■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer
\square window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0
■ repeat until the end of the sequence:
■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0

- repeat until the end of the sequence:

■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer

- window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window

Sliding Window Idea
■ start with left and right pointer at 0
■ repeat until the end of the sequence:
■ window too small (sum $<k$) \Rightarrow increment right pointer
■ window too large (sum $>k$) \Rightarrow increment left pointer
■ window as desired (sum $=k$) \Rightarrow done!

Example: $k=7$

Subarray Sum Problem: Sliding Window Analysis

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 1 & 2 & 2 & 3 & 4 & 6 & 7 & 6 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Subarray Sum Problem: Sliding Window Analysis

\square in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
$■$ if r reaches the end before l reaches the start
\Rightarrow sum too large

Subarray Sum Problem: Sliding Window Analysis

- in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window

Subarray Sum Problem: Sliding Window Analysis

- in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window

Subarray Sum Problem: Sliding Window Analysis

- in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window

Subarray Sum Problem: Sliding Window Analysis

- in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window
■ if l reaches the start before r reaches the end

Subarray Sum Problem: Sliding Window Analysis

- in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window
■ if l reaches the start before r reaches the end
\Rightarrow sum too small

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window
\square if l reaches the start before r reaches the end
\Rightarrow sum too small $\Rightarrow r$ is increased until it reaches the end of the window

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
\square if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window
■ if l reaches the start before r reaches the end
\Rightarrow sum too small $\Rightarrow r$ is increased until it reaches the end of the window

Subarray Sum Problem: Sliding Window Analysis

■ in each step: either l or r is increased
\Rightarrow algorithm terminates after a maximum of $2 n$ steps
target window: lexicographically smallest (left-most) window with sum k
■ if r reaches the end before l reaches the start
\Rightarrow sum too large $\Rightarrow l$ is increased until it reaches the start of the window
\square if l reaches the start before r reaches the end
\Rightarrow sum too small $\Rightarrow r$ is increased until it reaches the end of the window

Analysis

We consider the lexicographically smallest (left-most) window with sum k, called target window
■ In each step of the algorithm either l or r is increased. The algorithm terminates after a maximum of $2 n$ steps.

- Assume r reaches the end of the target window before l reaches the start of the target window, then l keeps increasing until it reaches the start of the window.
- Assume l reaches the start of the target window before r reaches the end of the target window, then r keeps increasing until it reaches the end of the window.

Exercise: window with sum closest to k

Questions or Suggestions?

