Exercise Session 2
Data Structures and Algorithms, D-MATH, ETH Zurich




Program of today

Feedback of last exercise
C++ Container Library
Templates Recap

Repetition theory
Induction

Use Case
Subarray Sum Problem



Landau Notation

m Give a correct definition of the set ©(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).



Landau Notation

m Give a correct definition of the set ©(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).

mO(f)={9g: N>R |Ja>0,b>0,n€N:a-f(n)<gn)<
b- f(n) ¥n > ne}



Landau Notation

m Give a correct definition of the set ©(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).

mO(f)={9g: N>R |Ja>0,b>0,n€N:a-f(n)<gn)<
b- f(n) ¥n > ne}
mBO(f)={9g: N—=R|3Jc>0, nOEN:%-f(n)gg(n)gc-f(n)VnZno}



Landau Notation

Prove or disprove the following statements, where f,g : N — R*.
(@) f € O(g)ifand only if g € Q(f).

(e) log,(n) € ©(log,(n)) for all constants a,b € N\ {1}

(g) If fi, f2 € O(g) and f(n) := fi(n) - f2(n), then f € O(g).



Landau Notation

Sorting functions: if function f is left to function g, then f € O(g).
216 log(n?*), log®(n), /n, nlogn, (g), n’ +n, 7272’ n!, n™.



Sum of elements in two-dimensional array

Problems / Questions?



2. C++ Container Library




C++ Containers

‘ set "unordered_set

unordered_multimap

J9pJo uolliesul

|unordered_map

|unordered_mu1tiset

|mu1tiset

vector, array, deque,
list, forward_list



https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/unordered_multimap
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/unordered_multiset
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/unordered_set

vector
contiguous
dynamic
memory
random
cess

fast push/pop
back

bid. iteration

ac-

array
contiguous
static memory

random ac-
cess
bid. iteration

deque
Non-cont. dyn
memory
random ac-
cess

fast push/pop
front/back
bid. iteration

list
Non-cont. dyn.
memory

fast push/pop
front/back
bid. iteration

Sequence-Container

forward_list
Non-cont. dyn.
memory

fast push/pop
front
forward
tion

itera-


https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list

Sets and Multisets

m std::set<E> contains unique elements
B std::multiset<E> allows duplicate elements

m Iteration yields all elements in decreasing order (in non-deterministic

order if unordered_multiset)
B std::multiset<E>::count(elem) returns the number of occurences of a

given element



Sets and Multisets

m std::set<E> contains unique elements
B std::multiset<E> allows duplicate elements

m [teration yields all elements in decreasing order (in non-deterministic

order if unordered_multiset)
B std::multiset<E>::count(elem) returns the number of occurences of a

given element

Example of std: :multiset

Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose
count ("Xenon") = 3
count ("Xylose") = 1



Maps and Multimaps

m std::map<K,V> contains pairs (key, value), where a key maps to at most

one value
B std::multimap<K,V> allows duplicate pairs

m Iteration yields all pairs in descending key order (in non-deterministic

order, if unordered_multimap)
B std::multimap<K,V>::count (key) returns the number of occurrences of

a given key
B std::multimap<K,V>::equal_range(key) returns all values (in non-det.

order) for a given key



Maps and Multimaps

m std::map<K,V> contains pairs (key, value), where a key maps to at most
one value
B std::multimap<K,V> allows duplicate pairs
m Iteration yields all pairs in descending key order (in non-deterministic

order, if unordered_multimap)
B std::multimap<K,V>::count (key) returns the number of occurrences of

a given key
B std::multimap<K,V>::equal_range(key) returns all values (in non-det.

order) for a given key

Example of std: :multimap<kK,V>

Content: {2, er} {2, du} {2, es} {3, Axt} {3, sie} {4, Igell}

count(2) = 3
Values for key 2: er du es 10



3. Templates Recap




Goal: generic binary tree without duplicating code

class Node { ... }; // Node of a binary search tree
auto nl = Node<int>(5);

auto n2 = Node<std::string>("Zirich");
nl.insert(1);

n2.contains(2); // Compiler error



Goal: generic binary tree without duplicating code

class Node { ... }; // Node of a binary search tree
auto nl = Node<int>(5);

auto n2 = Node<std::string>("Zirich");
nl.insert(1);

n2.contains(2); // Compiler error

ldea:
m Make classes and functions parametric in types (= template parameters)

m .. just as they are already parametric in values (= function parameters)



Types as Template Parameters

1. In the concrete implementation of a class replace the type that
should become generic (e.g. int) by a representative element, e.g.
T.

2. Putin front of the class the construct template<typename T>
Replace T by the representative name).

The construct template<typename T> can be understood as “for all
types T”.



Class template

template <typename K>
class Node {
K key;
Nodex left, right;
public:
Node(K k, Node* 1, Node* r): key(k), left(l), right(r) {}

bool contains(K search_key) const {
return search_key != key
|| left != nullptr && left->contains(search_key)
|| right '= nullptr &% right->contains(search_key)



Function Template: Analogous Approach

1. To make a concrete implementation generic, replace the specific
type (e.g. int) with a name, e.g. T,

2. Putin front of the function the construct template<typename T>
(Replace T by the chosen name)



Examples

m For free functions
template <typename T>

void swap(T& x, T& y) { template <typename Iter>
T temp = x; void is_sorted(Iter begin, Iter end){
X =7y;
y = temp; }

}

m For operators

template <typename T>
ostream& operator<<(ostream& out, const Node<T> root) {

}

16



Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding
instantiated class (or function) — static code generation

Node<int> nl1 = .
Node<std::string> n2 =
Node<Student> n3 =

.
*

.
o0

P

class Node_int { class Node_string { class Node_Student {
int key; std::string key; Student key;
bool contains(int k) {...} }; };

int max() {...}
I8



Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding
instantiated class (or function) — static code generation

Question: what does this imply for seperate compilation?

m Should templates go into .h (declarations) or .cpp (definitions) files?

m s it possible to ship the compiled implementation (binary file
compiled from .cpp) alongside the header file?



Type testing

m Templates: syntactic checks

B Instances: checks as usual

template <typename T>
T abs(T v) {
return 0 <= v ? v : -v;
}
// main
foo(8); // OK

template <typename T>
void swap(T& x, T& y) {

}

// main
double a = 1.0;
double b = 7;

swap(a, b); // 0K

emplate <typename T>
T abs(T v) {
return 0 <= v ? v : -v; // Error
}
// main
foo("hi"); // Error

template <typename T>
void swap(T& x, T& y) {

}

// main
double a = 1.0;
string b = "seven";

swap(a, b); // Error



Other Languages

All languages try to foster code reuse but chose different solutions.
m C++ Rust:
m static code generation

® no runtime overhead
m difficult to integrate into OOP

m C# Scala (, Java)

m type parameters are turned into runtime values
m well-suited for OOP
® minor runtime overhead

m Python, JavaScript:

m dynamic typing (duck typing)
m no syntactic overhead
m potentially significant runtime overhead 2



3.1 auto vs templates

21



auto

m Placeholder type specifier

m Must be uniquely determined by direct context: initialiser code, or returns
m User could write type themself, but leave it to the compiler

std: :vector<int> vec = ...;
auto it = vec.cbegin();
// placeholder for td::vector<int>::const_iterator

m Failing examples:

auto x; // x has no initializer

x = 0.0;
auto first_or_else(std::vector<int> data, unsigned int or_else) {
if (data.size() == 0) return or_else;

else return datal0];

}

22



Templates

m Parameters are unknown until instantiated

template <typename N>
char sign(N v) {
if (0 <= v) return ’+’;
else return ’-’;

}

template <typename T1, typename T2>
struct Pair {
T1 fst;
T2 snd;
};
m Instantiation may happen anywhere

Pair<int, double> pl = Pair{1l, 0.1};
auto p2 = Pair<std::string, bool>{"Brazil", true}; z



Combining templates and auto

auto auto inside template must be determined after instantiation

template <typename C>

void print(C container) {
for (auto& e : container)
std::cout << e << 7 7

}

std::vector<int> numbers = {1, 2, 3};
print (numbers); // now auto can be determined

std::vector<std::string> airports = {"LAX", "LDN", "ZHR"};
print (airports); // now auto can be determined

24



Combining templates and auto

auto auto inside template must be determined after instantiation

template <typename C>

void print(C container) {
for (auto& e : container)
std::cout << e << 7 7

}

Question: Is it possible to not use auto here?

25



Combining templates and auto

auto auto inside template must be determined after instantiation

template <typename C>

void print(C container) {
for (auto& e : container)
std::cout << e << 7 7

}

Question: Is it possible to not use auto here?

Answer: Yes, for exampl by replacing auto with an additional template
parameter E

25



From auto to templates

m Before C++20 aufo function parameters are forbidden

void print(auto x) {...} // Compiler error

26



From auto to templates

m Before C++20 aufo function parameters are forbidden

void print(auto x) {...} // Compiler error

Question: Why do you think that is?

26



From auto to templates

m Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context

26



From auto to templates

m Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
m Since C++20 aufo function parameters are allowed

void print(auto x) {...} // ok
Clearly, it is still not possible to determine what auto stands for,

26



From auto to templates

m Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context

m Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for,
Question: What could be the meaning of auto in this case??

26



From auto to templates

m Before C++20 aufo function parameters are forbidden

void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
m Since C++20 aufo function parameters are allowed

void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for,
Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter

template <typename T>
void Print(T x){ ... }

26



4. Repetition theory




Induction: what is required?

n(n+1)

m Prove statements, for example 37, 1 = =5

28



Induction: what is required?

_ n(nJrl).

m Prove statements, for example >, 5

m Base clause:

m The given (in)equality holds for one or more base cases.
meg Yl i=1=02

28



Induction: what is required?

m Prove statements, for example >0 i = ”(”2“)-

m Base clause:

m The given (in)equality holds for one or more base cases.
meg Yl i=1=02

m Induction hypothesis: we assume that the statement holds for some n

28



Induction: what is required?

m Prove statements, for example >0 i = ”(”2“)-

m Base clause:
m The given (in)equality holds for one or more base cases.
meg Yl i=1=02

m Induction hypothesis: we assume that the statement holds for some n

m Induction step (n — n + 1):

m From the validity of the statement for n (induction hypothesis) it follows

the one forn + 1.
meg: E?jfz‘ =n+14+>"i=n+1+ "(";1) = (”+2)2(”+1).

28



Induction: Example

1—pntl

m Show Y7 r' = 50—,

29



Induction: Example

1—pntl

m Show Y7 r' = 50—,

m Base clause:

_ 0 30 i1 1-rt
n=0>_r"=1=+"—.

29



Induction: Example

. _en+1
m Show Y7 rf = 55—,

m Base clause:
.0 ] 1—rl
n —= O. Z’LIO TZ = 1 = 1—r -

m Induction step (n — n + 1):

n+1 ) n )
Z rt = ,r,n—i-l + Z o
=0 =0

. 1 — ol pntl _end2 4 pendl ] g2
=T fr— fry
1—7r 1—r 1—r

29



It can be shown easily in a direct manner

n+1

M: I M:

n .
_Zrz

(r—1) Z
i=0

.
o

n+1 n+1
—Zr —ZT —Zr —1—27"
n+1

=r 1

30



5. Use Case




5.1 Subarray Sum Problem

Naive Solution, prefix sums, binary search, Sliding Window

32



Street section of a given length

33



Street section of a given length

33



Street section of a given length

Given: distances between all crossroads on a street

\m/—\mf%m\/%m\f

33



Street section of a given length

Given: distances between all crossroads on a street

\m/—\mf%m\/%m\f

Wanted: street section of length 150 meters between crossroads

33



Street section of a given length

Given: distances between all crossroads on a street

Wanted: street section of length 150 meters between crossroads

33



Subarray Sum Problem

34



Subarray Sum Problem

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum &:
pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k

34



Subarray Sum Problem

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum &:

pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k
Example: n =9, k=7

1 2 2 3 1 4 2 2 3

0 1 2 3 4 5 6 7 8

34



Subarray Sum Problem

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum &:

pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k
Example: n =9,k =7 Solution: [ = 1,7 = 3.

1 2 2 3 1 4 2 2 3

T
l

2 4 5 6 7 8

= — w

34



Strategies?

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k

Strategies

Three loops

35



Strategies?

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k

Strategies

O(n?) Three loops
O(n?) Prefix Sums
O(nlogn) ?
O(n) ?

35



Strategies?

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k

Strategies
O(n?) Three loops
O(n?) Prefix Sums
©(nlogn) Binary Search
O(n) ?

35



Strategies?

Given: a sequence a[0],...,a[n — 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (I,r) with 0 <[ <r <n-—1suchthat}!  ali] =k

Strategies

O(n?) Three loops
O(n?) Prefix Sums
©(nlogn) Binary Search
O(n) Sliding Window

35



Subarray Sum Problem: Sliding Window

Sliding Window Idea

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea

m start with left and right pointer at 0
m repeat until the end of the sequence:

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea

m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 / 6

0 1 2 3 4 5 6 7 8 9

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 7 6

0 1 2 3 4 5 6 7 8 9

-

Lr window sum = 2

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 7 6

%
L

- — -

window sum =5

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 7 6

_— —% o
—

r window sum = 6

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 / 6

%
L

window sum = 8

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 7 6

0

P
-~ — w

window sum = 6

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 / 6

0

_— -

r window sum = 8

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 7 6

l r window sum =5

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3 1 2 2 3 4 6 / 6

0 1 2 3 4 5 6 7 8 9

T T

window sum = 8

36



Subarray Sum Problem: Sliding Window

Sliding Window Idea
m start with left and right pointer at 0
m repeat until the end of the sequence:

m window too small (sum < k) = increment right pointer
m window too large (sum > k) = increment left pointer
m window as desired (sum = k) = done!

Example: £ =7

2 3

—_
No
N
w
~
(@)]
~
(@)

0 1 2 3 4 5 6 7 8 9
T T
l r

window sum =7

36



Subarray Sum Problem: Sliding Window Analysis

37



Subarray Sum Problem: Sliding Window Analysis

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start

-_— -

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

m if r reaches the end before [ reaches the start
= sum too large

-_— -

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

m if r reaches the end before [ reaches the start
= sum too large = [ is increased until it reaches the start of the window

-_— -

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

m if r reaches the end before [ reaches the start
= sum too large = [ is increased until it reaches the start of the window

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

m if r reaches the end before [ reaches the start
= sum too large = [ is increased until it reaches the start of the window

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start

= sum too large = [ is increased until it reaches the start of the window
m if [ reaches the start before r reaches the end

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start

= sum too large = [ is increased until it reaches the start of the window
m if [ reaches the start before r reaches the end

= sum too small

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start
= sum too large = [ is increased until it reaches the start of the window

m if [ reaches the start before » reaches the end
= sum too small = r is increased until it reaches the end of the window

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start
= sum too large = [ is increased until it reaches the start of the window

m if [ reaches the start before » reaches the end
= sum too small = r is increased until it reaches the end of the window

37



Subarray Sum Problem: Sliding Window Analysis

m in each step: either [ or r is increased
= algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k
m if r reaches the end before [ reaches the start

= sum too large = [ is increased until it reaches the start of the window
m if [ reaches the start before r reaches the end

= sum too small = r is increased until it reaches the end of the window

37



We consider the lexicographically smallest (left-most) window with sum &,
called target window

m |n each step of the algorithm either [ or r is increased. The algorithm
terminates after a maximum of 2n steps.

m Assume r reaches the end of the target window before [ reaches the
start of the target window, then [ keeps increasing until it reaches the
start of the window.

m Assume [ reaches the start of the target window before r reaches the
end of the target window, then r keeps increasing until it reaches the
end of the window.

Exercise: window with sum closest to &

38



Questions or Suggestions?



	Feedback of last exercise
	C++ Container Library
	Templates Recap
	auto vs templates

	Repetition theory
	Induction

	Use Case
	Subarray Sum Problem


