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Landau Notation

Give a correct definition of the set Θ(f) as compact as possible
analogously to the definitions for sets O(f) and Ω(f).

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤
b · f(n) ∀n ≥ n0}

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 1
c
· f(n) ≤ g(n) ≤ c · f(n) ∀n ≥ n0}
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Landau Notation

Prove or disprove the following statements, where f, g : N→ R+.
(a) f ∈ O(g) if and only if g ∈ Ω(f).
(e) loga(n) ∈ Θ(logb(n)) for all constants a, b ∈ N \ {1}
(g) If f1, f2 ∈ O(g) and f(n) := f1(n) · f2(n), then f ∈ O(g).
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Landau Notation

Sorting functions: if function f is left to function g, then f ∈ O(g).
216, log(n4), log8(n),

√
n, n log n,

(
n
3

)
, n5 + n, 2n

n2 , n!, nn.

4



Sum of elements in two-dimensional array

Problems / Questions?
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2. C++ Container Library
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C++ Containers
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https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/unordered_multimap
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/unordered_multiset
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/unordered_set


Sequence-Container
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bid. iteration bid. iteration bid. iteration bid. iteration forward itera-
tion
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https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list


Sets and Multisets

std::set<E> contains unique elements
std::multiset<E> allows duplicate elements

Iteration yields all elements in decreasing order (in non-deterministic
order if unordered_multiset)
std::multiset<E>::count(elem) returns the number of occurences of a
given element

Example of std::multiset

Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose
count("Xenon") = 3
count("Xylose") = 1
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Maps and Multimaps
std::map<K,V> contains pairs (key, value), where a key maps to at most
one value
std::multimap<K,V> allows duplicate pairs

Iteration yields all pairs in descending key order (in non-deterministic
order, if unordered_multimap)
std::multimap<K,V>::count(key) returns the number of occurrences of
a given key
std::multimap<K,V>::equal_range(key) returns all values (in non-det.
order) for a given key

Example of std::multimap<K,V>

Content: {2, er} {2, du} {2, es} {3, Axt} {3, sie} {4, Igel}
count(2) = 3
Values for key 2: er du es
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3. Templates Recap
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Motivation

Goal: generic binary tree without duplicating code

class Node { ... }; // Node of a binary search tree
auto n1 = Node<int>(5);
auto n2 = Node<std::string>("Zürich");
n1.insert(1);
n2.contains(2); // Compiler error

Idea:
Make classes and functions parametric in types (= template parameters)
...
... just as they are already parametric in values (= function parameters)
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Types as Template Parameters

1. In the concrete implementation of a class replace the type that
should become generic (e.g. int) by a representative element, e.g.
T.

2. Put in front of the class the construct template<typename T>
Replace T by the representative name).

The construct template<typename T> can be understood as “for all
types T”.

13



Class template
template <typename K>
class Node {

K key;
Node* left, right;

public:
Node(K k, Node* l, Node* r): key(k), left(l), right(r) {}

bool contains(K search_key) const {
return search_key != key

|| left != nullptr && left->contains(search_key)
|| right != nullptr && right->contains(search_key)

}
...

};
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Function Template: Analogous Approach

1. To make a concrete implementation generic, replace the specific
type (e.g. int) with a name, e.g. T,

2. Put in front of the function the construct template<typename T>
(Replace T by the chosen name)
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Examples

For free functions
template <typename T>
void swap(T& x, T& y) {

T temp = x;
x = y;
y = temp;

}

template <typename Iter>
void is_sorted(Iter begin, Iter end){

...
}

For operators
template <typename T>
ostream& operator<<(ostream& out, const Node<T> root) {

...
}
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Semantics (Code-Generation)
For each template instance, the compiler creates a corresponding
instantiated class (or function)→ static code generation

Node<int> n1 = ...;
Node<std::string> n2 = ...;
Node<Student> n3 = ...;

class Node_int {
int key;
...
bool contains(int k) {...}
int max() {...}

};

class Node_string {
std::string key;
...

};

class Node_Student {
Student key;
...

};

n1 n2 n3
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Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding
instantiated class (or function)→ static code generation

Question: what does this imply for seperate compilation?

Should templates go into .h (declarations) or .cpp (definitions) files?
Is it possible to ship the compiled implementation (binary file
compiled from .cpp) alongside the header file?
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Type testing
Templates: syntactic checks
Instances: checks as usual

template <typename T>
T abs(T v) {

return 0 <= v ? v : -v;
}
// main
foo(8); // OK

emplate <typename T>
T abs(T v) {

return 0 <= v ? v : -v; // Error
}
// main
foo("hi"); // Error

template <typename T>
void swap(T& x, T& y) {

...
}
// main
double a = 1.0;
double b = 7;
swap(a, b); // OK

template <typename T>
void swap(T& x, T& y) {

...
}
// main
double a = 1.0;
string b = "seven";
swap(a, b); // Error
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Other Languages
All languages try to foster code reuse but chose di�erent solutions.

C++, Rust:
static code generation
no runtime overhead
di�cult to integrate into OOP

C#, Scala (, Java)
type parameters are turned into runtime values
well-suited for OOP
minor runtime overhead

Python, JavaScript:
dynamic typing (duck typing)
no syntactic overhead
potentially significant runtime overhead 20



3.1 auto vs templates
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auto

Placeholder type specifier
Must be uniquely determined by direct context: initialiser code, or returns
User could write type themself, but leave it to the compiler

std::vector<int> vec = ...;
auto it = vec.cbegin();
// placeholder for td::vector<int>::const_iterator

Failing examples:
auto x; // x has no initializer
x = 0.0;
auto first_or_else(std::vector<int> data, unsigned int or_else) {

if (data.size() == 0) return or_else;
else return data[0];

}
22



Templates
Parameters are unknown until instantiated
template <typename N>
char sign(N v) {

if (0 <= v) return ’+’;
else return ’-’;

}

template <typename T1, typename T2>
struct Pair {

T1 fst;
T2 snd;

};

Instantiation may happen anywhere
Pair<int, double> p1 = Pair{1, 0.1};
auto p2 = Pair<std::string, bool>{"Brazil", true}; 23



Combining templates and auto

auto auto inside template must be determined after instantiation
template <typename C>
void print(C container) {

for (auto& e : container)
std::cout << e << ’ ’;

}

std::vector<int> numbers = {1, 2, 3};
print(numbers); // now auto can be determined

std::vector<std::string> airports = {"LAX", "LDN", "ZHR"};
print(airports); // now auto can be determined
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Combining templates and auto

auto auto inside template must be determined after instantiation
template <typename C>
void print(C container) {

for (auto& e : container)
std::cout << e << ’ ’;

}

Question: Is it possible to not use auto here?

Answer: Yes, for exampl by replacing auto with an additional template
parameter E
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From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?

Answer: Cannot determine type from context
Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context

Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.

Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case??

Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



From auto to templates

Before C++20 aufo function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 aufo function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case??
Answer: It is just a shorthand for a template parameter
template <typename T>
void Print(T x){ ... }

26



4. Repetition theory
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Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n→ n + 1):

From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 +

∑n
i=1 i = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

28



Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n→ n + 1):

From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 +

∑n
i=1 i = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

28



Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n→ n + 1):

From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 +

∑n
i=1 i = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

28



Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n→ n + 1):

From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 +

∑n
i=1 i = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

28



Induction: Example

Show ∑n
i=0 ri = 1−rn+1

1−r
.

Base clause:
n = 0: ∑0

i=0 ri = 1 = 1−r1

1−r
.

Induction step (n→ n + 1):

n+1∑
i=0

ri = rn+1 +
n∑

i=0
ri

= rn+1 + 1− rn+1

1− r
= rn+1 − rn+2 + 1− rn+1

1− r
= 1− rn+2

1− r
.
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[Besides..]

It can be shown easily in a direct manner

rn+1 − 1
r − 1

!=
n∑

i=0
ri

(r − 1) ·
n∑

i=0
ri =

n∑
i=0

ri+1 −
n∑

i=0
ri

=
n+1∑
i=1

ri −
n∑

i=0
ri =

n+1∑
i=0

ri − 1−
n∑

i=0
ri

= rn+1 − 1
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5. Use Case
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5.1 Subarray Sum Problem

Naïve Solution, prefix sums, binary search, Sliding Window

32



Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads
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Subarray Sum Problem

Given: a sequence a[0], . . . , a[n− 1] of non-negative integers
Wanted: a subsequence with sum k:

pair (l, r) with 0 ≤ l ≤ r ≤ n− 1 such that ∑r
i=l a[i] = k

Example: n = 9, k = 7 Solution: l = 1, r = 3.

1
0

2
1

2
2

3
3

1
4

4
5

2
6

2
7

3
8

rl

2 2 3
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Strategies?

Given: a sequence a[0], . . . , a[n− 1] of non-negative integers
Wanted: a subsequence with sum k:

pair (l, r) with 0 ≤ l ≤ r ≤ n− 1 such that ∑r
i=l a[i] = k

Strategies

Θ(n3) Three loops
Θ(n2) ?
Θ(n log n) ?
Θ(n) ?

35
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Subarray Sum Problem: Sliding Window
Sliding Window Idea

start with left and right pointer at 0
repeat until the end of the sequence:

window too small (sum < k)⇒ increment right pointer
window too large (sum > k)⇒ increment left pointer
window as desired (sum = k)⇒ done!

Example: k = 7

2
0

3
1

1
2

2
3

2
4

3
5

4
6

6
7

7
8

6
9

window sum =l, r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3
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Subarray Sum Problem: Sliding Window Analysis

in each step: either l or r is increased
⇒ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
⇒ sum too large⇒ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
⇒ sum too small⇒ r is increased until it reaches the end of the window
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Analysis

We consider the lexicographically smallest (left-most) window with sum k,
called target window

In each step of the algorithm either l or r is increased. The algorithm
terminates after a maximum of 2n steps.
Assume r reaches the end of the target window before l reaches the
start of the target window, then l keeps increasing until it reaches the
start of the window.
Assume l reaches the start of the target window before r reaches the
end of the target window, then r keeps increasing until it reaches the
end of the window.

Exercise: window with sum closest to k
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Questions or Suggestions?
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