26. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Problem

Given: Undirected, weighted, connected graph $G=(V, E, c)$. Wanted: Minimum Spanning Tree $T=\left(V, E^{\prime}\right)$: connected, cycle-free subgraph $E^{\prime} \subset E$, such that $\sum_{e \in E^{\prime}} c(e)$ minimal.

Application Examples

■ Network-Design: find the cheapest / shortest network that connects all nodes.

- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

Greedy Procedure

Recall:

■ Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
■ Most problems cannot be solved with a greedy algorithm.

- The Minimum Spanning Tree problem can be solved with a greedy strategy.

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Algorithm MST-Kruskal(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimum spanning tree with edges A.
Sort edges by weight $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
$A \leftarrow \emptyset$
for $k=1$ to $|E|$ do
if $\left(V, A \cup\left\{e_{k}\right\}\right)$ acyclic then
$A \leftarrow A \cup\left\{e_{k}\right\}$
return (V, A, c)

Correctness

At each point in the algorithm (V, A) is a forest, a set of trees. MST-Kruskal considers each edge e_{k} exactly once and either chooses or rejects e_{k}
Notation (snapshot of the state in the running algorithm)
■ A: Set of selected edges
■ R : Set of rejected edges
■ U : Set of yet undecided edges

Cut

A cut of G is a partition $S, V-S$ of V. ($S \subseteq V$).

An edge crosses a cut when one of its endpoints is in S and the other is in $V \backslash S$.

1. Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
2. Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

Kruskal applies both rules:

1. A selected e_{k} connects two connection components, otherwise it would generate a cycle. e_{k} is minimal, i.e. a cut can be chosen such that e_{k} crosses and e_{k} has minimal weight.
2. A rejected e_{k} is contained in a cycle. Within the cycle e_{k} has minimal weight.

Correctness

Theorem 27

Every algorithm that applies the rules above in a step-wise manner until $U=\emptyset$ is correct.
Consequence: MST-Kruskal is correct.

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

■ At beginning: $U=E, R=A=\emptyset$. Invariant obviously holds.
■ Invariant is preserved at each step of the algorithm.
■ At the end: $U=\emptyset, R \cup A=E \Rightarrow(V, A)$ is a spanning tree.
Proof of the theorem: show that both rules preserve the invariant.

Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

■ Case 1: $e \in T$ (done)

- Case 2: $e \notin T$. Then $T \cup\{e\}$ contains a cycle that contains e Cycle must have a second edge e^{\prime} that also crosses the cut. ${ }^{43}$ Because $e^{\prime} \notin R, e^{\prime} \in U$. Thus $c(e) \leq c\left(e^{\prime}\right)$ and $T^{\prime}=T \backslash\left\{e^{\prime}\right\} \cup\{e\}$ is also a minimal spanning tree (and $c(e)=c\left(e^{\prime}\right)$).
${ }^{43}$ Such a cycle contains at least one node in S and one node in $V \backslash S$ and therefore at lease to edges between S and $V \backslash S$.

Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

- Case 1: $e \notin T$ (done)

■ Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e^{\prime} of the cycle. Because $c\left(e^{\prime}\right) \leq c(e)$, $T^{\prime}=T \backslash\{e\} \cup\left\{e^{\prime}\right\}$ is also minimal (and $c(e)=c\left(e^{\prime}\right)$).

Implementation Issues

Consider a set of sets $i \equiv A_{i} \subset V$. To identify cuts and cycles: membership of the both ends of an edge to sets?

Implementation Issues

General problem: partition (set of subsets) .e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$
Required: Abstract data type "Union-Find" with the following operations
■ Make-Set (i) : create a new set represented by i.
\square Find (e) : name of the set i that contains e.
■ Union(i, j): union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimum spanning tree with edges A.
Sort edges by weight $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
$A \leftarrow \emptyset$
for $k=1$ to $|V|$ do
MakeSet (k)
for $k=1$ to m do
$(u, v) \leftarrow e_{k}$
if Find $(u) \neq \operatorname{Find}(v)$ then
Union $(\operatorname{Find}(u)$, Find $(v))$
$A \leftarrow A \cup e_{k}$
else
// conceptual: $R \leftarrow R \cup e_{k}$
return (V, A, c)

Implementation Union-Find

Idea: tree for each subset in the partition,e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

$10{ }^{5}$
roots = names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

10^{5}

Representation as array:

Index	1	2	3	4	5	6	7	8	9	10
Parent	1	1	1	6	5	6	5	5	3	10

Implementation Union-Find

Index	1	2	3	4	5	6	7	8	9	10
Parent	1	1	1	6	5	6	5	5	3	10

Make-Set $(i) \quad p[i] \leftarrow i$; return i
$\operatorname{Find}(i) \quad$ while $(p[i] \neq i)$ do $i \leftarrow p[i]$ return i
$\operatorname{Union}(i, j)^{44} \quad p[j] \leftarrow i ;$

[^0]
Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index	1	2	3	4	5	6	7	8	.
Parent	1	1	2	3	4	5	6	7	..

Worst-case running time of Find in $\Theta(n)$.

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

Make-Set $(i) \quad p[i] \leftarrow i ; g[i] \leftarrow 1 ;$ return i

	if $g[j]>g[i]$ then $\operatorname{swap}(i, j)$
Union (i, j)	$p[j] \leftarrow i$
	if $g[i]=g[j]$ then $g[i] \leftarrow g[i]+1$

\Rightarrow Tree depth (and worst-case running time for Find) in $\Theta(\log n)$

Observation

Theorem 28

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^{h} nodes.

Immediate consequence: runtime Find $=\mathcal{O}(\log n)$.

Proof

Induction: by assumption, sub-trees have at least $2^{h_{i}}$ nodes. WLOG: $h_{2} \leq h_{1}$

- $h_{2}<h_{1}$:

$$
h\left(T_{1} \oplus T_{2}\right)=h_{1} \Rightarrow g\left(T_{1} \oplus T_{2}\right) \geq 2^{h}
$$

- $h_{2}=h_{1}$:

$$
\begin{aligned}
& g\left(T_{1}\right) \geq g\left(T_{2}\right) \geq 2^{h_{2}} \\
\Rightarrow & g\left(T_{1} \oplus T_{2}\right)=g\left(T_{1}\right)+g\left(T_{2}\right) \geq 2 \cdot 2^{h_{2}}=2^{h\left(T_{1} \oplus T_{2}\right)}
\end{aligned}
$$

Further improvement

Link all nodes to the root when Find is called.
Find (i) :
$j \leftarrow i$
while $(p[i] \neq i)$ do $i \leftarrow p[i]$
while $(j \neq i)$ do
$t \leftarrow j$
$j \leftarrow p[j]$
$p[t] \leftarrow i$
return i
Cost: amortised nearly constant (inverse of the Ackermann-function). ${ }^{45}$
${ }^{45}$ We do not go into details here.

Running time of Kruskal's Algorithm

■ Sorting of the edges: $\Theta(|E| \log |E|)=\Theta(|E| \log |V|) .{ }^{46}$
■ Initialisation of the Union-Find data structure $\Theta(|V|)$
■ $|E| \times \operatorname{Union}(\operatorname{Find}(x)$, Find $(y)): \mathcal{O}(|E| \log |E|)=\mathcal{O}(|E| \log |V|)$. Overal $\Theta(|E| \log |V|)$.

[^1]
Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

```
A\leftarrow\emptyset
S\leftarrow{\mp@subsup{v}{0}{}}
for}i\leftarrow1\mathrm{ to }|V|\mathrm{ do
    Choose cheapest (u,v) mit u\inS,v\not\inS
    A\leftarrowA\cup{(u,v)}
    S\leftarrowS\cup{v} // (Coloring)
```


Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Implementation and Running time

Implementation like with Dijkstra's ShortestPath. Only difference:

Shortest Paths

Relax (u, v) :

$$
\begin{aligned}
& \text { if } d_{s}[v]>d[u]+c(u, v) \text { then } \\
& d_{s}[v] \leftarrow d_{s}[u]+c(u, v) \\
& \pi_{s}[v] \leftarrow u
\end{aligned}
$$

\Rightarrow Minimum Spanning Tree Relax (u, v) :
if $d_{s}[v]>c(u, v)$ then
$d_{s}[v] \leftarrow c(u, v)$
$\pi_{s}[v] \leftarrow u$

■ With Min-Heap: costs $\mathcal{O}(|E| \cdot \log |V|)$:

- Initialization (node coloring) $\mathcal{O}(|V|)$
- $|V| \times$ ExtractMin $=\mathcal{O}(|V| \log |V|)$,
- $|E| \times$ Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$,

■ With a Fibonacci-Heap: $\mathcal{O}(|E|+|V| \cdot \log |V|)$.

Fibonacci Heaps

Data structure for elements with key with operations
■ MakeHeap(): Return new heap without elements
■ Insert(H, x): Add x to H
■ Minimum (H) : return a pointer to element m with minimal key
■ ExtractMin (H) : return and remove (from H) pointer to the element m
■ Union $\left(H_{1}, H_{2}\right)$: return a heap merged from H_{1} and H_{2}
■ DecreaseKey (H, x, k) : decrease the key of x in H to k
■ Delete (H, x): remove element x from H

Advantage over binary heap?

	Binary Heap (worst-Case)	Fibonacci Heap (amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)

■ Insert(H, e)

1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

- Union (H_{1}, H_{2})

1. Concatenate root-lists of H_{1} and H_{2}
2. Reset min-pointer.

■ Delete (H, e)

1. DecreaseKey $(H, e,-\infty)$
2. ExtractMin (H)

ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a different degree:
Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:
a Let g be the degree of e
b If $a[g]=n i l: a[g] \leftarrow e$.
c If $e^{\prime}:=a[g] \neq$ nil: Merge e with e^{\prime} resutling in $e^{\prime \prime}$ and set $a[g] \leftarrow$ nil. Set $e^{\prime \prime}$ unmarked. Re-iterate with $e \leftarrow e^{\prime \prime}$ having degree $g+1$.
4. Remove e from its parent node p (if existing) and decrease the degree of p by one.
5. $\operatorname{Insert}(H, e)$
6. Avoid too thin trees:
a If $p=n i l$ then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent $p p$. Insert (H, p). Iterate with $p \leftarrow p p$.

Estimation of the degree

Theorem 29

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the ith child node has a degree of at least $i-2$.

Proof: p may have had more children and lost by cutting. When the i th child p_{i} was linked, p and p_{i} must at least have had degree $i-1$. p_{i} may have lost at least one child (marking!), thus at least degree $i-2$ remains.

Estimation of the degree

Theorem 30

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F : Fibonacci-Folge)

Proof: Let S_{k} be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_{0}=1, S_{1}=2$. With the previous theorem $S_{k} \geq 2+\sum_{i=0}^{k-2} S_{i}, k \geq 2$ (p and nodes p_{1} each 1). For Fibonacci numbers it holds that (induction) $F_{k} \geq 2+\sum_{i=2}^{k} F_{i}, k \geq 2$ and thus (also induction) $S_{k} \geq F_{k+2}$. Fibonacci numbers grow exponentially fast $\left(\mathcal{O}\left(\varphi^{k}\right)\right.$) Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

Amortized worst-case analysis Fibonacci Heap

$t(H)$: number of trees in the root list of $H, m(H)$: number of marked nodes in H not within the root-list, Potential function $\Phi(H)=t(H)+2 \cdot m(H)$. At the beginnning $\Phi(H)=0$. Potential always non-negative.
Amortized costs:
■ Insert $(H, x): t^{\prime}(H)=t(H)+1, m^{\prime}(H)=m(H)$, Increase of the potential: 1, Amortized costs $\Theta(1)+1=\Theta(1)$
■ Minimum (H) : Amortized costs $=$ real costs $=\Theta(1)$
■ Union $\left(H_{1}, H_{2}\right)$: Amortized costs = real costs $=\Theta(1)$

Amortized costs of ExtractMin

■ Number trees in the root list $t(H)$.
■ Real costs of ExtractMin operation $\mathcal{O}(\log n+t(H))$.
■ When merged still $\mathcal{O}(\log n)$ nodes.
■ Number of markings can only get smaller when trees are merged
■ Thus maximal amortized costs of ExtractMin

$$
\mathcal{O}(\log n+t(H))+\mathcal{O}(\log n)-\mathcal{O}(t(H))=\mathcal{O}(\log n)
$$

Amortized costs of DecreaseKey

■ Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs $\mathcal{O}(c)$

- c nodes are added to the root list

■ Delete $(c-1)$ mark flags, addition of at most one mark flag
■ Amortized costs of DecreaseKey:

$$
\mathcal{O}(c)+(t(H)+c)+2 \cdot(m(H)-c+2))-(t(H)+2 m(H))=\mathcal{O}(1)
$$

[^0]: ${ }^{44} i$ and j need to be names (roots) of the sets. Otherwise use Union(Find $\left.(i), \operatorname{Find}(j)\right)$

[^1]: ${ }^{46}$ because G is connected: $|V| \leq|E| \leq|V|^{2}$

