
26. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra , Fibonacci Heaps [Ottman/Widmayer, Kap.
9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]
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Problem

Given: Undirected, weighted, connected graph G = (V,E, c).
Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that ∑

e∈E′ c(e) minimal.
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Application Examples

Network-Design: find the cheapest / shortest network that connects all
nodes.
Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once.
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Greedy Procedure

Recall:
Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.
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Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.
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(Solution is not unique.)
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Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V, A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V, A, c)

791



Correctness

At each point in the algorithm (V,A) is a forest, a set of trees.
MST-Kruskal considers each edge ek exactly once and either chooses or
rejects ek

Notation (snapshot of the state in the running algorithm)
A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges
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Cut
A cut of G is a partition S, V − S of V . (S ⊆ V ).
An edge crosses a cut when one of its endpoints is in S and the other is in
V \ S.

S

V \ S
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Rules

1. Selection rule: choose a cut that is not crossed by a selected edge. Of
all undecided edges that cross the cut, select the one with minimal
weight.

2. Rejection rule: choose a cycle without rejected edges. Of all
undecided edges of the cycle, reject those with maximal weight.
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Rules

Kruskal applies both rules:
1. A selected ek connects two connection components, otherwise it

would generate a cycle. ek is minimal, i.e. a cut can be chosen such
that ek crosses and ek has minimal weight.

2. A rejected ek is contained in a cycle. Within the cycle ek has minimal
weight.
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Correctness

Theorem 27
Every algorithm that applies the rules above in a step-wise manner until
U = ∅ is correct.

Consequence: MST-Kruskal is correct.
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Selection invariant

Invariant: At each step there is a minimal spanning tree that contains all
selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.
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Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross
the cut, select the egde e with minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a cycle that contains e Cycle must
have a second edge e′ that also crosses the cut.43 Because e′ 6∈ R , e′ ∈ U .
Thus c(e) ≤ c(e′) and T ′ = T \ {e′} ∪ {e} is also a minimal spanning tree
(and c(e) = c(e′)).

43Such a cycle contains at least one node in S and one node in V \ S and therefore at
lease to edges between S and V \ S.
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Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an
edge e with maximal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must be
crossed by another edge e′ of the cycle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).
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Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles: membership
of the both ends of an edge to sets?
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Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

801



Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V, A, c)
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Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
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2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets
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Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

804



Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 44 p[j]← i;

44i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
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Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).
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Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)
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Observation

Theorem 28

The method above (union by size) preserves the following property of
the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).
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Proof

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2
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Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).45

45We do not go into details here.
810



Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 46

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

46because G is connected: |V | ≤ |E| ≤ |V |2
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Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here by the
acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It su�ces to color
nodes when they are added to S.
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Implementation and Running time
Implementation like with Dijkstra’s ShortestPath. Only di�erence:
Shortest Paths
Relax (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

⇒ Minimum Spanning Tree
Relax (u, v):

if ds[v] > c(u, v) then
ds[v]← c(u, v)
πs[v]← u

With Min-Heap: costs O(|E| · log |V |):

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

With a Fibonacci-Heap: O(|E|+ |V | · log |V |).
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Fibonacci Heaps

Data structure for elements with key with operations
MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H
Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the element m
Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k
Delete (H, x): remove element x from H
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Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)
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Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min

816



Implementation

Doubly linked lists of nodes with a marked-flag and number of children.
Pointer to minimal Element and number nodes.
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Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1. Concatenate root-lists of H1 and H2
2. Reset min-pointer.

Delete(H, e)
1. DecreaseKey(H, e,−∞)
2. ExtractMin(H)
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ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a

di�erent degree:
Array of degrees a[0, . . . , n] of elements, empty at beginning. For each
element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil. Set

e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.
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DecreaseKey (H, e, k)

1. Remove e from its parent node p (if existing) and decrease the degree
of p by one.

2. Insert(H, e)
3. Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p← pp.
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Estimation of the degree

Theorem 29
Let p be a node of a F-Heap H . If child nodes of p are sorted by time of
insertion (Union), then it holds that the ith child node has a degree of
at least i− 2.

Proof: p may have had more children and lost by cutting. When the ith child pi

was linked, p and pi must at least have had degree i− 1. pi may have lost at least
one child (marking!), thus at least degree i− 2 remains.
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Estimation of the degree

Theorem 30
Every node p with degree k of a F-Heap is the root of a subtree with at
least Fk+1 nodes. (F : Fibonacci-Folge)

Proof: Let Sk be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly S0 = 1, S1 = 2. With the previous theorem
Sk ≥ 2 +

∑k−2
i=0 Si, k ≥ 2 (p and nodes p1 each 1). For Fibonacci numbers it holds

that (induction) Fk ≥ 2 +
∑k

i=2 Fi, k ≥ 2 and thus (also induction) Sk ≥ Fk+2.

Fibonacci numbers grow exponentially fast (O(ϕk)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(log n).
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Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H , m(H): number of marked nodes
in H not within the root-list, Potential function Φ(H) = t(H) + 2 ·m(H). At
the beginnning Φ(H) = 0. Potential always non-negative.
Amortized costs:

Insert(H, x): t′(H) = t(H) + 1, m′(H) = m(H), Increase of the potential: 1,
Amortized costs Θ(1) + 1 = Θ(1)
Minimum(H): Amortized costs = real costs = Θ(1)
Union(H1, H2): Amortized costs = real costs = Θ(1)
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Amortized costs of ExtractMin

Number trees in the root list t(H).
Real costs of ExtractMin operation O(log n+ t(H)).
When merged still O(log n) nodes.
Number of markings can only get smaller when trees are merged
Thus maximal amortized costs of ExtractMin

O(log n+ t(H)) +O(log n)−O(t(H)) = O(log n).
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Amortized costs of DecreaseKey

Assumption: DecreaseKey leads to c cuts of a node from its parent node,
real costs O(c)
c nodes are added to the root list
Delete (c− 1) mark flags, addition of at most one mark flag
Amortized costs of DecreaseKey:

O(c) + (t(H) + c) + 2 · (m(H)− c+ 2))− (t(H) + 2m(H)) = O(1)
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