25.8 A*-Algorithmus

Disclaimer

Diese Folien beinhalten die wichtigsten Formalien zum A*-Algorithmus und dessen Korrektheit. In der Vorlesung wird der Algorithmus motiviert und mit Beispielen unterlegt.

Eine sehr schöne Motivation des Algorithmus findet sich zum Beispiel hier: https://www.youtube.com/watch?v=bRvs8r0QU-Q

A*-Algorithmus

Voraussetzungen

- Positiv gewichteter Graph G = (V, E, c)
- G endlich oder δ -Graph: $\exists \ \delta > 0 : c(e) \ge \delta$ für alle $e \in E$
- $s \in V, t \in V$
- Abstandsschätzung $\hat{h}_t(v) \leq h_t(v) := \delta(v,t) \ \forall \ v \in V$.
- Gesucht: kürzester Pfad $p: s \leadsto t$

A*-Algorithmus(G, s, t, \hat{h})

Input: Positiv gewichteter Graph G=(V,E,c), Startpunkt $s\in V$, Endpunkt $t\in V$, Schätzung $\widehat{h}(v)\leq \delta(v,t)$

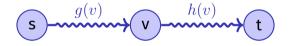
Output: Existenz und Wert eines kürzesten Pfades von s nach t

return failure

Notation

Sei f(v) die Distanz eines kürzesten Weges von s nach t über v, also

$$f(v) := \underbrace{\delta(s,v)}_{g(v)} + \underbrace{\delta(v,t)}_{h(v)}$$



Sei p ein kürzester Weg von s nach t.

Dann gilt $f(s) = \delta(s,t)$ und f(v) = f(s) für alle $v \in p$.

Sei $\widehat{g}(v):=d[v]$ die Schätzung von g(v) in obigem Algorithms. Es gilt, dass $\widehat{g}(v)\geq g(v)$.

 $\widehat{h}(v)$ ist eine Schätzung von h(v) mit $\widehat{h}(v) \leq h(v)$.

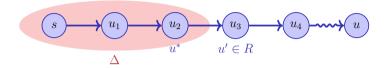
Warum der Algorithmus funktioniert

Lemma 24

Sei $u \in V$ und, zu einem Zeitpunkt des A*-Algorithmus, $u \notin M$. Sei p ein kürzester Pfad von s nach u. Dann existiert ein $u' \in p$ mit $\widehat{g}(u') = g(u')$ und $u' \in R$.

Das Lemma besagt, dass es immer einen Knoten in der offenen Menge R gibt, dessen wahre Entfernung von s schon berechnet wurde und der zum kürzesten Pfad gehört (sofern ein solcher existiert).

Illustration und Beweis



Beweis: Wenn $s \in R$, dann $\widehat{g}(s) = g(s) = 0$. Sei also $s \notin R$.

Sei
$$p = \langle s = u_0, u_1, \dots, u_k = u \rangle$$
 und $\Delta = \{u_i \in p, u_i \in M, \widehat{g}(u_i) = g(u_i)\}$. $\Delta \neq \emptyset$, denn $s \in \Delta$.

Sei $m=\max\{i:u_i\in\Delta\}$, $u^*=u_m$. Dann $u^*\neq u$, da $u\not\in M$. Sei $u'=u_{m+1}$.

- 1. $\hat{g}(u') \leq \hat{g}(u^*) + c(u^*, u')$ weil u' schon relaxiert wurde
- **2.** $\widehat{g}(u^*) = g(u^*)$ (da $u^* \in \Delta$)
- 3. $\hat{g}(u') \geq g(u')$ (Konstruktion von \hat{g})
- **4.** $g(u') = g(u^*) + c(u^*, u')$ (da p optimal)

Also: $\widehat{g}(u') = g(u')$ und somit auch $u' \in R$ da $u' \notin \Delta$.

Folgerung

Corollary 25

Wenn $\hat{h}(u) \leq h(u)$ für alle $u \in V$ und A*- Algorithmus hat noch nicht terminiert. Dann existiert für jeden kürzesten Pfad p von s nach t ein Knoten $u' \in p$ mit $\hat{f}(u') \leq \delta(s,t) = f(t)$.

Wenn es einen kürzesten Weg p von s nach t gibt, steht also stets ein Knoten in der offenen Menge bereit, der die Gesamtentfernung maximal unterschätzt und der auf dem kürzesten Weg liegt.

Beweis des Corollars

Beweis:

Nach Lemma $\exists u' \in p \text{ mit } \widehat{g}(u') = g(u').$

Also:

$$\widehat{f}(u') = \widehat{g}(u') + \widehat{h}(u')$$

$$= g(u') + \widehat{h}(u')$$

$$\leq g(u') + h(u') = f(u')$$

Da p optimal: $f(u') = \delta(s, t)$.

Zulässigkeit

Theorem 26

Wenn es einen kürzesten Weg von s nach t gibt und $\hat{h}(u) \leq h(u) \ \forall \ u \in V$, dann terminiert der A*-Algorithmus mit $\hat{g}(t) = \delta(s,t)$

Beweis: Wenn der Algorithmus terminiert, dann terminiert er in t mit $f(t)=\widehat{g}(t)+0=g(t)$. Denn \widehat{g} überschätzt g höchstens und nach obigem Korrolar findet der Algorithmus stets ein Element $v\in R$ mit $f(v)\leq \delta(s,t)$. Der Algorithmus terminiert in endlichen vielen Schritten. Für endliche Graphen ist die maximale Anzahl an Relaxierschritten beschränkt.

⁴⁴Für einen δ-Graphen ist die maximale Anzahl an Relaxierschritten bevor R nur noch Knoten mit $\hat{f}(s) > \delta(s,t)$ enthält, auch beschränkt. Das genaue Argument findet sich im Originalartikel Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths".

Erneutes Besuchen von Knoten

- Der A*-Algorithmus kann Knoten mehrfach aus der Menge R entnehmen und sie später wieder einfügen.
- Das kann zu suboptimalem Verhalten im Sinne der Laufzeit des Algorithmus führen.
- Wenn \hat{h} zusätzlich zur Zulässigkeit ($\hat{h}(v) \leq h(v)$ für alle $v \in V$) auch noch monoton ist, d.h. wenn für alle $(u, u') \in E$:

$$\hat{h}(u') \le \hat{h}(u) + c(u', u)$$

dann ist der A* Algorithmus äquivalent zum Dijkstra-Algorithmus mit Kantengewichten $\tilde{c}(u,v)=c(u,v)+\widehat{h}(u)-\widehat{h}(v)$ und kein Knoten wird aus R entnommen und wieder eingefügt.

■ Es ist allerdings nicht immer möglich, eine monotone Heuristik zu finden.