
25.8 A*-Algorithm

775



Disclaimer

These slides contain the most important formalities around the
A*-algorithm and its correctness. We motivate the algorithm in the lectures
and give more examples there.
Another nice motivation of the algorithm can found here:
https://www.youtube.com/watch?v=bRvs8rOQU-Q

776

https://www.youtube.com/watch?v=bRvs8rOQU-Q


A*-Algorithm

Prerequisites
Positively weighted graph G = (V,E, c)
G finite or δ-Graph: ∃ δ > 0 : c(e) ≥ δ for all e ∈ E
s ∈ V , t ∈ V
Distance estimate ĥt(v) ≤ ht(v) := δ(v, t) ∀ v ∈ V .
Wanted: shortest path p : s t

777



A*-Algorithm(G, s, t, ĥ)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V , end point

t ∈ V , estimate ĥ(v) ≤ δ(v, t)
Output: Existence and value of a shortest path from s to t

foreach u ∈ V do

d[u]←∞; f̂ [u]←∞; π[u]← null

d[s]← 0; f̂ [s]← ĥ(s); R← {s}; M ← {}
while R 6= ∅ do

u← ExtractMin
f̂
(R); M ←M ∪ {u}

if u = t then return success
foreach v ∈ N+(u) with d[v] > d[u] + c(u, v) do

d[v]← d[u] + c(u, v); f̂ [v]← d[v] + ĥ(v); π[v]← u
R← R ∪ {v}; M ←M − {v}

return failure
778



Notation
Let f(v) be the distance of a shortest path from s to t via v, thus

f(v) := δ(s, v)︸ ︷︷ ︸
g(v)

+ δ(v, t)︸ ︷︷ ︸
h(v)

s v t
g(v) h(v)

let p be a shortest path from s to t.
It holds that f(s) = δ(s, t) and f(v) = f(s) for all v ∈ p.
Let ĝ(v) := d[v] be an estimate of g(v) in the algorithm above. It holds that
ĝ(v) ≥ g(v).
ĥ(v) is an estimate of h(v) with ĥ(v) ≤ h(v).

779



Why the Algorithm Works

Lemma 24
Let u ∈ V and, at a time during the execution of the algorithm, u 6∈ M .
Let p be a shortest path from s to u. Then there is a u′ ∈ p with ĝ(u′) =
g(u′) and u′ ∈ R.

The lemma states that there is always a node in the open set R with the
minimal distance from s already computed and that belongs to a shortest
path (if existing).

780



Illustration and Proof

∆
u∗ u′ ∈ R

s u1 u2 u3 u4 u

Proof: If s ∈ R, then ĝ(s) = g(s) = 0. Therefore, let s 6∈ R.
Let p = 〈s = u0, u1, . . . , uk = u〉 and ∆ = {ui ∈ p, ui ∈M, ĝ(ui) = g(ui)}.
∆ 6= ∅, because s ∈ ∆.
Let m = max{i : ui ∈ ∆}, u∗ = um. Then u∗ 6= u, since u 6∈M . Let u′ = um+1.

1. ĝ(u′) ≤ ĝ(u∗) + c(u∗, u′) because u′ has already been relaxed
2. ĝ(u∗) = g(u∗) (because u∗ ∈ ∆)
3. ĝ(u′) ≥ g(u′) (construction of ĝ)
4. g(u′) = g(u∗) + c(u∗, u′) (because p optimal)

Therefore: ĝ(u′) = g(u′) and thus also u′ ∈ R because u′ 6∈ ∆. �
781



Corollary

Corollary 25

If ĥ(u) ≤ h(u) for all u ∈ V and A*- Algorithmus has not yet terminated.
The for each shortest path p from s t t there is some node u′ ∈ p with
f̂(u′) ≤ δ(s, t) = f(t).

If there is a shortest path p from s to t, then there is always a node in the
open set R that underestimates the overal distance and that is on the
shortest path.

782



Proof of the Corollary

Proof:
From the lemma: ∃u′ ∈ p with ĝ(u′) = g(u′).
Therefore:

f̂(u′) = ĝ(u′) + ĥ(u′)
= g(u′) + ĥ(u′)
≤ g(u′) + h(u′) = f(u′)

Because p is shortest path: f(u′) = δ(s, t). �

783



Admissibility

Theorem 26

If there is a shortest path from s to t and ĥ(u) ≤ h(u) ∀ u ∈ V then A*
terminates with ĝ(t) = δ(s, t)

Proof: If the algorithm terminates, then it termines with t with
f(t) = ĝ(t) + 0 = g(t). That is because ĝ overestimates g at most and by the
corollary above that algorithm always finds an element v ∈ R with
f(v) ≤ δ(s, t).
The algorithm terminates in finitely many steps. For finite graphs the
maximal number of relaxing steps is bounded.
42 �42For a δ-graph the maximum number of relaxing steps before R contains only nodes
with f̂(s) > δ(s, t) is limited as well. The exact argument can be found in the seminal
article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths". 784



Revisiting nodes

The A*-algorithm can re-insert nodes that had been extracted from R
before.
This can lead to suboptimal behavior (w.r.t. running time of the
algorithm).
If ĥ, in addition to being admissible (ĥ(v) ≤ h(v) for all v ∈ V ), fulfils
monotonicity, i.e. if for all (u, u′) ∈ E:

ĥ(u′) ≤ ĥ(u) + c(u′, u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights c̃(u, v) = c(u, v) + ĥ(u)− ĥ(v), and no node is re-inserted into R.
It is not always possible to find monotone heuristics.

785


	A*-Algorithm

