25.8 A*-Algorithm

775



Disclaimer

These slides contain the most important formalities around the

A*-algorithm and its correctness. We motivate the algorithm in the lectures
and give more examples there.

Another nice motivation of the algorithm can found here:
https://www.youtube.com/watch?v=bRvs8r0QU-Q

776


https://www.youtube.com/watch?v=bRvs8rOQU-Q

Prerequisites

m Positively weighted graph G = (V, E, ¢)

m G finite or 6-Graph: 3§ > 0:¢(e) > d foralle e E
mscV,teV

m Distance estimate 7 (v) < h(v) == d(v,t) Vv € V.
m Wanted: shortest pathp : s ~ ¢

777



A*-Algorithm(G, s, t, h)

Input: Positively weighted Graph G' = (V, E, ¢), starting point s € V, end point
t € V, estimate h(v) < §(v,t)
Output: Existence and value of a shortest path from s to ¢

foreach u € V do
‘7 d[u] < o0; flu] + oo; m[u] < null

d[s] < 0; fls] < h(s); R« {s}; M « {}
while R # () do
U ExtractMinf(R); M +— M U{u}
if © =t then return success
foreach v € N7 (u) with d[v] > d[u] + c(u,v) d
d[v] < d[u] + c(u,v); f[v] < d[v] + h(v); [v] “u
. R+ RU{v}; M <+ M — {v}

return failure
778



Let f(v) be the distance of a shortest path from s to ¢ via v, thus

fw):=46d(s,v)+d(v,t)
9(v) h(v)

C 9(v) C h(v) C

let p be a shortest path from s to ¢.

It holds that f(s) = d(s,t) and f(v) = f(s) forall v € p.

Let §(v) := d[v] be an estimate of ¢g(v) in the algorithm above. It holds that
3(v) > (). i

h(v) is an estimate of h(v) with h(v) < h(v).

779



Why the Algorithm Works

Let uw € V and, at a time during the execution of the algorithm, u & M.
Let p be a shortest path from s to u. Then there is a v’ € p with g(u') =
g(u')and v’ € R.

The lemma states that there is always a node in the open set R with the
minimal distance from s already computed and that belongs to a shortest
path (if existing).

780



Illustration and Proof

v eR

Proof: If s € R, then g(s) = g(s) = 0. Therefore, let s ¢ R.
Let p = (s = wg, uy, ..., up = u) and A ={u; € p,u; € M, G(u;) = g(u;)}.
A # (), because s € A.
Let m = max{i : u; € A}, u* = u,,. Then u* # u, since u € M. Let v’ = w4 ;1.
1. g(u) < g(u*) + c(u*,u') because v’ has already been relaxed
2. g(u*) = g(u )(becauseu € A)
3. g(u') > g(u') (construction of )
4. g(u') = g(u*) + c(u*,u') (because p optimal)
Therefore: g(v') = g(v’) and thus also v’ € R because v’ ¢ A. |

781



Corollary

Corollary 25

If h(u) < h(u) for all w € V and A*- Algorithmus has not yet terminated.
The for each shortest path p from s t t there is some node u' € p with

A

fu) < 6(s,t) = f(2).

If there is a shortest path p from s to ¢, then there is always a node in the
open set R that underestimates the overal distance and that is on the
shortest path.

782



Proof of the Corollary

Proof:
From the lemma: Ju’ € p with g(v') = g(u).
Therefore:
fu') = g(u') + h()
= g(u') + h(u)
< g(u') + h(u') = f(u)

Because p is shortest path: f(u') = d(s, t). |

783



Admissibility

Theorem 26

If there is a shortest path from s to t and h(u) < h(u) Y u € V then A*
terminates with g(t) = (s, t)

Proof: If the algorithm terminates, then it termines with ¢ with

f(t) =79(t)+ 0= g(t). That is because g overestimates g at most and by the
corollary above that algorithm always finds an element v € R with

fv) <d(s, ).

The algorithm terminates in finitely many steps. For finite graphs the

maximal number of relaxing steps is bounded.
42

‘*ZFgr a §-graph the maximum number of relaxing steps before R contains only nodes
with f(s) > d(s,t) is limited as well. The exact argument can be found in the seminal
article Hart, P. E; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths". 78




Revisiting nodes

m The A*-algorithm can re-insert nodes that had been extracted from R
before.

m This can lead to suboptimal behavior (w.r.t. running time of the
algorithm).

m If &, in addition to being admissible (h(v) < h(v) for all v € V), fulfils
monotonicity, i.e. if for all (u,u’) € E:

o~

R(u') < h(u) + c(u/, u)

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge
weights &(u, v) = ¢(u, v) + h(u) — h(v), and no node is re-inserted into R.

m It is not always possible to find monotone heuristics.

785



	A*-Algorithm

