25.8 A*-Algorithm

Disclaimer

These slides contain the most important formalities around the A*-algorithm and its correctness. We motivate the algorithm in the lectures and give more examples there.

Another nice motivation of the algorithm can found here:

https://www.youtube.com/watch?v=bRvs8r0QU-Q

A*-Algorithm

Prerequisites

- Positively weighted graph G = (V, E, c)
- G finite or δ -Graph: $\exists \ \delta > 0 : c(e) \ge \delta$ for all $e \in E$
- $s \in V, t \in V$
- Distance estimate $\hat{h}_t(v) \leq h_t(v) := \delta(v,t) \ \forall \ v \in V$.
- Wanted: shortest path $p: s \leadsto t$

A*-Algorithm (G, s, t, \hat{h})

Input: Positively weighted Graph G=(V,E,c), starting point $s\in V$, end point $t\in V$, estimate $\widehat{h}(v)\leq \delta(v,t)$

Output: Existence and value of a shortest path from s to t

$$\begin{aligned} & \textbf{foreach} \ u \in V \ \textbf{do} \\ & \left\lfloor \ d[u] \leftarrow \infty; \ \widehat{f}[u] \leftarrow \infty; \ \pi[u] \leftarrow \text{null} \\ & d[s] \leftarrow 0; \ \widehat{f}[s] \leftarrow \widehat{h}(s); \ R \leftarrow \{s\}; \ M \leftarrow \{\} \\ & \textbf{while} \ R \neq \emptyset \ \textbf{do} \\ & \left\lfloor \ u \leftarrow \text{ExtractMin}_{\widehat{f}}(R); \ M \leftarrow M \cup \{u\} \\ & \textbf{if} \ u = t \ \textbf{then return} \ \text{success} \\ & \textbf{foreach} \ v \in N^+(u) \ \text{with} \ d[v] > d[u] + c(u,v) \ \textbf{do} \\ & \left\lfloor \ d[v] \leftarrow d[u] + c(u,v); \ \widehat{f}[v] \leftarrow d[v] + \widehat{h}(v); \ \pi[v] \leftarrow u \\ & R \leftarrow R \cup \{v\}; \ M \leftarrow M - \{v\} \end{aligned} \end{aligned}$$

return failure

Notation

Let f(v) be the distance of a shortest path from s to t via v, thus

$$f(v) := \underbrace{\delta(s,v)}_{g(v)} + \underbrace{\delta(v,t)}_{h(v)}$$

let p be a shortest path from s to t.

It holds that $f(s) = \delta(s,t)$ and f(v) = f(s) for all $v \in p$.

Let $\widehat{g}(v):=d[v]$ be an estimate of g(v) in the algorithm above. It holds that $\widehat{g}(v)\geq g(v)$.

 $\widehat{h}(v)$ is an estimate of h(v) with $\widehat{h}(v) \leq h(v)$.

Why the Algorithm Works

Lemma 24

Let $u \in V$ and, at a time during the execution of the algorithm, $u \notin M$. Let p be a shortest path from s to u. Then there is a $u' \in p$ with $\widehat{g}(u') = g(u')$ and $u' \in R$.

The lemma states that there is always a node in the open set R with the minimal distance from s already computed and that belongs to a shortest path (if existing).

Illustration and Proof

Proof: If $s \in R$, then $\widehat{g}(s) = g(s) = 0$. Therefore, let $s \notin R$.

Let
$$p = \langle s = u_0, u_1, \dots, u_k = u \rangle$$
 and $\Delta = \{u_i \in p, u_i \in M, \widehat{g}(u_i) = g(u_i)\}$.

 $\Delta \neq \emptyset$, because $s \in \Delta$.

Let $m = \max\{i : u_i \in \Delta\}$, $u^* = u_m$. Then $u^* \neq u$, since $u \notin M$. Let $u' = u_{m+1}$.

- 1. $\widehat{g}(u') \leq \widehat{g}(u^*) + c(u^*, u')$ because u' has already been relaxed
- 2. $\widehat{g}(u^*) = g(u^*)$ (because $u^* \in \Delta$)
- 3. $\hat{g}(u') \geq g(u')$ (construction of \hat{g})
- **4.** $g(u') = g(u^*) + c(u^*, u')$ (because *p* optimal)

Therefore: $\widehat{g}(u') = g(u')$ and thus also $u' \in R$ because $u' \notin \Delta$.

Corollary

Corollary 25

If $\hat{h}(u) \leq h(u)$ for all $u \in V$ and A*- Algorithmus has not yet terminated. The for each shortest path p from s t t there is some node $u' \in p$ with $\hat{f}(u') \leq \delta(s,t) = f(t)$.

If there is a shortest path p from s to t, then there is always a node in the open set R that underestimates the overal distance and that is on the shortest path.

Proof of the Corollary

Proof:

From the lemma: $\exists u' \in p \text{ with } \widehat{g}(u') = g(u')$.

Therefore:

$$\widehat{f}(u') = \widehat{g}(u') + \widehat{h}(u')$$

$$= g(u') + \widehat{h}(u')$$

$$\leq g(u') + h(u') = f(u')$$

Because p is shortest path: $f(u') = \delta(s, t)$.

Admissibility

Theorem 26

If there is a shortest path from s to t and $\hat{h}(u) \leq h(u) \ \forall \ u \in V$ then A* terminates with $\ \hat{g}(t) = \delta(s,t)$

Proof: If the algorithm terminates, then it termines with t with $f(t)=\widehat{g}(t)+0=g(t)$. That is because \widehat{g} overestimates g at most and by the corollary above that algorithm always finds an element $v\in R$ with $f(v)\leq \delta(s,t)$.

The algorithm terminates in finitely many steps. For finite graphs the maximal number of relaxing steps is bounded.

42

 $^{^{42}}$ For a δ -graph the maximum number of relaxing steps before R contains only nodes with $\hat{f}(s) > \delta(s,t)$ is limited as well. The exact argument can be found in the seminal article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths".

Revisiting nodes

- The A*-algorithm can re-insert nodes that had been extracted from R before.
- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \widehat{h} , in addition to being admissible ($\widehat{h}(v) \leq h(v)$ for all $v \in V$), fulfils monotonicity, i.e. if for all $(u, u') \in E$:

$$\hat{h}(u') \le \hat{h}(u) + c(u', u)$$

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u,v)=c(u,v)+\hat{h}(u)-\hat{h}(v)$, and no node is re-inserted into R.

It is not always possible to find monotone heuristics.