24, Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting,
Reflexive transitive closure, Connected components [Ottman/Widmayer,
Kap. 91 - 9.4,Cormen et al, Kap. 22]

676

Konigsberg 1736

KONINGSBERGA

677

[Multi]Graph

Cycles

m Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an even
number of edges (each node is of an even
degree).

‘=" is straightforward, “<" ist a bit more difficult but
still elementary.

679

Notation
(1)
-

undirected directed
1% :{1,2,3,4,5} Vv :{1,2,3,4, 5}
E ={{1,2},{1,3},{2,3},{2,4}, E ={(1,3),(2,1),(2,5),(3,2),

{27 5}7 {37 4}7 {37 5}7 {47 5}} (37 4)7 (47 2)7 (47 5)7 (57 3)}

680

Notation

A directed graph consists of a set V = {vy,...,v,} of nodes (Vertices) and
aset E CV x V of Edges. The same edges may not be contained more

than once.
@ @

o—® O

loop

681

Notation

An undirected graph consists of a set V = {v1,...,v,} of nodes a and a set
E C {{u,v}|u,v € V} of edges. Edges may not be contained more than

once.”’

undirected graph

3As opposed to the introductory example - it is then called multi-graph.
682

Notation

An undirected graph G = (V, E) without loops where E comprises all edges
between pairwise different nodes is called complete.

a complete undirected graph

683

Notation

A graph where V can be partitioned into disjoint sets U and W such that
each e € F provides a node in U and a node in Wis called bipartite.

684

Notation

A weighted graph G = (V, E,¢) is a graph G = (V, E)) with an edge weight
function ¢ : E — R. ¢(e) is called weight of the edge e.

685

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € E

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: Nt (v) := {u € V|(v,u) € E}

686

Notation

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)|,
Out-Degree: deg* (v) = [N*(v)|

el

deg™ (v) = 3, deg™ (v) = 2

deg™ (w) =1, deg™ (w) = 1

687

Notation

For undirected graphs G = (V, E):

m w e Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) = 2

688

Node Degrees <+ Number of Edges

For each graph G = (V, E) it holds
1. ey deg™ (v) = X,ep deg™ (v) = | B, for G directed
2. Y ey deg(v) = 2|E|, for G undirected.

689

Paths

m Path: a sequence of nodes (vy, ..., v.41) such that foreachi e {1...k}
there is an edge from v; to v, .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): % | ¢((vi, viy1)) (bzw.
Zf:l c({vi, viza}))

m Simple path: path without repeating vertices

690

Connectedness

m An undirected graph is called connected, if for each pair v,w € V there
is a connecting path.

m Adirected graph is called strongly connected, if for each pairv,w € V
there is a connecting path.

m Adirected graph is called weakly connected, if the corresponding
undirected graph is connected.

691

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = YHVIZD (yndirected)

m Maximally |[E| = |V ? (dlrected),|E| = VHVIFD (yndirected)

692

Cycles

m Cycle: path (vy, ..., vp1) With vy = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

693

Representation using a Matrix

Graph G = (V, E) with nodes v, ..., v, stored as adjacency matrix
A = (aij)1<ij<n With entries from {0,1}. a;; = 1 if and only if edge from v;
to Vj.

S OO OO
OO = O =
_ o O O =
OO = O =
_— o = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

694

Representation with a List

123 45

Many graphs G = (V, E) with nodes vy, ..., v,
provide much less than n? edges. Representa- (o] [o] [9]
tion with adjacency list: Array A[1],..., A[n],
A; comprises a linked list of nodes in N*(v;).

D@ W@ N —
o

5

Memory Consumption O(|V| + | E]).

695

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n*) ©(n)
(v,u) e E7? O(1) O(degtv)
Insert edge o) o)
Delete edge (v, u) O(1) O(deg*v)

696

Depth First Search

697

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e ’ adjacency list
all bl e e g |l h
ol | v
)) bllel fllelo hl e
T) | |
d f i
)
4 4 e
oO—0 0

Order a,b,c, f,d,e, g, h,i

698

Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered and entirely processed.

699

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V| E), Knoten v.

v.color < grey
foreach w € N (v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without recursion):
O(degt v)

700

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘ v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O([V] + Lyev(deg™(v) + 1)) = (V] + | E]).

701

lterative DFS-Visit(G, v)

Input: graph G = (V, E), v € V with v.color = white

Stack S < 0
v.color < grey; S.push(v) // invariant: grey nodes always on stack
while S # () do

w < nextWhiteSuccessor(v) // code: next slide

if w # null then

w.color < grey; S.push(w)
V4= w // work on w. parent remains on the stack
else

v.color <+ black // no grey successors, v becomes black

if S # () then
v« S.pop() // visit/revisit next node
if v.color = grey then S.push(v)

L Memory Consumption Stack ©(|V|)

702

nextWhiteSuccessor(v)

Input: nodev eV
Output: Successor node u of v with u.color = white, null otherwise

foreach u € N*(v) do
if u.color = white then
‘7 return u

return null

703

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge

m Grey node: cycle (“back-edge”)

m Black node: forward- / cross edge

704

Breadth First Search

e} Bergstation

8
('f‘
440/

OHolderlinsteig ee/"i‘ s
/ ’}00
Halderlinstr. %0
0
Englisch-
viertelstr. 208
703
1
' ORI
& NP <
¢ © & &

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

\
4

~

Adjazenzliste

T al b | ¢ e |l f h
vl | Vol
Y > bilel flelod e
T) ! !
d f i
)
o)0 >° e

Order a,b,d,e,c, f,q,h,i

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)
Queue Q + 0

v.color < grey
enqueue(Q,v)
while Q #) do
w <+ dequeue(Q)
foreach c € N (w) do
if c.color = white then
c.color < grey

~enqueue(Q, c)

w.color < black

Algorithm requires extra space of O(|V]).

707

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: ©(|V| + |E|).

708

Topological Sorting

ko>

i

Function

3 -

A

1

2 TOTAL
3 Arleen
4 Hans

5 Mike

6]Selina
7

8

9 Al

10

11

12

13

14

B 5 &’

Evaluation Order?

%] o] : B ol Now
= Rernee* T Funcons~ | Manager] o | o | G, B8 el shet
B C D E F G
Task 1 Task 2 Task 3 Task 4 Total Note
8 8 16 16
4 5 5]
T 3 2 3 :x\\
7 5 % 18
6 5 8 2 2%
Durchschnitt 18

1.5

709

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping
ord: V = {1,...,|V|}
such that
ord(v) < ord(w) V (v,w) € E.

Identify i with Element v; := ord'(i). Topological sorting = (v,

s ,U|V‘>.

710

(Counter-)Examples

Cyclic graph: cannot be sorted topo- A Possible toplogical sorting of the graph:
logically. shirt, pullover, panties, watch, trousers, coat, socks,

shoes

m

Observation

Theorem 20

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

712

Proof “="

If G contains a cycle it cannot permit a topological sorting, because in a
cycle (v;,,...,v;)itwould hold thatv;, < --- <v;, < w,,.

713

Proof “<”

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically

m Step (n — n + 1)

1. G contains a node v, with in-degree deg™(v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) + ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.

4

Algorithm Topological-Sort(G)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S «+ 0
foreach v € V do A[v] < 0
foreach (v, w) € E do A[w] < A[w] +1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
1< 1
while S # () do
v« pop(S); ord[v] < 4; i < i+ 1 // Choose node with in-degree 0
foreach (v,w) € E do // Decrease in-degree of successors
Alw] + Alw] — 1
if Ajw] =0 then push(S,w)

if i = |V|+ 1 then return ord else return “Cycle Detected”

715

Algorithm Correctness

Theorem 21

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with run-
time ©(|V| + |E|).

Proof: follows from previous theorem:
1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] < ¢ and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

716

Algorithm Correctness

Theorem 22

Let G = (V, E) be adirected graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V'| + | E|) steps and detects a cycle.
Proof: let (v;,,...,v;,) be a cycle in G. In each step of the algorithm remains
Alv;;] > 1forallj =1,...,k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that: <V +1 — k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E|).

7

Alternative: Algorithm DFS-Topsort(G, v)

Input: graph G = (V, E), node v, node list L.
if v.color = grey then

. stop (Cycle)
if v.color = black then

| return

v.color < grey
foreach w € N*(v) do
. DFS-Topsort(G, w)

v.color < black
Add v to head of L

Call this algorithm for each node that has not yet been visited. Asymptotic
Running Time O(|V|+ |E|).

Adjacency Matrix Product

X

01011
00000
00101
00000
0111 2

i

01110
00 00O
01011
000O0O
001 01

[

B::Aé

719

Interpretation

Theorem 23

Let G = (V,E)beagraph and k € N. Then the element az(? of the matrix
(agﬁ))lgi,jgn = (Ag)* provides the number of paths with length k from v;
to Vj .

720

Proof

By Induction.
Base case: straightforward for k = 1. a;; = q; ;. (1)

Hypothesis: claim is true forall £ < 7
Step (I — [+ 1) —>@
oD Z": _

ay,; = 1 iff egde k to j, 0 otherwise. Sum counts the number paths of length

[from node v; to all nodes vy that provide a direct direction to node vj, i.e.

all paths with length [+ 1.

721

Relation

Given a finite set V

(Binary) Relation R on V: Subset of the cartesian product
VxV={(a,b)lacV,be V}

Relation R C V x V is called

m reflexive, if (v,v) € Rforallv e V

m symmetric, if (v,w) € R= (w,v) € R

m transitive, if (v,2) € R, (z,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* C V x V such that R* is reflexive and transitive.

722

Graphs and Relations

Graph G = (V, E)
adjacencies A = Relation E C V x V over V

m reflexive & a;; = 1 foralli=1,...,n. (loops)
m symmetric & a;; = a;; foralli,j = 1,...,n (undirected)
m transitive & (u,v) € E, (v,w) € E = (u,w) € E. (reachability)

723

Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation E*: (v,w) € E*
iff 3 path from node v to w.

00 1 0 0 0 1.1 10

724

Algorithm A - A

Input: (Adjacency-)Matrix A = (a;;)i j=1..n
Output: Matrix Product B = (b;j)ij=1.. = A- A

B<+0
for r < 1 tondo
for c+— 1tondo
for k< 1tondo
‘7 brc<_brc+ark‘akc

return B

Counts number of paths of length 2

// Number of Paths

725

Algorithm A ® A

Input: Adjacency-Matrix A = (a;j)i j=1..n
Output: Modified Matrix Product B = (b;j)ij=1.n = A® A

B+ A // Keep paths
for r < 1 ton do
for c< 1tondo
for k< 1tondo
‘ bre < max{byc, Grk - Ak} // Path: yes/no

return B

Computes which paths of length 1 and 2 exist

726

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 < (v;,v;) € E* First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).
m Compute

B,=®B
=1

with powers of 2 By =B®DB,By:=By® By, Bs = B4+ ® By ...
= running time n?[log, n]

727

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node vy.

11 1 11
01 110
01 1 10
0O 1 1 10
0O 1 1 11

728

Algorithm TransitiveClosure(A¢)

Input: Adjacency matrix Ag = (aij)ij=1..n
Output: Reflexive transitive closure B = (b;j)i j=1..n of G

B+ AG
for K+ 1 ton do
brr < 1 // Reflexivity
for r < 1ton do
forc+ 1 tondo
‘ bre < max{byc, by - by} // All paths via vy

return B

Runtime ©(n?).

729

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in A; considered.
m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with maximal
index k: by the hypothesis b;, = 1 and b;; = 1. Therefore in the k-th
iteration: b;; < 1.

(v<k) (v<)

O i O

730

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting
	Graphs and Relations

