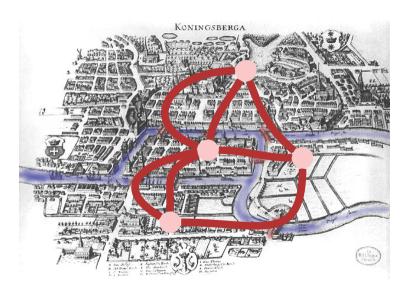
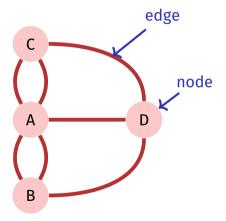
24. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting, Reflexive transitive closure, Connected components [Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

Königsberg 1736



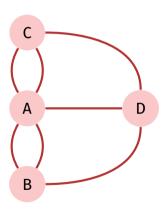
[Multi]Graph

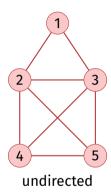


Cycles

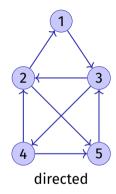
- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a cycle is called Eulerian path.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an even degree).

' \Rightarrow " is straightforward, " \Leftarrow " ist a bit more difficult but still elementary.





$$\begin{split} V = & \{1,2,3,4,5\} \\ E = & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\\ & \{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \end{split}$$

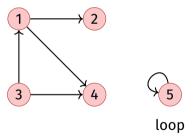


$$V = \{1, 2, 3, 4, 5\}$$

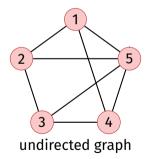
$$E = \{(1, 3), (2, 1), (2, 5), (3, 2),$$

$$(3, 4), (4, 2), (4, 5), (5, 3)\}$$

A directed graph consists of a set $V = \{v_1, \dots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.

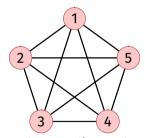


An undirected graph consists of a set $V=\{v_1,\ldots,v_n\}$ of nodes a and a set $E\subseteq \{\{u,v\}|u,v\in V\}$ of edges. Edges may not be contained more than once.³⁷



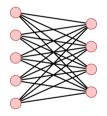
³⁷As opposed to the introductory example – it is then called multi-graph.

An undirected graph G=(V,E) without loops where E comprises all edges between pairwise different nodes is called complete.



a complete undirected graph

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called bipartite.

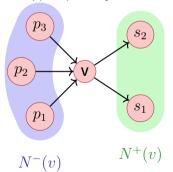


A weighted graph G=(V,E,c) is a graph G=(V,E) with an edge weight function $c:E\to\mathbb{R}$. c(e) is called weight of the edge e.



For directed graphs G = (V, E)

- lacksquare $w \in V$ is called adjacent to $v \in V$, if $(v,w) \in E$
- Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$



For directed graphs G = (V, E)

■ In-Degree: $deg^-(v) = |N^-(v)|$, Out-Degree: $deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3, \deg^+(v) = 2$$

$$\deg^-(v) = 3$$
, $\deg^+(v) = 2$ $\deg^-(w) = 1$, $\deg^+(w) = 1$

For undirected graphs G = (V, E):

- lacksquare $w \in V$ is called adjacent to $v \in V$, if $\{v,w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- Degree of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

Node Degrees ↔ Number of Edges

For each graph G = (V, E) it holds

- 1. $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, for G directed
- 2. $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

Paths

- Path: a sequence of nodes $\langle v_1, \ldots, v_{k+1} \rangle$ such that for each $i \in \{1 \ldots k\}$ there is an edge from v_i to v_{i+1} .
- Length of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^k c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^k c(\{v_i, v_{i+1}\})$)
- Simple path: path without repeating vertices

Connectedness

- An undirected graph is called connected, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called strongly connected, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called weakly connected, if the corresponding undirected graph is connected.

Simple Observations

- \blacksquare generally: $0 \le |E| \in \mathcal{O}(|V|^2)$
- connected graph: $|E| \in \Omega(|V|)$
- complete graph: $|E| = \frac{|V| \cdot (|V|-1)}{2}$ (undirected)
- lacksquare Maximally $|E|=|V|^2$ (directed), $|E|=rac{|V|\cdot(|V|+1)}{2}$ (undirected)

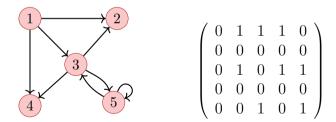
Cycles

- lacksquare Cycle: path $\langle v_1,\ldots,v_{k+1}\rangle$ with $v_1=v_{k+1}$
- Simple cycle: Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

Representation using a Matrix

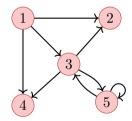
Graph G=(V,E) with nodes $v_1\ldots,v_n$ stored as adjacency matrix $A_G=(a_{ij})_{1\leq i,j\leq n}$ with entries from $\{0,1\}$. $a_{ij}=1$ if and only if edge from v_i to v_j .

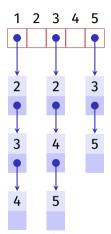


Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G=(V,E) with nodes v_1,\ldots,v_n provide much less than n^2 edges. Representation with adjacency list: Array $A[1],\ldots,A[n]$, A_i comprises a linked list of nodes in $N^+(v_i)$.



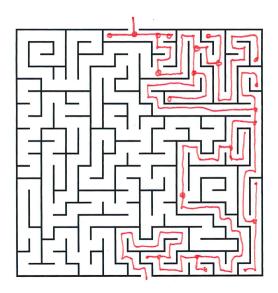


Memory Consumption $\Theta(|V| + |E|)$.

Runtimes of simple Operations

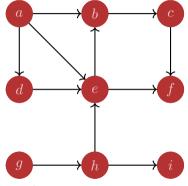
Operation	Matrix	List
Find neighbours/successors of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
${\sf find}\ v \in V \ {\sf without\ neighbour/successor}$	$\Theta(n^2)$	$\Theta(n)$
$(v,u) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Insert edge	$\Theta(1)$	$\Theta(1)$
${\bf Delete\ edge}\ (v,u)$	$\Theta(1)$	$\Theta(\deg^+ v)$

Depth First Search



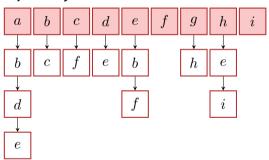
Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.



Order a, b, c, f, d, e, g, h, i

adjacency list



Colors

Conceptual coloring of nodes

- white: node has not been discovered yet.
- grey: node has been discovered and is marked for traversal / being processed.
- **black:** node was discovered and entirely processed.

Algorithm Depth First visit DFS-Visit(G, v)

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(G)

Depth First Search for all nodes of a graph. Running time:

$$\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$$

Iterative DFS-Visit(G, v)

```
Input: graph G = (V, E), v \in V with v.color = white
Stack S \leftarrow \emptyset
v.color \leftarrow \mathsf{grey}; S.\mathsf{push}(v)
                                                      // invariant: grey nodes always on stack
while S \neq \emptyset do
     w \leftarrow \mathsf{nextWhiteSuccessor}(v)
                                                                                     code: next slide
     if w \neq \text{null then}
          w.color \leftarrow \mathsf{grey}; S.\mathsf{push}(w)
                                                   // work on w. parent remains on the stack
          v \leftarrow w
     else
          v.color \leftarrow black
                                                        // no grey successors, v becomes black
          if S \neq \emptyset then
               v \leftarrow S.\mathsf{pop}()
                                                                          // visit/revisit next node
               if v.color = grey then S.push(v)
                                                             Memory Consumption Stack \Theta(|V|)
```

nextWhiteSuccessor(v)

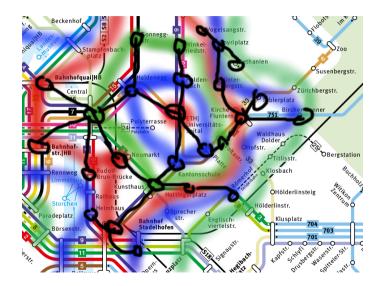
return null

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases

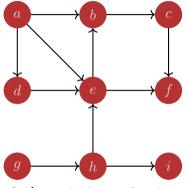
- White node: new tree edge
- Grey node: cycle ("back-edge")
- Black node: forward- / cross edge

Breadth First Search

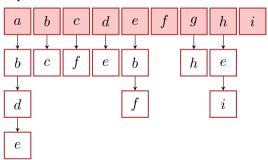


Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.



Order a, b, d, e, c, f, g, h, i



(Iterative) BFS-Visit(G, v)

```
Input: graph G = (V, E)
Queue Q \leftarrow \emptyset
v.color \leftarrow \mathsf{grey}
enqueue(Q, v)
while Q \neq \emptyset do
     w \leftarrow \mathsf{dequeue}(Q)
     foreach c \in N^+(w) do
           if c.color = white then
                c.color \leftarrow \mathsf{grey}
                enqueue(Q, c)
     w.color \leftarrow \mathsf{black}
```

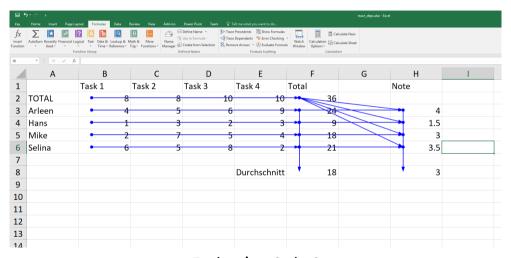
Algorithm requires extra space of $\mathcal{O}(|V|)$.

Main program BFS-Visit(G)

```
\begin{array}{l} \textbf{Input:} \  \, \mathsf{graph} \,\, G = (V,E) \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, v.color \leftarrow \text{white} \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, \mathbf{if} \,\, v.color = \text{white} \,\, \mathbf{then} \\ \quad \big\lfloor \,\, \mathsf{BFS-Visit}(\mathsf{G,v}) \\ \end{array}
```

Breadth First Search for all nodes of a graph. Running time: $\Theta(|V| + |E|)$.

Topological Sorting



Evaluation Order?

Topological Sorting

Topological Sorting of an acyclic directed graph G=(V,E): Bijective mapping

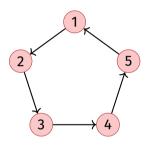
ord:
$$V \to \{1, \dots, |V|\}$$

such that

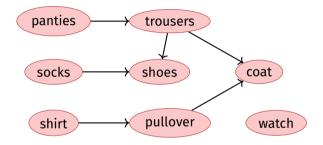
$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identify i with Element $v_i := \operatorname{ord}^1(i)$. Topological sorting $= \langle v_1, \dots, v_{|V|} \rangle$.

(Counter-)Examples



Cyclic graph: cannot be sorted topologically.



A possible toplogical sorting of the graph: shirt, pullover, panties, watch, trousers, coat, socks, shoes

Observation

Theorem 20

A directed graph G=(V,E) permits a topological sorting if and only if it is acyclic.

Proof "⇒"

If G contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

Proof "⇐"

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, setord(v_1) = 1.
- \blacksquare Hypothesis: Graph with n nodes can be sorted topologically
- \blacksquare Step ($n \rightarrow n+1$):
 - 1. G contains a node v_q with in-degree $\deg^-(v_q)=0$. Otherwise iteratively follow edges backwards after at most n+1 iterations a node would be revisited. Contradiction to the cycle-freeness.
 - 2. Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

Algorithm Topological-Sort(G)

if i = |V| + 1 then return ord else return "Cycle Detected"

```
Input: graph G = (V, E).
Output: Topological sorting ord
Stack S \leftarrow \emptyset
foreach v \in V do A[v] \leftarrow 0
foreach (v, w) \in E do A[w] \leftarrow A[w] + 1 // Compute in-degrees
foreach v \in V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree 0
i \leftarrow 1
while S \neq \emptyset do
    v \leftarrow \mathsf{pop}(S); ord[v] \leftarrow i; i \leftarrow i+1 // Choose node with in-degree 0
    foreach (v, w) \in E do // Decrease in-degree of successors
        A[w] \leftarrow A[w] - 1
        if A[w] = 0 then push(S, w)
```

715

Algorithm Correctness

Theorem 21

Let G = (V, E) be a directed acyclic graph. Algorithm **TopologicalSort**(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- 1. Decreasing the in-degree corresponds with node removal.
- 2. In the algorithm it holds for each node v with A[v] = 0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value $\operatorname{ord}[u] \leftarrow i$ and thus $\operatorname{ord}[v] > \operatorname{ord}[u]$ for all predecessors u of v. Nodes are put to the stack only once.
- 3. Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem 22

Let G=(V,E) be a directed graph containing a cycle. Algorithm TopologicalSort terminates within $\Theta(|V|+|E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1}, \dots, v_{i_k} \rangle$ be a cycle in G. In each step of the algorithm remains $A[v_{i_j}] \geq 1$ for all $j = 1, \dots, k$. Thus k nodes are never pushed on the stack und therefore at the end it holds that $i \leq V + 1 - k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V|+|E|)$.

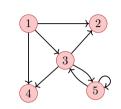
Alternative: Algorithm DFS-Topsort(G, v)

```
Input: graph G = (V, E), node v, node list L.
if v.color = grey then
stop (Cycle)
if v \ color = black \ then
     return
v.color \leftarrow \mathsf{grey}
foreach w \in N^+(v) do
    \mathsf{DFS}\text{-}\mathsf{Topsort}(G,w)
v.color \leftarrow \mathsf{black}
Add v to head of L
```

Call this algorithm for each node that has not yet been visited. Asymptotic Running Time $\Theta(|V| + |E|)$.

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$



Interpretation

Theorem 23

Let G=(V,E) be a graph and $k\in\mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1\leq i,j\leq n}=(A_G)^k$ provides the number of paths with length k from v_i to v_j .

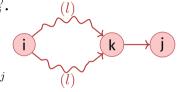
Proof

By Induction.

Base case: straightforward for k=1. $a_{i,j}=a_{i,j}^{(1)}$. **Hypothesis:** claim is true for all $k \leq l$

Step ($l \rightarrow l+1$):

$$a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$$



 $a_{k,j}=1$ iff egde k to j, 0 otherwise. Sum counts the number paths of length l from node v_i to all nodes v_k that provide a direct direction to node v_j , i.e. all paths with length l+1.

Relation

Given a finite set V

(Binary) **Relation** R on V: Subset of the cartesian product

$$V \times V = \{(a,b) | a \in V, b \in V\}$$

Relation $R \subseteq V \times V$ is called

- \blacksquare reflexive, if $(v,v) \in R$ for all $v \in V$
- \blacksquare symmetric, if $(v, w) \in R \Rightarrow (w, v) \in R$
- **Transitive, if** $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

The (Reflexive) Transitive Closure R^* of R is the smallest extension $R \subseteq R^* \subseteq V \times V$ such that R^* is reflexive and transitive.

Graphs and Relations

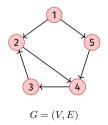
```
Graph G = (V, E)
adjacencies A_G \cong \text{Relation } E \subseteq V \times V \text{ over } V
```

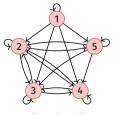
- reflexive $\Leftrightarrow a_{i,i} = 1$ for all $i = 1, \dots, n$. (loops)
- lacksquare symmetric $\Leftrightarrow a_{i,j} = a_{j,i}$ for all $i,j = 1,\ldots,n$ (undirected)
- transitive \Leftrightarrow $(u,v) \in E$, $(v,w) \in E \Rightarrow (u,w) \in E$. (reachability)

Reflexive Transitive Closure

Reflexive transitive closure of $G\Leftrightarrow \text{Reachability relation }E^*\text{: }(v,w)\in E^*$ iff \exists path from node v to w.

0	1	0	0	1
	0	0	1	1 0 0 0 0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0





Algorithm $A \cdot A$

return B

```
Input: (Adjacency-)Matrix A=(a_{ij})_{i,j=1...n}

Output: Matrix Product B=(b_{ij})_{i,j=1...n}=A\cdot A

B\leftarrow 0

for r\leftarrow 1 to n do

  for c\leftarrow 1 to n do

  for k\leftarrow 1 to n do

  brc \leftarrow b_{rc}+a_{rk}\cdot a_{kc} // Number of Paths
```

Counts number of paths of length 2

Algorithm $A \otimes A$

return B

Computes which paths of length 1 and 2 exist

Computation of the Reflexive Transitive Closure

Goal: computation of $B=(b_{ij})_{1\leq i,j\leq n}$ with $b_{ij}=1\Leftrightarrow (v_i,v_j)\in E^*$ First idea:

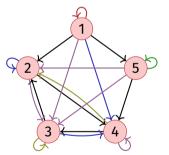
- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each i (Reflexivity.).
- Compute

$$B_n = \bigotimes_{i=1}^n B$$

with powers of 2 $B_2 := B \otimes B$, $B_4 := B_2 \otimes B_2$, $B_8 = B_4 \otimes B_4$... \Rightarrow running time $n^3 \lceil \log_2 n \rceil$

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .



1	1	1	1	1
0	1 1	1	1	1 0 0 0
0	1	1	1	0
0	1	1	1	
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1	1	1	1

Algorithm TransitiveClosure(A_G)

```
Input: Adjacency matrix A_G = (a_{ij})_{i,j=1...n}
Output: Reflexive transitive closure B = (b_{ij})_{i,j=1...n} of G
B \leftarrow A_G
for k \leftarrow 1 to n do
     b_{kk} \leftarrow 1
                                                                                                // Reflexivity
     for r \leftarrow 1 to n do
   for c \leftarrow 1 to n do b_{rc} \leftarrow \max\{b_{rc}, b_{rk} \cdot b_{kc}\}
                                                                                         // All paths via v_k
return B
Runtime \Theta(n^3).
```

Correctness of the Algorithm (Induction)

Invariant (k**)**: all paths via nodes with maximal index < k considered.

- Base case (k = 1): All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (k) fulfilled.
- **Step** $(k \to k+1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.

