23. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

661

Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.

m The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local criterion that is not depending on
the solution of the sub-problems.

Examples: fractional knapsack, Huffman-Coding (below)
Counter-Example: knapsack problem, Optimal Binary Search Tree

662

The Fractional Knapsack Problem

set of n € N items {1,...,n} Each item i has value v; € N and weight

w; € N. The maximum weight is given as W € N. Input is denoted as

E = (Ui;wi)izl ne

Wanted: Fractions 0 < ¢; < 1 (1 < i < n) that maximise the sum X7, ¢; - v;
under X0, q; - w; < W.

663

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > v; 41 /w1

Let j = max{0 < k <n:XF w, < W} Set
mg=1foralll <i<j.

i=1 Wi

" G = Wj+1
mg=0forall:>j+1.
That is fast: ©(nlogn) for sorting and ©(n) for the computation of the ¢;.

664

Correctness

Assumption: optimal solution (r;) (1 < i < n).

The knapsack is full: >, r; - w; = 3, ¢ - w; = W.

Consider k: smallest i with r; # ¢; Definition of greedy: ¢, > r;. Let

T =q— 1 > 0.

Construct a new solution (7}): v} = r;Vi < k. r}, = qx. Remove weight
" ki1 0; = x - wy, from items k + 1 to n. This works because

Dok T W = Y W

665

Correctness

n v n v;
! 1

> riv = vk 4 zwp— + Y (rw; — 0;)—
; Wk k1 Wi
Uk & v; Uk

> g + swp— + Y riw;— — 6;—

Wk g1 Wi Wk

Vk Vk
= TV + xwk— — :L‘wk— + Z 7“ZwZ = Zrzvz
Wk Wk i=k+1 i

Thus (r}) is also optimal. Iterative application of this idea generates the
solution (g;).

666

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary
code with code words..

667

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary
code with code words..

File consisting of 100.000 characters from the alphabet {qa, ..., f}.

a b C d e f

Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

667

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary
code with code words..

File consisting of 100.000 characters from the alphabet {qa, ..., f}.

a b C d e f

Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

667

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

668

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

m Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).

668

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

m Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).

m Encoding: concatenation of the code words without stop character

(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

668

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

m Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe

668

N o N

/ \ V °/\1/ >/\1
/ \ / \ / \ €12 b3 14 dis

a45 b3 12 di1e e /\

Code words with fixed length Code words with variable length

669

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

670

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a codeword ¢
and dr(c) the depth of a code word in tree T'. Define the cost of a tree as

B(T)=)_ f(c) - dr(c).

ceC

(cost = number bits of the encoded file)

670

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a codeword ¢
and dr(c) the depth of a code word in tree T'. Define the cost of a tree as

B(T)=)_ f(c) - dr(c).

ceC

(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

670

Algorithm ldea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest
frequency by a new parent

node. a45 b3 c¢12 di1e e9 f:5

Algorithm ldea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest
frequency by a new parent / \
node. a45 b3 12 die e9 f5

Algorithm ldea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two 14
nodes with smallest

25
frequency by a new parent / \ / \
node. a:s5 b3 12 die e9 f5

Algorithm ldea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest

N
25 14
frequency by a new parent /\ /\
node. a:s5 b3 12 die e9 f5

30

Algorithm ldea

Tree construction bottom up

m Start with the set C of code \
words / 30

m Replace iteriatively the two
nodes with smallest

frequency by a new parent /\ /\
node. a:s5 b3 12 die e9 f5

Algorithm ldea

Tree construction bottom up 100

m Start with the set C of code \
words / 30

m Replace iteriatively the two
nodes with smallest

frequency by a new parent /\ /\
node. a:s5 b3 12 die e9 f5

671

Algorithm Huffman(C)

Input: code words c € C
Output: Root of an optimal code tree

n « |C|
Q<+ C
fori=1ton—1do
allocate a new node 2
z.left « ExtractMin(Q)
z.right < ExtractMin(Q)
z.freq < z.left.freq + z.right.freq

 Insert(Q, 2)
return ExtractMin(Q)

// extract word with minimal frequency.

672

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n Elements.
Yields a runtime of O(nlogn).

673

The greedy approach is correct

Theorem 19

Let z, y be two symbols with smallest frequencies in C' and let T'(C")
be an optimal code tree to the alphabet C' = C — {z,y} + {z} with a
new symbol z with f(z) = f(z) + f(y). Then the tree T(C) that is
constructed from T'(C") by replacing the node z by an inner node with
children x and y is an optimal code tree for the alphabet C.

674

It holds that

f(@)-dp(x)+f(y)-dr(y) = (f(2)+f(y) (dr(2)+1) = f(2)-dp(x)+ f(x)+ f(y)-
Thus B(T") = B(T) — f(z) = f(y)-

Assumption: 7' is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that = and y are brothers in 7”. Let 7" be the
tree where the inner node with children z and y is replaced by 2. Then it
holds that B(T") = B(T") — f(z) — f(y) < B(T) — f(z) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that = and y are brothers in 7" can be justified because a
swap of elements with smallest frequency to the lowest level of the tree
can at most decrease the value of B.

675

	Greedy Algorithms
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding

