
23. Greedy Algorithms

Fractional Knapsack Problem, Hu�man Coding [Cormen et al, Kap. 16.1, 16.3]
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Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.
The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local criterion that is not depending on
the solution of the sub-problems.

Examples: fractional knapsack, Hu�man-Coding (below)
Counter-Example: knapsack problem, Optimal Binary Search Tree
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The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and weight
wi ∈ N. The maximum weight is given as W ∈ N. Input is denoted as
E = (vi, wi)i=1,...,n.
Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum ∑n

i=1 qi · vi

under ∑n
i=1 qi · wi ≤ W .
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Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.
Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n : ∑k
i=1 wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 = W−
∑j

i=1 wi

wj+1
.

qi = 0 for all i > j + 1.
That is fast: Θ(n log n) for sorting and Θ(n) for the computation of the qi.
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Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).
The knapsack is full: ∑

i ri · wi = ∑
i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.
Construct a new solution (r′i): r′i = ri∀i < k. r′k = qk. Remove weight∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi = ∑n

i=k qi · wi.
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Correctness

n∑
i=k

r′ivi = rkvk + xwk
vk

wk

+
n∑

i=k+1
(riwi − δi)

vi

wi

≥ rkvk + xwk
vk

wk

+
n∑

i=k+1
riwi

vi

wi

− δi
vk

wk

= rkvk + xwk
vk

wk

− xwk
vk

wk

+
n∑

i=k+1
riwi

vi

wi

=
n∑

i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates the
solution (qi).
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Hu�man-Codes

Goal: memory-e�cient saving of a sequence of characters using a binary
code with code words..

Example

File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.
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Hu�man-Codes

Consider prefix-codes: no code word can start with a di�erent codeword.

Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).
Encoding: concatenation of the code words without stop character
(di�erence to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101
Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe
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Code trees
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Properties of the Code Trees

An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

Let C be the set of all code words, f(c) the frequency of a codeword c
and dT (c) the depth of a code word in tree T . Define the cost of a tree as

B(T ) =
∑
c∈C

f(c) · dT (c).

(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.
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Algorithm Idea

Tree construction bottom up

Start with the set C of code
words
Replace iteriatively the two
nodes with smallest
frequency by a new parent
node. a:45 b:13 c:12 d:16 e:9 f:5
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Algorithm Hu�man(C)

Input: code words c ∈ C
Output: Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)
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Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n Elements.
Yields a runtime of O(n log n).
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The greedy approach is correct

Theorem 19
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C − {x, y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node with
children x and y is an optimal code tree for the alphabet C .
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Proof

It holds that
f(x)·dT (x)+f(y)·dT (y) = (f(x)+f(y))·(dT ′(z)+1) = f(z)·dT ′(x)+f(x)+f(y).
Thus B(T ′) = B(T )− f(x)− f(y).
Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T ). We assume that x and y are brothers in T ′′. Let T ′′′ be the
tree where the inner node with children x and y is replaced by z. Then it
holds that B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T )− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.
The assumption that x and y are brothers in T ′′ can be justified because a
swap of elements with smallest frequency to the lowest level of the tree
can at most decrease the value of B.
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