
19. Quadtrees

Quadtrees, Collision Detection, Image Segmentation
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Quadtree

A quad tree is a tree of order 4.

... and as such it is not particularly interesting except when it is used for ...
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Quadtree - Interpretation und Nutzen

Separation of a two-dimensional range into 4 equally sized parts.

[analogously in three dimensions with an octtree (tree of order 8)]
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Example 1: Collision Detection

Objects in the 2D-plane, e.g. particle
simulation on the screen.
Goal: collision detection
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Idea

Many objects: n2 detections (naively)
Improvement?

Obviously: collision detection not
required for objects far away from
each other
What is „far away”?
Grid (m×m)
Collision detection per grid cell
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Grids

A grid often helps, but not always
Improvement?

More finegrained grid?
Too many grid cells!
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Adaptive Grids

A grid often helps, but not always
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Quadtree!
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Algorithm: Insertion

Quadtree starts with a single node

Objects are added to the node. When a
node contains too many objects, the
node is split.
Objects that are on the boundary of
the quadtree remain in the higher
level node.
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Algorithm: Collision Detection

Run through the quadtree in a
recursive way. For each node test
collision with all objects contained in
the same or (recursively) contained
nodes.
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Example 2: Image Segmentation

⇒ +

(Possible applications: compression, denoising, edge detection)
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Quadtree on Monochrome Bitmap

Similar procedure to generate the quadtree: split nodes recursively until
each node only contains pixels of the same color.
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Quadtree with Approximation
When there are more than two color values, the quadtree can get very
large. ⇒ Compressed representation: approximate the image piecewise
constant on the rectangles of a quadtree.
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Piecewise Constant Approximation

(Grey-value) Image y ∈ RS on pixel indices S. 28

Rectangle r ⊂ S.
Goal: determine

arg min
v∈R

∑
s∈r

(ys − v)2

Solution: the arithmetic mean µr = 1
|r|
∑
s∈r ys

28we assume that S is a square with side length 2k for some k ≥ 0
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Intermediate Result

The (w.r.t. mean squared error) best approximation

µr = 1
|r|
∑
s∈r

ys

and the corresponding error∑
s∈r

(ys − µr)2 =: ‖yr − µr‖2
2

can be computed quickly after a O(|S|) tabulation: prefix sums!
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Which Quadtree?

Conflict
As close as possible to the data⇒ small rectangles, large quadtree .
Extreme case: one node per pixel. Approximation = original
Small amount of nodes⇒ large rectangles, small quadtree Extreme
case: a single rectangle. Approximation = a single grey value.
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Which Quadtree?

Idea: choose between data fidelity and complexity with a regularisation
parameter γ ≥ 0
Choose quadtree T with leaves29 L(T ) such that it minimizes the following
function

Hγ(T,y) := γ · |L(T )|︸ ︷︷ ︸
Number of Leaves

+
∑

r∈L(T )
‖yr − µr‖2

2︸ ︷︷ ︸
Cummulative approximation error of all leaves

.

29here: leaf: node with null-children
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Regularisation

Let T be a quadtree over a rectangle ST and let Tll, Tlr, Tul, Tur be the four
possible sub-trees and

Ĥγ(T, y) := min
T
γ · |L(T )|+

∑
r∈L(T )

‖yr − µr‖2
2

Extreme cases:
γ = 0⇒ original data;
γ →∞⇒ a single rectangle
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Observation: Recursion

If the (sub-)quadtree T represents only one pixel, then it cannot be
split and it holds that

Ĥγ(T,y) = γ

Let, otherwise,

M1 := γ + ‖yST
− µST

‖2
2

M2 := Ĥγ(Tll,y) + Ĥγ(Tlr,y) + Ĥγ(Tul,y) + Ĥγ(Tur,y)

then
Ĥγ(T, y) = min{M1(T, γ,y)︸ ︷︷ ︸

no split

,M2(T, γ,y)︸ ︷︷ ︸
split

}
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Algorithmus: Minimize(y,r,γ)
Input: Image data y ∈ RS , rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T )|+ ‖y − µL(T )‖22
if |r| = 0 then return 0
m← γ +

∑
s∈r(ys − µr)

2

if |r| > 1 then
Split r into rll,rlr,rul,rur
m1 ← Minimize(y, rll, γ); m2 ← Minimize(y, rlr, γ)
m3 ← Minimize(y, rul, γ); m4 ← Minimize(y, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m
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Analysis

The minimization algorithm over dyadic partitions (quadtrees) takes
O(|S| log |S|) steps.
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Application: Denoising (with addditional Wedgelets)

noised γ = 0.003 γ = 0.01 γ = 0.03 γ = 0.1

γ = 0.3 γ = 1 γ = 3 γ = 10 534



Extensions: A�ne Regression + Wedgelets
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Other ideas

no quadtree: hierarchical one-dimensional modell (requires dynamic
programming)
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19.1 Appendix

Linear Regression
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The Learning Problem

Setup
We observe N data points
Input examples: X = (X1, . . . ,XN)>

Output examples: y = (y1, . . . , yN)>

Assupmtion: there is an underlying
truth

f : X → Y

Goal: find a good approximation h ≈ g to make predictions h(x) for new
data points or to explain the data in order to find a compressed
representation, for instance.
Here X = Rd. Y = R (Regression).
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Model: Linear Regression
Assumption: The underlying truth can be represented as

hw(x) = w0 + w1x1 + · · ·+ wdxd = w0 +
d∑
i=1

wixi.

⇒ We search for w (sometimes also d).
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0.0
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2.5

3.0
data without noise

1 0 1 2 3 4 5 6 10 1 2 3 4 5 6

10
5
0
5
10
15

no noise

d = 1
d = 2

linear in w !
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Trick for simplified notation

x = (x1, . . . , xd)→ (x0︸︷︷︸
≡1
, x1, . . . , xd)

hw(x) = w0x0 + w1x1 + · · · + wdxd

=
d∑
i=0
wixi

= w>x
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Data matrix

X =


X1
X2

...
Xn

 =


X1,0 X1,1 X1,2 . . . X1,d
X2,0 X2,1 X2,2 . . . X2,d

... ... ... . . . ...
Xn,0 Xn,1 Xn,2 . . . Xn,d

, y =


y1
y2
...
yn

, w =


w1
...
wd



≡ 1

Xw ≈ y?
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Imprecise observations

Reality: the data are imprecise or the model is only a model.
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0.0

0.5
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noisy data

1 0 1 2 3 4 5 6 10 1 2 3 4 5 6

10
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15

data with noise

What to do?
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Error function

E(w) =
N∑
i=1

(hw(Xi)− yi)2

Want a ŵ that minimizes E
Linarity of hw in w⇒ solution with linear algebra.
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Solution from Linear Algebra

ŵ =
(
X>X

)−1
X>︸ ︷︷ ︸

=:X†

y.

X†: Moore-Penroe Pseudo-Inverse
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Fitting Polynomials
Also works with linear regression.

hw(x) = w0 + w1x
1 + w2x

2 + · · ·+ wdx
d = w0 +

d∑
i=1

wix
i.

because hw(x) remains being linear in w !

X =


1 x1 (x1)2 . . . (x1)d

1 x2 (x2)2 . . . (x2)d

...
...

...
. . .

...
1 xn (xn)2 . . . (xn)d

, y =


y1
y2
...
yn

, w =

w0
...
wd


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Example: Constant Approximation

X =


1
1
...
1

, y =


y1
y2
...
yn

, w =
[
w0
]

ŵ =
(
X>X

)−1
X>y =

[ 1
n

∑
yi

]
.
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Example: Linear Approximation

X =


1 x

(1)
1 x

(2)
1

1 x
(1)
2 x

(2)
2

...
1 x(1)

n x(2)
n

, y =


y1
y2
...
yn

, w =
[
w0
]

ŵ =
(
X>X

)−1
X>y =


N

∑
x

(1)
i

∑
x

(2)
i∑

x
(1)
i

∑(
x

(1)
i

)2 ∑
x

(1)
i · x

(2)
i∑

x
(2)
i

∑
x

(1)
i · x

(2)
i

∑(
x

(2)
i

)2


−1

·


∑
yi∑

yi · x(1)
i∑

yi · x(2)
i


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