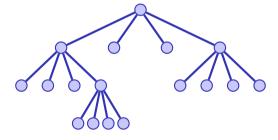
# 19. Quadtrees

Quadtrees, Collision Detection, Image Segmentation

## Quadtree

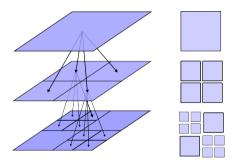
A quad tree is a tree of order 4.



... and as such it is not particularly interesting except when it is used for ...

## Quadtree - Interpretation und Nutzen

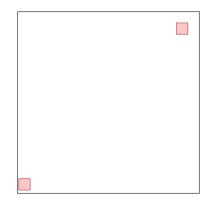
Separation of a two-dimensional range into 4 equally sized parts.



[analogously in three dimensions with an octtree (tree of order 8)]

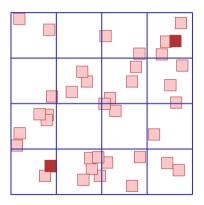
# **Example 1: Collision Detection**

- Objects in the 2D-plane, e.g. particle simulation on the screen.
- Goal: collision detection



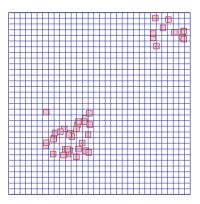
#### Idea

- $\blacksquare$  Many objects:  $n^2$  detections (naively)
- Improvement?
- Obviously: collision detection not required for objects far away from each other
- What is "far away"?
- $\blacksquare$  Grid ( $m \times m$ )
- Collision detection per grid cell



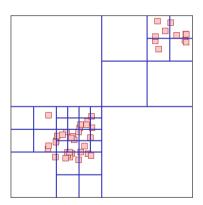
### Grids

- A grid often helps, but not always
- Improvement?
- More finegrained grid?
- Too many grid cells!



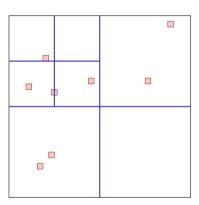
# **Adaptive Grids**

- A grid often helps, but not always
- Improvement?
- Adaptively refine grid
- Quadtree!



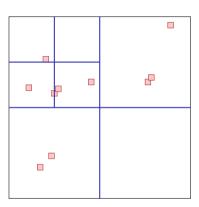
# Algorithm: Insertion

- Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.
- Objects that are on the boundary of the quadtree remain in the higher level node.

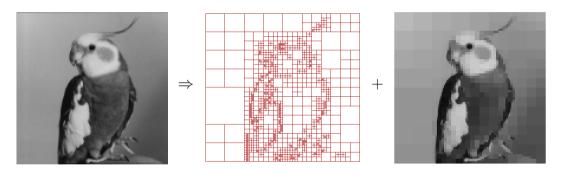


# Algorithm: Collision Detection

Run through the quadtree in a recursive way. For each node test collision with all objects contained in the same or (recursively) contained nodes.

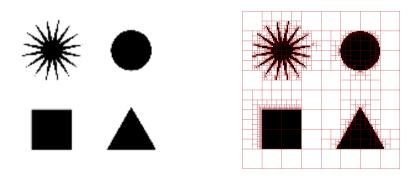


# Example 2: Image Segmentation



(Possible applications: compression, denoising, edge detection)

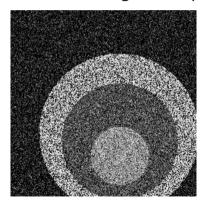
# Quadtree on Monochrome Bitmap

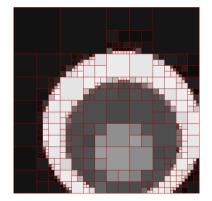


Similar procedure to generate the quadtree: split nodes recursively until each node only contains pixels of the same color.

# Quadtree with Approximation

When there are more than two color values, the quadtree can get very large.  $\Rightarrow$  Compressed representation: *approximate* the image piecewise constant on the rectangles of a quadtree.





# **Piecewise Constant Approximation**

(Grey-value) Image  $y \in \mathbb{R}^S$  on pixel indices S. <sup>28</sup>

Rectangle  $r \subset S$ .

Goal: determine

$$\arg\min_{v\in\mathbb{R}}\sum_{s\in r}(y_s-v)^2$$

Solution: the arithmetic mean  $\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$ 

<sup>&</sup>lt;sup>28</sup>we assume that S is a square with side length  $2^k$  for some  $k \geq 0$ 

#### Intermediate Result

The (w.r.t. mean squared error) best approximation

$$\mu_r = \frac{1}{|r|} \sum_{s \in r} y_s$$

and the corresponding error

$$\sum_{s \in r} (y_s - \mu_r)^2 =: \| \boldsymbol{y}_r - \boldsymbol{\mu}_r \|_2^2$$

can be computed quickly after a  $\mathcal{O}(|S|)$  tabulation: prefix sums!

## Which Quadtree?

#### Conflict

- As close as possible to the data ⇒ small rectangles, large quadtree . Extreme case: one node per pixel. Approximation = original
- Small amount of nodes ⇒ large rectangles, small quadtree Extreme case: a single rectangle. Approximation = a single grey value.

## Which Quadtree?

Idea: choose between data fidelity and complexity with a regularisation parameter  $\gamma \geq 0$ 

Choose quadtree T with leaves  $^{\mathbf{29}}$  L(T) such that it minimizes the following function

$$H_{\gamma}(T, \boldsymbol{y}) := \gamma \cdot \underbrace{\lfloor L(T) \rfloor}_{\text{Number of Leaves}} + \underbrace{\sum_{r \in L(T)} \|y_r - \mu_r\|_2^2}_{\text{Cummulative approximation error of all leaves}}$$

<sup>29</sup>here: leaf: node with null-children

# Regularisation

Let T be a quadtree over a rectangle  $S_T$  and let  $T_{ll}, T_{lr}, T_{ul}, T_{ur}$  be the four possible sub-trees and

$$\widehat{H}_{\gamma}(T, y) := \min_{T} \gamma \cdot |L(T)| + \sum_{r \in L(T)} \|y_r - \mu_r\|_2^2$$

#### Extreme cases:

 $\gamma=0\Rightarrow$  original data;  $\gamma\to\infty\Rightarrow$  a single rectangle

#### **Observation: Recursion**

 $\blacksquare$  If the (sub-)quadtree T represents only one pixel, then it cannot be split and it holds that

$$\widehat{H}_{\gamma}(T, \boldsymbol{y}) = \gamma$$

Let, otherwise,

$$M_1 := \gamma + \|\boldsymbol{y}_{S_T} - \boldsymbol{\mu}_{S_T}\|_2^2$$

$$M_2 := \widehat{H}_{\gamma}(T_{ll}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{lr}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ul}, \boldsymbol{y}) + \widehat{H}_{\gamma}(T_{ur}, \boldsymbol{y})$$

then

$$\widehat{H}_{\gamma}(T,y) = \min\{\underbrace{M_1(T,\gamma,\boldsymbol{y})}_{\text{no split}}, \underbrace{M_2(T,\gamma,\boldsymbol{y})}_{\text{split}}\}$$

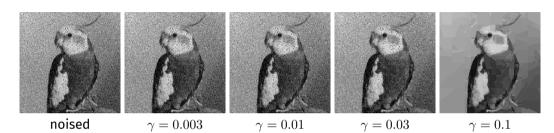
# Algorithmus: Minimize( $y,r,\gamma$ )

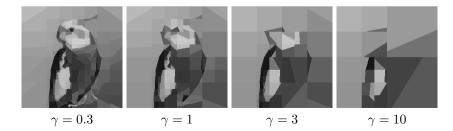
```
Input: Image data y \in \mathbb{R}^S, rectangle r \subset S, regularization \gamma > 0
Output: \min_{T} \gamma |L(T)| + \|y - \mu_{L(T)}\|_{2}^{2}
if |r| = 0 then return 0
m \leftarrow \gamma + \sum_{s \in r} (y_s - \mu_r)^2
if |r| > 1 then
      Split r into r_{ll}, r_{lr}, r_{ul}, r_{ur}
      m_1 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ll}, \gamma); m_2 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{lr}, \gamma)
      m_3 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ul}, \gamma); m_4 \leftarrow \text{Minimize}(\boldsymbol{y}, r_{ur}, \gamma)
      m' \leftarrow m_1 + m_2 + m_3 + m_4
else
 \perp m' \leftarrow \infty
if m' < m then m \leftarrow m'
return m
```

# **Analysis**

The minimization algorithm over dyadic partitions (quadtrees) takes  $\mathcal{O}(|S|\log|S|)$  steps.

# Application: Denoising (with addditional Wedgelets)

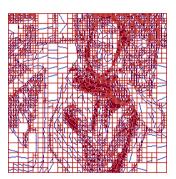




# Extensions: Affine Regression + Wedgelets





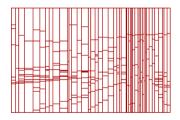


### Other ideas

no quadtree: hierarchical one-dimensional modell (requires dynamic programming)







# 19.1 Appendix

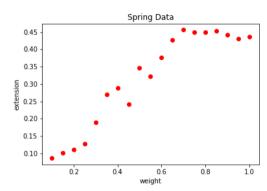
Linear Regression

# The Learning Problem

#### **Setup**

- $\blacksquare$  We observe N data points
- Input examples:  $X = (X_1, ..., X_N)^{\top}$
- Output examples:  $\boldsymbol{y} = (y_1, \dots, y_N)^{\top}$
- Assupmtion: there is an underlying truth

$$f: \mathcal{X} \to \mathcal{Y}$$



**Goal**: find a good approximation  $h \approx g$  to make predictions h(x) for new data points or to explain the data in order to find a compressed representation, for instance.

Here  $\mathcal{X} = \mathbb{R}^d$ .  $\mathcal{Y} = \mathbb{R}$  (Regression).

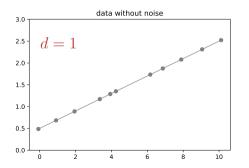
# Model: Linear Regression

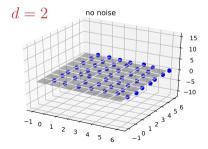
Assumption: The underlying truth can be represented as

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_d x_d = w_0 + \sum_{i=1}^d w_i x_i.$$

 $\Rightarrow$  We search for w (sometimes also d).

linear in w!





# Trick for simplified notation

$$\boldsymbol{x} = (x_1, \dots, x_d) \to (\underbrace{x_0}_{=1}, x_1, \dots, x_d)$$

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = w_0 x_0 + w_1 x_1 + \dots + w_d x_d$$
  
=  $\sum_{i=0}^d w_i x_i$   
=  $\boldsymbol{w}^{\top} \boldsymbol{x}$ 

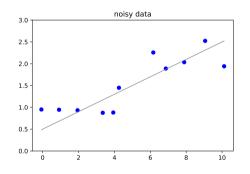
### Data matrix

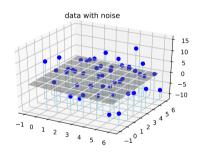
$$oldsymbol{X} = egin{bmatrix} oldsymbol{\Xi} 1 \ oldsymbol{X} = egin{bmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \ dots \ oldsymbol{X}_{n,0} \ oldsymbol{X}_{n,1} \ oldsymbol{X}_{n,2} \ oldsymbol{X}_{n,2} \ oldsymbol{X}_{n,2} \ oldsymbol{X}_{n,d} \ oldsymbol{X}_{n,d} \ \end{pmatrix}, \quad oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \ \end{bmatrix}, \quad oldsymbol{w} = egin{bmatrix} w_1 \ dots \ w_2 \ dots \ w_d \ \end{bmatrix}$$

$$Xw \approx y$$
?

# Imprecise observations

Reality: the data are imprecise or the model is only a model.



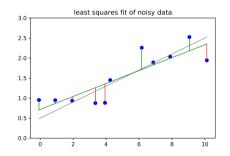


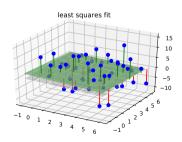
What to do?

#### **Error function**

$$E(\boldsymbol{w}) = \sum_{i=1}^{N} (h_{\boldsymbol{w}}(\boldsymbol{X}_i) - y_i)^2$$

Want a  $\widehat{w}$  that minimizes ELinarity of  $h_w$  in  $w \Rightarrow$  solution with linear algebra.





## Solution from Linear Algebra

$$\widehat{\boldsymbol{w}} = \underbrace{\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}}_{=:\boldsymbol{X}^{\dagger}}\boldsymbol{y}.$$

 $X^{\dagger}$ : Moore-Penroe Pseudo-Inverse

# Fitting Polynomials

Also works with linear regression.

$$h_{\mathbf{w}}(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_d x^d = w_0 + \sum_{i=1}^d w_i x^i.$$

because  $h_{\boldsymbol{w}}(x)$  remains being linear in  $\boldsymbol{w}$ !

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_1)^d \\ 1 & x_2 & (x_2)^2 & \dots & (x_2)^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^d \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

# **Example: Constant Approximation**

$$oldsymbol{X} = egin{bmatrix} 1 \ 1 \ \vdots \ 1 \end{bmatrix}, \quad oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ \vdots \ y_n \end{bmatrix}, \quad oldsymbol{w} = egin{bmatrix} w_0 \end{bmatrix} \ \widehat{oldsymbol{w}} = oldsymbol{(X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y} = igg[ rac{1}{n} \sum y_i igg]. \end{cases}$$

# **Example: Linear Approximation**

$$m{X} = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} \ 1 & x_2^{(1)} & x_2^{(2)} \ dots & & & \ 1 & x_n^{(1)} & x_n^{(2)} \end{pmatrix}, \quad m{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}, \qquad m{w} = m{bmatrix} m{w} = m{w$$

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} = \begin{bmatrix} N & \sum x_i^{(1)} & \sum x_i^{(2)} \\ \sum x_i^{(1)} & \sum \left(x_i^{(1)}\right)^2 & \sum x_i^{(1)} \cdot x_i^{(2)} \\ \sum x_i^{(2)} & \sum x_i^{(1)} \cdot x_i^{(2)} & \sum \left(x_i^{(2)}\right)^2 \end{bmatrix} \cdot \begin{bmatrix} \sum y_i \\ \sum y_i \cdot x_i^{(1)} \\ \sum y_i \cdot x_i^{(2)} \end{bmatrix}$$