
Felix Friedrich

Data Structures and Algorithms
Course at D-MATH (CSE) of ETH Zurich
Spring 2021

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

11

Goals of the course

Understand the design and analysis of fundamental algorithms and data
structures.
An advanced insight into a modern programming model (with C++).
Knowledge about chances, problems and limits of the parallel and
concurrent computing.

12

Contents

data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

amortized analysis
dynamic programming

dictionaries: hashing and search trees
Fundamental algorithms on graphs,

shortest paths, Minimum Spanning Tree, Max-Flow
Minimum Spanning Trees, Fibonacci Heaps

prorgamming with C++
RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming
Exceptions functors and lambdas

threads, mutex and monitors
promises and futures

parallel programming
parallelism vs. concurrency, speedup
(Amdahl/Gustavson), races, memory
reordering, atomic registers, RMW
(CAS,TAS), deadlock/starvation

14

1.2 Algorithms

[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

15

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

16

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)
Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

17

Possible solution

How many times are the lines executed each?

void sort(std::vector<int> a){
std::size n = a.size()
for (std::size i = 0; i<n ; ++i)

for (std::size j = i+1; j<n; ++j)
if (a[j] < a[i])

std::swap(a[i],a[j])
}

18

Data Structures

A data structure is a particular way of
organizing data in a computer so that they
can be used e�ciently (in the algorithms
operating on them).
Programs = algorithms + data structures.

19

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
fast lookup : Hash-Tables
the Travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

20

Characteristics

Extremely large number of potential solutions
Practical applicability

21

Typical Design Steps Example
Route planning

22

Typical Design Steps

1. Specification of the problem: find best (shortest
time) path from A to B

2. Abstraction: graph with nodes, edges and
egde-weights

3. Idea (heureka!): Dijkstra
4. Data-structures and algorithms: e.g. adjacency

matrix / adjacency list, min-heap, hash-table ...
5. Runtime analysis: O((n+m) · log n)
6. Implementation: Representation choice (e.g.

adjacency matrix/ adjacency list/ objects)

23

Di�cult Problem: Travelling Salesman

Given: graph (map) with nodes (cities)
and weighted edges (roads with
length)
Wanted: Loop road through all cities
such that each city is visited once
(Hamilton-cycle) with minimal overall
length.

A

B

C

D

E

F

G

H

I

1

8

3

2

1

2

6 1
2

5

2

7

2

2

4

3

The best known algorithm has a running time that increase exponentially
with the number of nodes (cities).
Already finding a Hamilton cycle is a di�cult problem in general. In contrast, the
problem to find an Eulerian cycle, a cycle that uses each edge once, is a problem with
polynomial running time.

24

Hard problems.

NP-complete problems: no known e�cient solution (the existence of
such a solution is very improbable – but it has not yet been proven that
there is none!)
Example: travelling salesman problem

This course is mostly about problems that can be solved e�ciently (in
polynomial time).

25

E�ciency

If computers were infinitely fast and had an infinite amount of memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:
Computing time→ E�ciency
Storage space→ E�ciency

Actually, this course is nearly only about e�ciency.

26

2. E�ciency of algorithms

E�ciency of Algorithms, Random Access Machine Model, Function Growth,
Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

27

E�ciency of Algorithms

Goals
Quantify the runtime behavior of an algorithm independent of the
machine.
Compare e�ciency of algorithms.
Understand dependece on the input size.

28

Programs and Algorithms

program

programming language

computer

algorithm

pseudo-code

computation model

implemented in

specified for

specified in

based on

Technology Abstraction

29

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

30

Size of the Input Data

Typical: number of input objects (of fundamental type).
Sometimes: number bits for a reasonable / cost-e�ective representation
of the data.
fundamental types fit into word of size : w ≥ log(sizeof(mem)) bits.

31

For Dynamic Data Strcutures

Pointer Machine Model

Objects bounded in size can be dynamically allocated in constant
time
Fields (with word-size) of the objects can be accessed in constant
time 1.

top xn xn−1 x1 null

32

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even
for small input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with gradient
1.

33

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.
Execution time of the program: measurable value on a concrete machine.
Can be bounded from above and below.

Example 1

3GHz computer. Maximal number of operations per cycle (e.g. 8). ⇒ lower
bound.
A single operations does never take longer than a day⇒ upper bound.

From the perspective of the asymptotic behavior of the program, the
bounds are unimportant.

34

2.2 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

35

Superficially

Use the asymptotic notation to specify the execution time of algorithms.
We write Θ(n2) and mean that the algorithm behaves for large n like n2:
when the problem size is doubled, the execution time multiplies by four.

36

More precise: asymptotic upper bound

provided: a function g : N→ R.
Definition:1

O(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Notation:
O(g(n)) := O(g(·)) = O(g).

1Ausgesprochen: Set of all functions f : N→ R that satisfy: there is some (real
valued) c > 0 and some n0 ∈ N such that 0 ≤ f(n) ≤ n · g(n) for all n ≥ n0.

37

Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n

38

Converse: asymptotic lower bound

Given: a function g : N→ R.
Definition:

Ω(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}

39

Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n

40

Asymptotic tight bound

Given: function g : N→ R.
Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.

41

Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n

42

Notions of Growth

O(1) bounded array access
O(log logn) double logarithmic interpolated binary sorted sort
O(logn) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n logn) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(cn) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively

43

Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4 2n

44

Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

logn
n
n2

n4

2n

45

“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

logn
n
n2n4

2n

46

Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

logn

n logn

47

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs 700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs 1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

48

Useful Tool

Theorem 2
Let f, g : N→ R+ be two functions, then it holds that

1. limn→∞
f(n)
g(n) = 0⇒ f ∈ O(g), O(f) (O(g).

2. limn→∞
f(n)
g(n) = C > 0 (C constant)⇒ f ∈ Θ(g).

3. f(n)
g(n) →n→∞∞⇒ g ∈ O(f), O(g) (O(f).

49

About the Notation

Common casual notation
f = O(g)

should be read as f ∈ O(g).
Clearly it holds that

f1 = O(g), f2 = O(g) 6⇒ f1 = f2!

n = O(n2), n2 = O(n2) but naturally n 6= n2.

We avoid this notation where it could lead to ambiguities.

50

Reminder: E�ciency: Arrays vs. Linked Lists

Memory: our avec requires roughly n ints (vector size n), our llvec
roughly 3n ints (a pointer typically requires 8 byte)

Runtime (with avec = std::vector, llvec = std::list):

51

Asymptotic Runtimes

With our new language (Ω,O,Θ), we can now state the behavior of the
data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

Data structure Random
Access

Insert Next Insert
After
Element

Search

std::vector Θ(1) Θ(1)A Θ(1) Θ(n) Θ(n)
std::list Θ(n) Θ(1) Θ(1) Θ(1) Θ(n)
std::set – Θ(logn) Θ(logn) – Θ(logn)
std::unordered_set – Θ(1)P – – Θ(1)P
A = amortized, P=expected, otherwise worst case

52

Complexity

Complexity of a problem P

Minimal (asymptotic) costs over all algorithms A that solve P .

Complexity of the single-digit multiplication of two numbers with n
digits is Ω(n) and O(nlog3 2) (Karatsuba Ofman).

53

Complexity

Problem Complexity O(n) O(n) O(n2) Ω(n log n)
⇑ ⇑ ⇑ ⇓

Algorithm Costs2 3n− 4 O(n) Θ(n2) Ω(n log n)
⇓ m m ⇓

Program Execution time Θ(n) O(n) Θ(n2) Ω(n log n)

2Number fundamental operations
54

	Introduction
	Overview
	Algorithms

	Efficiency of algorithms
	Efficiency of Algorithms
	Function growth

