Datenstrukturen und Algorithmen

Exercise 8

FS 2021



Program of today

Quiz

Feedback of last exercise



1. Quiz



Quiz: Stacking Boxes

m Given: n boxes with sizes w; x d; x h;
m Wanted: maximal height of a permitted stack

m Permitted stack: the base area of stacked boxes
must become strictly smaller in both directions
(width and depth)




Boxen Stapeln

We assume that there are enough boxes of a kind
such that each box is available in all orientations
(right hand side of the figure below).

S—

w

Box \ 1 2 3 4 5 6
[wxdxh] | Ix2x3] [Ix3x2] [2x3x1] [3x4x5 [Bx5x4 [4x5x3




Boxen Stapeln

We assume that there are enough boxes of a kind
such that each box is available in all orientations
(right hand side of the figure below).

Design a DP Algorithm to find the maximum height

of a permitted stack @
h d

w

Box \ 1 2 3 4 5 6
[wxdxh] | Ix2x3] [Ix3x2] [2x3x1] [3x4x5 [Bx5x4 [4x5x3




Solution Idea

m n xn lable

m Entry at row ¢ and column j: height of highest possible stack formed
from maximally 7 boxes and basement box j.

[wxd [1x2] [1x3] [2x3] [3x4] [3x5] [4x5]
h 3 g 1 ) 4 3
1 3 2 1 5 4 3
2 3 2 4 8 8 38
3 3 2 4 9 8 11
4 3 2 4 9 8 12

Determination of the table: ©(n?), for each entry all entries in the row above must be considered. Computation of the

optimal solution by traversing back, worst case ©(n?)



Alternative Solution Idea

m 1 x n Table, topologically sorted! according to half-order stackability
m Entry at index j: height of highest possible stack with basement box

7.
[wxd [1x2] [1x3] [2x3] [3x4] [3x5] [4x5]

h 3 2 1 5) 4 3

3 2 4 9 8 12

Topological sort in ©(n?). Traverse from left to right in ©(n), overal ©(n2). Traversing back also ©(n?)



2. Feedback of last exercise



Piecewise Constant Approximation

Hyy: PP+ > > (yi— (r)?

IePicl



Piecewise Constant Approximation

Hyy:P =P+ > > (y— (r)?

IePicl

m As in exercise 1 efficient computation of mean: p; = T}I >iel Vi



Piecewise Constant Approximation
Hyy:P AP+ > > (i — )’
IePiel

m As in exercise 1 efficient computation of mean: p; = T}I Siel Yi =
prefixsum v/



Piecewise Constant Approximation

Hyy:P =P+ > > (y— (r)?

IePicl

m As in exercise 1 efficient computation of mean: p; = T}I Siel Yi =

prefixsum v/
m Efficient computing ¢ ,) = Sy — 1))



Piecewise Constant Approximation

Hyy:P =P+ > > (y— (r)?

IePicl

m As in exercise 1 efficient computation of mean: p; = ‘7}' Sicr Vi =
prefixsum v

m Efficient computing enr) = Z?;zl(yi _ M[z,r))2
r— r— 2
= 6[l,r) = Zz’:ll y22 - ﬁ (Zi:ll yz) v



Piecewise Constant Approximation

Hyy:P =P+ > > (y— (r)?

IePicl

m As in exercise 1 efficient computation of mean: p; = T}I Siel Yi =

prefixsum v/
2

m Efficient computing ¢ ,) = Sy — Kiir))
" 1 \2
= ey = Sicl ¥ — o (Si5 wi) v
m Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution



Piecewise Constant Approximation

Hyy:P =P+ > > (y— (r)?

IePicl

m As in exercise 1 efficient computation of mean: p; = T}I Siel Yi =

prefixsum v/
2

m Efficient computing ¢ ,) = Sy — Kiir))
" 1 \2
= e =S ¥ — o (S5 v) v
m Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution = ?



Dynamic programming

m Definition of the DP table: two tables: B and 1V with each
n+ 1 x 1 entries, B[k] contains the pointer to the end of the best
previous interval, V'[k] contains the corresponding attainable
minimum of H.,.

m Computation of an entry: for computing new entry in B[k + 1]
compute H for all partitions from 0 to k + 1 .

m Calculation order: from left to right

m Extracting the solution: construct intervals with B[n| going from
right to left, Minimum is given by V[n]



Sums

Given a data vector of length n € N: (y;)i=1.., € R"

Sum my, == X1 Y = iy = My /N
Sum of Squares s, := X", 47

en = _Zl(yi — pn)? = 2%2 — 2uny; + po
= Sp — 2/ (Zyz) "’n'/i?z:sn_Q,un'nﬂn‘Fn'Mi
=i

2 2
=S, — N, =8, —m;/n



Statistics

// post: return mean of datalfrom,to)

double mean(unsigned int from, unsigned int to) const{
assert (from < to && to <= n);
return getsum(vsum,from,to) / (to—from);

1

// post: return err of constant approximation in interval [from,to)
double err(unsigned int from, unsigned int to) const{

assert (from < to && to <= n);

double m = getsum(vsum,from,to);

return getsum(vssq,from,to) — m*m / (to—from);



DP - Setup and Base Case

double MinimizeH(double gamma,const Statistics& s,
std :: vector<double>& result){
int n = s.size Q;
// BIKk] contains the pointer to the end of the best previous interval
// i.e. best possible approximation is given by
// best possible approximation of [0,B[k]), [BI[k], k)
std :: vector<int> B(n+1);
// V(k) contains the corresponsing attainable minimum of H__gamma
std :: vector<double> V(n+1);
// base case: empty interval
B[0] = 0;
VI[o] = 0;



DP - Construct Table

// now consider all combinations of Partition ([0, left )) + [left ,right)
for (int right=1; right <= n; ++right){
// interval [0, right)
int best = 0;
double min = gamma + s.err(0,right);
// intervals [left ,right), left > 0
for (int left = 1; left < right; ++left){
double h = V([left] + gamma + s.err(left,right);
if (h < min){
min = h; best = left;
}
}
Blright] best;
Vlright] = min;



DP - Reconstruct Solution

// reconstruct solution

unsigned int right=n;

while (right !'= 0){
unsigned int left = Blright];
fill (result,s.mean(left,right ), left ,right );
right = left;

}

return V[n];



Levenshtein Distance

// D[n,m] = distance between x and y

// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j <=m; ++j)

D[0] [3]1 = j;
for (unsigned i = 1; i <= n; ++i){
D[i]l [0] = i;

for (unsigned j = 1; j <=m; ++j){
unsigned q = D[i-1]1[j-1] + (x[i-1]1!=y[j-11);
q = std::min(q,D[i] [j-1]+1);
q = std::min(q,D[i-1] [jI1+1);
DLil[j]1 = q;
}
}

return D[n] [m];

16



Questions?



	Quiz
	Feedback of last exercise

