
Datenstrukturen und Algorithmen

Exercise 7

FS 2021

1

Program of today

1 Feedback of last exercise(s)

2 Repetition theory
Quadtrees

2

AVL insertion

Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

3

AVL insertion

Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

3

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height h and lower are placed in the same
place and do not cause rotation.
Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

4

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same
place and do not cause rotation.

Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

4

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same
place and do not cause rotation.
Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

4

2. Repetition theory

5

Minimization of a functional for signal segmentation

P Partition γ ≥ 0 regularization parameter
fP approxmation z image = ‘data’

Goal: Efficient mimization of the functional

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖2
2.

Result (P̂ , f̂P̂) ∈ argmin(P,fP)Hγ,z can be interpreted as optimal
compromise between regularity and fidelity to data.

6

Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.

7

Algorithmus: Minimize(z,r,γ)
Input: Image data z ∈ RS, rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T)|+ ‖z − µL(T)‖2

2

if |r| = 0 then return 0
m← γ + ∑

s∈r (zs − µr)2

if |r| > 1 then
Split r into rll,rlr,rul,rur

m1 ← Minimize(z, rll, γ); m2 ← Minimize(z, rlr, γ)
m3 ← Minimize(z, rul, γ); m4 ← Minimize(z, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m

8

Minimization of a Functional using Quadtrees

9

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table:

What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry:

How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order:

In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution:

How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

10

Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

11

Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Wanted longest ascending sequence:

4, 6, 28, 29, 47, 49
11

Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

12

Definition of the DP table

What are the dimensions of the table?
n×m

(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

12

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

12

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

12

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

12

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

13

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A

From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

13

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T

Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

13

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

13

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

13

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

14

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

14

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

14

Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following the
corresponding predecessors.

15

Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following the
corresponding predecessors.

15

Piecewise Constant Approximation

0 50 100 150 200

0

0.5

1

P

S

data y
approximation fP

16

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

17

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

17

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

17

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

17

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution
Utilize∗: Hγ,y(P ∪ {[l, r)}) = Hγ,y(P) + γ + e[l,r)

∗Assumption: P ∪ {[l, r)} is a partition
18

Questions?

19

	Feedback of last exercise(s)
	Repetition theory
	Quadtrees

