
Datenstrukturen und Algorithmen

Exercise 13

FS 2021

1

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Next Exercise

2

1. Feedback of last exercise

3

Exercise Applying Maximum Flow

Vertex capacity: replace vertex with an in-vertex and and out-vertex.
Connect these vertices by an edge with this capacity.

4

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

5

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

5

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

s t

all edges: capacity 1
5

Exercise Applying Maximum Flow
We have collectors, drivers, and trucks

collectors trucks drivers

s t

all edges: capacity 1
5

Exercise: Sum of a vector
void sum_par(Iterator beg, Iterator end, int& result) {

const int nThreads = std::thread::hardware_concurrency();
std::vector<std::thread> myThreads;
std::vector<int> sums(nThreads, 0);
const int partSize = (end-beg)/nThreads;

for(int i=0; i<nThreads-1; ++i){
myThreads.emplace_back(

std::thread(sum_ser, beg, beg + partSize, std::ref(sums[i])));
beg += partSize;

}
// ...
for(auto& t:myThreads) t.join();
sum_ser(sums.begin(), sums.end(), result);

}
6

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms

7

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms

7

Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms
7

Exercise: Sum of a vector – False Sharing!
void sum_ser(

Iterator from,
Iterator to,
int& result) {

int local = 0;
for(;from != to; ++from)

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result) {

result = 0;
for(;from != to; ++from)

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms
7

Exercise: Mergesort (2-threads)

void mergesort_par(std::vector<int> & v) {
int n = v.size();
int partSize = n / 2;

std::thread t1(mergesort, std::ref(v), 0, partSize-1);
std::thread t2(mergesort, std::ref(v), partSize, n-1);
t1.join();
t2.join();
merge(v, 0, partSize-1, n-1);

}

analogously with n threads

8

Exercise: Mergesort Recursively

void mergesort_par(std::vector<int> & v, int cutoff, int l, int r) {
if (r-l < cutoff){ // sequential base case

mergesort(v, l, r);
} else {

int m = (l+r)/2 ;
std::thread t (mergesort_par,std::ref(v),cutoff,l,m);
mergesort_par(v,cutoff,m+1,r); // avoid forking another thread
t.join();
merge(v,l,m,r);

}
}

9

2. Repetition theory

10

Parallel Performance

Given
fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs
runtime speedup efficiency

perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1

11

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

12

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

13

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

13

Task Parallelism: Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

14

Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

15

Performance Model

T∞: span: critical path, execution time
on ∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

16

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p + T∞

17

Beispiel
Assume p = 2.

Tp = 5 Tp = 4

18

Race Conditions

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource by
multiple threads, e.g. Simultaneous read/write or write/write of the
same memory location
Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a multithreaded
algorithm, even if that makes use of otherwise well synchronized
resources.

19

Memory Models

When and if effects of memory operations become visible for threads,
depends on hardware, runtime system and programming language.
A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations
leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

20

Counter Problem

std::vector<std::thread> tv(10);
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // race!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;

21

Counter Solution 1

std::vector<std::thread> tv(10);
std::mutex lock;
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){

mutex.lock(); counter++; mutex.unlock(); // synchronized!
}});

for (auto & t:tv)
t.join();

std::cout << "count= "<< counter << std::endl;

22

Counter Solution II

std::vector<std::thread> tv(10);
std::atomic<int> counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // atomic!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;

23

Quiz:What’s wrong with this code?

void exchangeSecret(Person & a, Person & b) {
a.getMutex()->lock();
b.getMutex()->lock();
Secret s = a.getSecret();
b.setSecret(s);
a.getMutex()->unlock();
b.getMutex()->unlock()

}

24

Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

25

Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

25

Possible Solution
void exchangeSecret(Person & a, Person & b) {

std::mutex* first;
std::mutex* second;
if (a.name < b.name){

first = a.getMutex(); second = b.getMutex();
} else {

first = b.getMutex(); second = a.getMutex();
}
first->lock();
second->lock();
Secret s = a.getSecret();
b.setSecret(s);
first->unlock();
second->unlock();

}
26

Deadlocks and Races

Not easy to spot
Hard to debug
Might happen only very rarely
Testing usually not good enough
Reasoning about code is required

Lesson learned: Need to be careful when programming with locks!

27

3. Next Exercise

28

Dining Philosophers

Philosophers only think and eat. Each needs two forks to eat.
Philosophers = threads, forks = locks.

29

Dining Philosophers - pseudocode

while(true) {
think();
acquire_fork_on_left_side();
acquire_fork_on_right_side();
eat();
release_fork_on_right_side();
release_fork_on_left_side();

}

Problems with this code?

30

Dining Philosophers - deadlock

Solutions?
31

Dining Philosophers

Resolve cyclic dependency
For instance: Philosoph five takes first the right fork.
General solution: Define lock order. Then, always lock in that order.

32

Questions?

33

	Feedback of last exercise
	Repetition theory
	Next Exercise

