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1. Feedback of last exercise
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Exercise Applying Maximum Flow

Vertex capacity: replace vertex with an in-vertex and and out-vertex.
Connect these vertices by an edge with this capacity.
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Exercise: Sum of a vector
void sum_par( Iterator beg, Iterator end, int& result ) {

const int nThreads = std::thread::hardware_concurrency();
std::vector<std::thread> myThreads;
std::vector<int> sums( nThreads, 0 );
const int partSize = (end-beg)/nThreads;

for( int i=0; i<nThreads-1; ++i ){
myThreads.emplace_back(

std::thread(sum_ser, beg, beg + partSize, std::ref(sums[i])));
beg += partSize;

}
// ...
for( auto& t:myThreads ) t.join();
sum_ser( sums.begin(), sums.end(), result );

}
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Exercise: Sum of a vector

– False Sharing!

void sum_ser(
Iterator from,
Iterator to,
int& result ) {

int local = 0;
for( ;from != to; ++from )

local += *from;
result = local;

}

void sum_ser(
Iterator from,
Iterator to,
int& result ) {

result = 0;
for( ;from != to; ++from )

result += *from;
}

Difference?

execution time: 0.468879 ms execution time: 0.944031 ms
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Exercise: Mergesort (2-threads)

void mergesort_par( std::vector<int> & v ) {
int n = v.size();
int partSize = n / 2;

std::thread t1( mergesort, std::ref(v), 0, partSize-1 );
std::thread t2( mergesort, std::ref(v), partSize, n-1 );
t1.join();
t2.join();
merge( v, 0, partSize-1, n-1 );

}

analogously with n threads
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Exercise: Mergesort Recursively

void mergesort_par(std::vector<int> & v, int cutoff, int l, int r) {
if (r-l < cutoff){ // sequential base case

mergesort( v, l, r );
} else {

int m = ( l+r )/2 ;
std::thread t (mergesort_par,std::ref(v),cutoff,l,m);
mergesort_par(v,cutoff,m+1,r); // avoid forking another thread
t.join();
merge(v,l,m,r);

}
}
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2. Repetition theory
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Parallel Performance

Given
fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs
runtime speedup efficiency

perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1
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Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4
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Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.
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Task Parallelism: Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors
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Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup
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Performance Model

T∞: span: critical path, execution time
on ∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law
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Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p + T∞
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Beispiel
Assume p = 2.

Tp = 5 Tp = 4
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Race Conditions

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource by
multiple threads, e.g. Simultaneous read/write or write/write of the
same memory location
Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a multithreaded
algorithm, even if that makes use of otherwise well synchronized
resources.
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Memory Models

When and if effects of memory operations become visible for threads,
depends on hardware, runtime system and programming language.
A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations
leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.
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Counter Problem

std::vector<std::thread> tv(10);
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // race!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;
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Counter Solution 1

std::vector<std::thread> tv(10);
std::mutex lock;
int counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){

mutex.lock(); counter++; mutex.unlock(); // synchronized!
}});

for (auto & t:tv)
t.join();

std::cout << "count= "<< counter << std::endl;
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Counter Solution II

std::vector<std::thread> tv(10);
std::atomic<int> counter {0};
for (auto & t:tv)

t = std::thread([&]{
for (int i =0; i<100000; ++i){counter++;} // atomic!!

});
for (auto & t:tv)

t.join();
std::cout << "count= "<< counter << std::endl;
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Quiz:What’s wrong with this code?

void exchangeSecret(Person & a, Person & b) {
a.getMutex()->lock();
b.getMutex()->lock();
Secret s = a.getSecret();
b.setSecret(s);
a.getMutex()->unlock();
b.getMutex()->unlock()

}
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Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?
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Possible Solution
void exchangeSecret(Person & a, Person & b) {

std::mutex* first;
std::mutex* second;
if (a.name < b.name){

first = a.getMutex(); second = b.getMutex();
} else {

first = b.getMutex(); second = a.getMutex();
}
first->lock();
second->lock();
Secret s = a.getSecret();
b.setSecret(s);
first->unlock();
second->unlock();

}
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Deadlocks and Races

Not easy to spot
Hard to debug
Might happen only very rarely
Testing usually not good enough
Reasoning about code is required

Lesson learned: Need to be careful when programming with locks!
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3. Next Exercise
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Dining Philosophers

Philosophers only think and eat. Each needs two forks to eat.
Philosophers = threads, forks = locks.
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Dining Philosophers - pseudocode

while(true) {
think();
acquire_fork_on_left_side();
acquire_fork_on_right_side();
eat();
release_fork_on_right_side();
release_fork_on_left_side();

}

Problems with this code?
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Dining Philosophers - deadlock

Solutions?
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Dining Philosophers

Resolve cyclic dependency
For instance: Philosoph five takes first the right fork.
General solution: Define lock order. Then, always lock in that order.
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Questions?
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