Datenstrukturen und Algorithmen

Exercise 10

FS 2021

Program of today

- 1 Feedback of last exercises
- 2 Shortest Paths
 - Dijkstra
 - Heaps, DecreaseKey and Lazy Deletion
 - Running Time of the Algorithms
 - Dijkstra and Negative Edge Weights?
- 3 Programming Task
- 4 In-Class-Exercise (theoretical)

1. Feedback of last exercises

Starting at ${\cal A}$

 $\begin{array}{ll} \mathsf{DFS:}\ A,B,C,D,E,F,H,G \\ \mathsf{BFS:}\ A,B,F,C,H,D,G,E \end{array}$

Starting at A

DFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

Star: DFS ordering equals BFS ordering

Starting at A

DFS: A, B, C, D, EBFS: A, B, C, D, E

ļ

Star: DFS ordering equals BFS ordering

Starting at A DFS: A, B, C, D, E

DFS: A, B, C, D, E

 $\mathsf{BFS} \colon A,B,C,D,E$

Starting at C

 $\mathsf{DFS} \colon C, A, B, D, E$

 $\mathsf{BFS} \colon C, A, B, D, E$

ļ

Graph with cycles

- Graph with cycles
- Two minimal cycles sharing an edge

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- lacktriangledown Remove edge \implies cycle-free
- Topological Sorting by "removing" elements with in-degree 0

Exercise: Labyrinth

- Robot has to stop to change direction
- Interpret as shortest path problem

Exercise: Labyrinth

 $lue{}$ position imes direction imes speed

■ Runtime?

Exercise Labyrinth

- Let n be the number of squares. Graph has |V| = 8n nodes
- Graph has at $|E| \leq 20n$ edges
- Therefore, Dijkstra $\mathcal{O}(|E| + |V| \log |V|)$ has runtime $\mathcal{O}(n \log n)$

(

2. Shortest Paths

General Algorithm

- Initialise d_s and π_s : $d_s[v] = \infty$, $\pi_s[v] = \text{null for each } v \in V$
- $2 \operatorname{Set} d_s[s] \leftarrow 0$
- $\textbf{3} \ \, \textbf{Choose an edge} \, \, (u,v) \in E$

$$\begin{aligned} \text{Relaxiere } (u,v) \colon \\ \text{if } d_s[v] > d[u] + c(u,v) \text{ then} \\ d_s[v] \leftarrow d_s[u] + c(u,v) \\ \pi_s[v] \leftarrow u \end{aligned}$$

4 Repeat 3 until nothing can be relaxed any more. (until $d_s[v] \leq d_s[u] + c(u,v) \quad \forall (u,v) \in E$)

Dijkstra (positive egde weights)

Set V of nodes is partitioned into

- lacksquare the set M of nodes for which a shortest path from s is already known,
- the set $R = \bigcup_{v \in M} N^+(v) \setminus M$ of nodes where a shortest path is not yet known but that are accessible directly from M,
- the set $U = V \setminus (M \cup R)$ of nodes that have not yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, c), starting point $s \in V$,

Output: Minimal weights d of the shortest paths and corresponding predecessor node for each node.

```
foreach u \in V do
 d_s[u] \leftarrow \infty; \ \pi_s[u] \leftarrow null
d_s[s] \leftarrow 0; R \leftarrow \{s\}
while R \neq \emptyset do
     u \leftarrow \mathsf{ExtractMin}(R)
      foreach v \in N^+(u) do
           if d_s[u] + c(u,v) < d_s[v] then
                d_s[v] \leftarrow d_s[u] + c(u,v)
    \pi_s[v] \leftarrow u \\ R \leftarrow R \cup \{v\}
```

Implementation: Data Structure for R?

Relax for Diikstra:

```
\begin{array}{c|c} \textbf{if} \ d_s[u] + c(u,v) < d_s[v] \ \textbf{then} \\ d_s[v] \leftarrow d_s[u] + c(u,v) \\ \pi_s[v] \leftarrow u \\ \textbf{if} \ v \not\in R \ \textbf{then} \\ | \ \mathsf{Add}(R,v) \\ \textbf{else} \\ | \ \mathsf{DecreaseKey}(R,v) \end{array}
```

```
// Update of (v,d(v)) in the heap of R
```

DecreaseKey?

after DecreaseKey(d, 3):

DecreaseKey?

Heap (
$$(a, 1), (b, 4), (c, 5), (d, 8)$$
) =

after DecreaseKey(d, 3):

2 Probleme:

DecreaseKey?

Heap (
$$(a,1),(b,4),(c,5),(d,8)$$
) =

after DecreaseKey(d, 3):

2 Probleme:

- Position of d unknown at first. Seach: $\Theta(n)$
- Positions of the nodes can change during DecreaseKey

Insert(d,3):

ExtractMin()

Heap (
$$(a,1),(b,4),(c,5),(d,8)$$
) =
$$(b,4) \qquad (c,5) \qquad (c,5)$$

Heap (
$$(a,1),(b,4),(c,5),(d,8)$$
) = (a,1) (c,5) (d,8) (c,5) (d,8) (c,5) (d,8)

Insert(d, 3):

ExtractMin()

Heap (
$$(a, 1), (b, 4), (c, 5), (d, 8)$$
) = (b,4) (c,5)

 $\mathsf{ExtractMin()} \to (a,1)$

Later ExtractMin() \rightarrow (d, 8) must be ignored

Insert(d, 3):

 $\widehat{\mathsf{ExtractMin()}} \to (d,3)$

Runtime Dijkstra

$$n := |V|, m := |E|$$

- $n \times \mathsf{ExtractMin}$: $\mathcal{O}(n \log n)$
- $m \times$ Insert or DecreaseKey: $\mathcal{O}(m \log |V|)$
- $1 \times Init: \mathcal{O}(n)$
- Overal: $\mathcal{O}((n+m)\log n)$. for connected graphs: $\mathcal{O}(m\log n)$

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS			

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$		

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort			

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$		

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra			

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m\in\mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$		

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m \in \mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$	$\mathcal{O}(n^2 \log n)$	

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m\in\mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n \log n)$
general	Bellman-Ford	$\mathcal{O}(m \cdot n)$		

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m\in\mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n \log n)$
general	Bellman-Ford	$\mathcal{O}(m \cdot n)$	$\mathcal{O}(n^3)$	

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m\in\mathcal{O}(n^2)$	$m \in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n \log n)$
general	Bellman-Ford	$\mathcal{O}(m \cdot n)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$

An Interesting Graph

Does Dijkstra work?

Answer

Answer

Dijkstra (as we have presented it) works also for graphs with negative edge weights, if no negative weight cycles are present. But Dijkstra may then exhibit exponential running time!

General Weighted Graphs

$$\begin{aligned} & \mathsf{Relax}\big(u,v\big) \ \big(u,v \in V, \ (u,v) \in E\big) \\ & \text{if} \ d_s(v) > d_s(u) + c(u,v) \ \text{then} \\ & \quad d_s(v) \leftarrow d_s(u) + c(u,v) \\ & \quad \text{return true} \end{aligned}$$

return false

Problem: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges $d_s[i,v]$: Shortest path from s to v via maximally i edges.

$$\begin{aligned} d_s[i,v] &= \min\{d_s[i-1,v], \min_{(u,v) \in E} (d_s[i-1,u] + c(u,v)) \\ d_s[0,s] &= 0, d_s[0,v] = \infty \ \forall v \neq s. \end{aligned}$$

Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, c), starting point $s \in V$

Output: If return value true, minimal weights d for all shortest paths from s, otherwise no shortest path.

```
\begin{array}{l} \textbf{foreach} \ u \in V \ \textbf{do} \\ \  \  \, \big\lfloor \  \, d_s[u] \leftarrow \infty; \ \pi_s[u] \leftarrow \textbf{null} \\ d_s[s] \leftarrow 0; \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |V| \ \textbf{do} \\ \  \  \, \int \leftarrow \textbf{false} \\ \textbf{foreach} \ (u,v) \in E \ \textbf{do} \\ \  \  \, \big\lfloor \  \, f \leftarrow f \lor \text{Relax}(u,v) \\ \  \  \, \textbf{if} \ f = \textbf{false} \ \textbf{then} \ \textbf{return} \ \textbf{true} \\ \textbf{return} \ \textbf{false} : \end{array}
```

A*-Algorithm(G, s, t, \hat{h})

Input: Positively weighted Graph G=(V,E,c), starting point $s\in V$, end point $t\in V$, estimate $\widehat{h}(v)\leq \delta(v,t)$

Output: Existence and value of a shortest path from s to t

foreach $u \in V$ do

return failure

DP Algorithm Floyd-Warshall(G)

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(G)

```
Input: Weighted Graph G = (V, E, c)
Output: Minimal weights of all paths D.
New node s. Compute G' = (V', E', c')
if BellmanFord(G', s) = false then return "graph has negative cycles"
foreach v \in V' do
 h(v) \leftarrow d(s,v) \ // \ d aus BellmanFord Algorithmus
foreach (u, v) \in E' do
 \tilde{c}(u,v) \leftarrow c(u,v) + h(u) - h(v)
foreach u \in V do
    \tilde{d}(u,\cdot) \leftarrow \mathsf{Dijkstra}(\tilde{G}',u)
    foreach v \in V do
    D(u,v) \leftarrow \tilde{d}(u,v) + h(v) - h(u)
```

Comparison of the approaches

Algorithm			Runtime
Dijkstra (Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E \log V)$
Dijkstra (Fibonacci-Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E + V \log V)^*$
Bellman-Ford		1:n	$\mathcal{O}(E \cdot V)$
Floyd-Warshall		n:n	$\Theta(V ^3)$
Johnson		n:n	$\mathcal{O}(V \cdot E \cdot \log V)$
Johnson (Fibonacci-Heap)		n:n	$\mathcal{O}(V ^2 \log V + V \cdot E)^*$

^{*} amortized

Johnson is better than Floyd-Warshall for sparse graphs ($|E| \approx \Theta(|V|)$).

3. Programming Task

Closeness Centrality

- lacksquare Given: an adjacency matrix for an *undirected* graph on n vertices.
- lacksquare Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

Closeness Centrality

- lacksquare Given: an adjacency matrix for an *undirected* graph on n vertices.
- Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuition: If many connected vertices are close to v, then C(v) is small.
- "How central is the vertex in its connected component?"

All Pairs Shortest Paths

- We require d(u, v) for all vertex pairs (u, v).
- ⇒ compute all shortest paths using Floyd-Warshall. (APSH.h)

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{
   // your code here
}
```

- Simply overwrite m with the distance values.
- Attention: initially 0 means "no edge".
- Undirected graph: m[i][j] == m[j][i]

Closeness Centrality

```
Centrality.h
void printCentrality(unsigned n, vector<vector<unsigned>>
        adjacencies, vector<string> names)
 for(unsigned i = 0; i < n; ++i)
   cout << names[i] << ": ";
   unsigned centrality = 0;
   // TODO: compute centrality of vertex i here
   cout << centrality << endl;</pre>
```

Closeness Centrality: Input Data

- A graph that stems from collaborations on scientific papers.
- The vertices of the graph are the co-authors of the mathematician Paul Erdős.
- There is an edge between them if the authors have jointly published a paper.
- Source: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

```
vertices: 511
ABBOTT, HARVEY LESLIE
                                      : 1625
                                      : 1681
ACZEL, JANOS D.
AGOH, TAKASHI
                                      : 2132
                                      : 1578
AHARONI, RON
AIGNER, MARTIN S.
                                      : 1589
AJTAI, MIKLOS
                                      : 1492
ALAOGLU, LEONIDAS*
                                      : 0
ALAVI, YOUSEF
                                      : 1561
```

Where does the 0 come from?

. . .

Edge data structure

- Stores length and the destination node
- Start node is denoted by get_adj(src) or std::map<NodeP,Edge> path

Edge data structure

- Stores length and the destination node
- Start node is denoted by get_adj(src) or std::map<NodeP,Edge> path

Graph data structure

- NodeP: Pointer to a node
- std::vector<Edge> get_adj(NodeP src): Returns a vector of Edge starting
 from src

Edge data structure

- Stores length and the destination node
- Start node is denoted by get_adj(src) or std::map<NodeP,Edge> path

Graph data structure

- NodeP: Pointer to a node
- std::vector<Edge> get_adj(NodeP src): Returns a vector of Edge starting
 from src

std::map<NodeP,Edge>

- Maps a NodeP to an Edge
- m[u] Returns an edge

Node Struct

lacktriangle Stores x and y coordinates

Node Struct

lacktriangle Stores x and y coordinates

Manhattan Distance:

$$d = |\Delta x| + |\Delta y|$$

Node Struct

lacktriangle Stores x and y coordinates

Manhattan Distance:

$$d = |\Delta x| + |\Delta y|$$

std::pair

Access with p.first und p.second

4. In-Class-Exercise (theoretical)

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E).

Design an $\mathcal{O}(|V|+|E|)$ -time algorithm to find the longest path.

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E).

Design an $\mathcal{O}(|V| + |E|)$ -time algorithm to find the longest path.

Hint: G is acyclic, meaning you can topologically sort G.

Solution:

1 Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.

Solution:

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- ${\bf 2}$ Compute for each node all incoming edges: $\mathcal{O}(|V|+|E|).$

Solution:

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3 Visit each node v in topological order and consider all incoming edges: $\mathcal{O}(|V|+|E|)$.

Solution:

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- 2 Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3 Visit each node v in topological order and consider all incoming edges: $\mathcal{O}(|V| + |E|)$.

$$\mathcal{O}(|V| + |E|).$$

$$\operatorname{dist}[v] = \begin{cases} 0 & \text{no incoming edges,} \\ \max_{(u,v) \in E} \left\{ \operatorname{dist}[u] + c(u,v) \right\} & \text{otherwise.} \end{cases}$$

3

Solution:

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- \blacksquare Visit each node v in topological order and consider all incoming edges:

$$\mathcal{O}(|V| + |E|).$$

$$\operatorname{dist}[v] = \begin{cases} 0 & \text{no incoming edges,} \\ \max_{(u,v) \in E} \left\{ \operatorname{dist}[u] + c(u,v) \right\} & \text{otherwise.} \end{cases}$$

Store predecessor!

Questions?