Datenstrukturen und Algorithmen

Exercise 10

FS 2021

Program of today

B

4

Feedback of last exercises

Shortest Paths

m Dijkstra

m Heaps, DecreaseKey and Lazy Deletion
m Running Time of the Algorithms

m Dijkstra and Negative Edge Weights?

Programming Task

In-Class-Exercise (theoretical)

1. Feedback of last exercises

Depth-first-search and Breadth-first-search

Starting at A
DFS: A,B,C,D,E,F,H,G
BFS: A,B,F,C,H,D,G,FE

Depth-first-search and Breadth-first-search

Starting at A

DFS: A,B,C,D,E, F,H,G
BFS: A,B,F,C,H,D,G,E
There is no starting vertex where the DFS ordering equals the BFS ordering.

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

AR

D 5 ®)

Starting at A
DFS: A,B,C, D, E
BFS: A,B,C,D,E

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

/\
®
© ©
Starting at A Starting at C
DFS: A,B,C, D, E DFS: C,A,B,D, E

BFS: A,B,C,D,E BFS: C,A,B,D, E

Topological Sorting

/\@

m Graph with cycles

C

Topological Sorting

@ m Two minimal cycles sharing an edge

/\@

m Graph with cycles

Topological Sorting

B

m Graph with cycles
@ m Two minimal cycles sharing an edge

/ \ m Remove edge = cycle-free
C ~(E)

Topological Sorting

m Graph with cycles
m Two minimal cycles sharing an edge
m Remove edge = cycle-free

m Topological Sorting by “removing”
elements with in-degree 0

Topological Sorting

m Graph with cycles
m Two minimal cycles sharing an edge
m Remove edge = cycle-free

m Topological Sorting by “removing”
elements with in-degree 0

Topological Sorting

/

()

T

©

~®)

m Graph with cycles
m Two minimal cycles sharing an edge
m Remove edge = cycle-free

m Topological Sorting by “removing”
elements with in-degree 0

Topological Sorting

@\

)

m Graph with cycles
m Two minimal cycles sharing an edge
m Remove edge = cycle-free

m Topological Sorting by “removing”
elements with in-degree 0

Topological Sorting

m Graph with cycles
m Two minimal cycles sharing an edge
m Remove edge = cycle-free

m Topological Sorting by “removing”
elements with in-degree 0

Exercise : Labyrinth

m Robot has to stop to change direction

m Interpret as shortest path problem

Exercise : Labyrinth

m position X direction x speed

m Runtime?

Exercise Labyrinth

m Let n be the number of squares. Graph has |V| = 8n nodes
m Graph has at |E| < 20n edges
m Therefore, Dijkstra O(|E| + |V|log|V]) has runtime O(nlogn)

2. Shortest Paths

General Algorithm

Initialise dy and 7,: ds[v] = 0o, ms[v] = null for each v € V
Set dg[s] < 0
Choose an edge (u,v) € E
Relaxiere (u, v):
if ds[v] > d[u] + c(u,v) then
ds[v] < ds[u] + c(u, v)
Ts[v] < u
Repeat 3 until nothing can be relaxed any more.
(until dy[v] < dg[u] + c(u,v) VY(u,v) € E)

Dijkstra (positive egde weights)

Set V' of nodes is partitioned into

m the set \/ of nodes for which a shortest path from
s is already known,

m the set R = J,c,y N (v) \ M of nodes where a
shortest path is not yet known but that are
accessible directly from M,

m the set of nodes that have not
yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V/,
Output: Minimal weights d of the shortest paths and corresponding predecessor node for
each node.

foreach u € V do
| ds[u] o0; ms[u] + null

dsls] + 0; R+ {s}
while R # () do
u < ExtractMin(R)
foreach v € N (u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
ms[v] ¢~ u

. R+ RU{v}

Implementation: Data Structure for R?

Relax for Dijkstra:

if ds[u] + c(u,v) < ds[v] then
ds[v] dslu] + c(u,v)
ms[v] ¢ u
if v € R then
‘ Add(R,v) // Update of (v,d(v)) in the heap of R
else
‘ DecreaseKey(R, v) // Update of a (v,d(v)) in the heap of R

DecreaseKey ?

Heap ((a,1),(b,4),(c,5),(d,8)) = after DecreaseKey(d, 3):

()
69 €
@&\

DecreaseKey ?

Heap ((a,1),(b,4),(c,5),(d,8)) = after DecreaseKey(d, 3):

() ()
CERE @ @

2 Probleme:

DecreaseKey ?

Heap ((a,1),(b,4),(c,5),(d,8)) = after DecreaseKey(d, 3):

() ()
CERE @ @

2 Probleme:

m Position of d unknown at first. Seach: ©(n)
m Positions of the nodes can change during DecreaseKey

Lazy Deletion !

Heap ((a,1),(b,4),(c,5),(d,8)) = Insert(d, 3):

()
CERE
@ :

Lazy Deletion !

Heap ((a,1),(b,4),(c,5),(d,8)) = Insert(d, 3):

() ()
CERE) @

) CERC

ExtractMin()

Lazy Deletion !

Heap ((a,1),(b,4),(c,5),(d,8)) = Insert(d, 3):

(¢) (¢)
C9 @ @) ©
€ € @9
ExtractMin() — (a,1)
@ ExtractMin()
CERE
@ :

Lazy Deletion !

Heap ((a,1),(b,4),(c,5),(d,8)) = Insert(d, 3):

() ()
CERE (¢)
@ :

ExtractMin() — (a, 1)

0 i
e

Later ExtractMin() — (d, 8) must be ignored

&)
@

Runtime Dijkstra

n:=|V
m nx ExtractMin: O(nlogn)

, m = |E|

m mX Insert or DecreaseKey: O(mlog|V])
m 1x Init: O(n)
m Overal: O((n +m)logn). for connected graphs: O(mlogn)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)

c=1 BFS

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)

c=1 BFS O(m+n)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)

c=1 BFS O(m +n) O(n?)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)
c=1 BFS O(m +n) O(n?) O(n)

DAG Top-Sort

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)
c=1 BFS O(m +n) O(n?) O(n)

DAG Top-Sort O(m+n)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)
c=1 BFS O(m +n) O(n?) O(n)

DAG Top-Sort O(m+n) O(n?)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse

m € O(n?) me O(n)
c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m+n) O(n?) O(n)
c>0 Dijkstra

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse

m € O(n?) me O(n)
c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m+n) O(n?) O(n)
c>0 Dijkstra O((m + n)logn)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse

m € O(n?) me O(n)
c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m+n) O(n?) O(n)
c>0 Dijkstra O((m+n)logn) O(n?logn)

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)

c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m+n) O(n?) O(n)
c>0 Dijkstra O((m+n)logn) O(n?logn) O(nlogn)
general Bellman-Ford O(

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse
m € O(n?) me O(n)

c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m O(n?) O(n)
c>0 Dijkstra O((m+n)logn) O(n?logn) O(nlogn)
general Bellman-Ford O(O(

Quiz: Single Source Shortest Paths

n:=|V|,m:=|E|

problem method runtime dense sparse

m € O(n?) me O(n)
c=1 BFS O(m + n) O(n?) O(n)
DAG Top-Sort O(m +n) O(n?) O(n)
c>0 Dijkstra O((m+n)logn) O(n?logn) O(nlogn)
general Bellman-Ford O(m - n) O(n?) O(n?)

An Interesting Graph

Does Dijkstra work?

20

Answer

Dijkstra (as we have presented it) works also for graphs with negative edge weights, if
no negative weight cycles are present. But Dijkstra may then exhibit exponential
running time!

20

General Weighted Graphs

Relax(u, v) (u,v € V, (u,v) € E)
if ds(v) > ds(u) + c(u,v) then
ds(v) < ds(u) + c(u,v)
return true

return false

Problem: cycles with negative weights can shorten the path, a shortest path is not
guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via maximally ¢
edges.
ds[i, v] = min{d,[i — 1,], (m}nE(dS[i — 1, u] + c(u,v))
u,)e

ds[0, s] = 0,ds[0,v] = 0o Vv # s.

Algorithm Bellman-Ford((=, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s, otherwise no
shortest path.

foreach v € V do
| ds[u] + o0; ms[u] null
ds[s] « 0;
for i < 1 to |V| do
f + false
foreach (u,v) € E do
. f+ [V Relax(u,v)

if f = false then return true

return false;

A*-Algorithm(G, s, t,)

Input: Positively weighted Graph G' = (V, E, ¢), starting point s € V, end point t € V/,
estimate h(v) < 0(v,t)
Output: Existence and value of a shortest path from s to ¢

foreach u € V do
‘7 d[u] < 00; flu] + oo; m[u] < null

~

d[s] < 0; f[s] < h(s); R« {s}; M « {}
while R # () do
U 4— Extractl\/linf(R); M < M U {u}

if u = ¢ then return success
foreach v € N (u) with d[v] > d[u] + ¢(u,v) do

d[v] « d[u] + c(u,v); f[v] < d[v] + h(v); T[v] < u
R+~ RU{vh M+ M —{v}

return failure

DP Algorithm Floyd-Warshall((7)

Input: Acyclic Graph G = (V, E, ¢)
Output: Minimal weights of all paths d
d’ <+ c
for k <1 to |V| do
for i < 1 to |V| do
for j < 1 to |V]| do
d* (vi, v;) = min{d*=1(v;, v;), &L (v;, vg) + &L (vg, vj)}

Runtime: O(|V|?)
Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(()

Input: Weighted Graph G = (V, E, ¢)
Output: Minimal weights of all paths D.

New node s. Compute G' = (V', E',)
if BellmanFord(G’, s) = false then return “graph has negative cycles”
foreach v € V' do

‘ h(v) « d(s,v) // d aus BellmanFord Algorithmus

foreach (u,v) € E' do
- E(u,v) = c(u,v) + h(u) — h(v)
foreach u € V do
d(u,-) < Dijkstra(G’, u)
foreach v € V do
‘ D(u,v) + d(u,v) + h(v) — h(u)

Comparison of the approaches

Algorithm Runtime

Dijkstra (Heap) ¢, >0 1Lin O(|E|log |V])

Dijkstra (Fibonacci-Heap) ¢, >0 1in O(|E| + |V |log |V]) *
Bellman-Ford 1:n O(|E]-|V))

Floyd-Warshall n:n o(|V?)

Johnson n:n O(|V|-|E]|-log|V])
Johnson (Fibonacci-Heap) n:n O(VPlog|V|+|V]|-|E|)*

* amortized

Johnson is better than Floyd-Warshall for sparse graphs (|E| =~ O(|V])).

3. Programming Task

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.

m Output: the closeness centrality C'(v) of every vertex v.

Cv) = Z d(v,u)

uweV\{v}

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.

Output: the closeness centrality C(v) of every vertex v.

Cv) = Z d(v,u)

uweV\{v}
m Intuition: If many connected vertices are close to v, then C'(v) is small.
m “How central is the vertex in its connected component?”

All Pairs Shortest Paths

m We require d(u,v) for all vertex pairs (u,v).
m —> compute all shortest paths using Floyd-Warshall. (APSH.h)

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)

{

// your code here

3

m Simply overwrite m with the distance values.
m Attention: initially 0 means “no edge”.

m Undirected graph: m[i] [j] == m[j] [i]

30

Closeness Centrality

Centrality.h

void printCentrality(unsigned n, vector<vector<unsigned>>
adjacencies, vector<string> names)
{
for(unsigned i = 0; i < n; ++i)
{
cout << names[i] << ": ";
unsigned centrality = O0;
// TODO: compute centrality of vertex i here
cout << centrality << endl;
b
}

Sl

Closeness Centrality: Input Data

m A graph that stems from collaborations on scientific papers.

m The vertices of the graph are the co-authors of the mathematician Paul Erdos.
m There is an edge between them if the authors have jointly published a paper.
m Source: https://oakland.edu/enp/thedata/

https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511

ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0

ALAVI, YOUSEF : 1561

Where does the 0 come from?

Dijkstra and A*

Edge data structure

m Stores length and the destination node

m Start node is denoted by get_adj(src) or std: :map<NodeP,Edge> path

Dijkstra and A*

Edge data structure

m Stores length and the destination node

m Start node is denoted by get_adj(src) or std: :map<NodeP,Edge> path
Graph data structure

m NodeP: Pointer to a node

m std::vector<Edge> get_adj(NodeP src): Returns a vector of Edge starting
from src

Dijkstra and A*

Edge data structure

m Stores length and the destination node

m Start node is denoted by get_adj(src) or std: :map<NodeP,Edge> path
Graph data structure

m NodeP: Pointer to a node

m std::vector<Edge> get_adj(NodeP src): Returns a vector of Edge starting
from src

std: :map<NodeP,Edge>
m Maps a NodeP to an Edge

m m[u] Returns an edge

Dijkstra and A*

Node Struct

m Stores x and y coordinates

Dijkstra and A*

Node Struct
m Stores x and y coordinates

Manhattan Distance:
m d=|Azx| + |Ay]

Dijkstra and A*

Node Struct

m Stores x and y coordinates
Manhattan Distance:

m d=|Az| + |Ay|
std: :pair

m Access with p.first und p.second

4. In-Class-Exercise (theoretical)

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of
length >> log? n.

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of
length >> log? n.

Exercise:
You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V'| + | E|)-time algorithm to find the longest path.

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path is
incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of
length >> log? n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V'| + | E|)-time algorithm to find the longest path.
Hint: G is acyclic, meaning you can topologically sort G.

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V| + |E]).

In-Class-Exercises: Longest Path in DAGs

Solution:
Topological Sorting. Running time: O(|V| + |E]).
Compute for each node all incoming edges: O(|V| + |E|).

In-Class-Exercises: Longest Path in DAGs

Solution:
Topological Sorting. Running time: O(|V| + |E]).
Compute for each node all incoming edges: O(|V| + |E|).

Visit each node v in topological order and consider all incoming edges:
O([VI+ |E]).

In-Class-Exercises: Longest Path in DAGs

Solution:
Topological Sorting. Running time: O(|V| + |E]).
Compute for each node all incoming edges: O(|V| + |E|).
Visit each node v in topological order and consider all incoming edges:
o(lV] + |E]).
0 no incoming edges,
distfv] =

o {dist[u] + c(u,v)} otherwise.
u,v)E

In-Class-Exercises: Longest Path in DAGs

Solution:
Topological Sorting. Running time: O(|V| + |E]).
Compute for each node all incoming edges: O(|V| + |E|).
Visit each node v in topological order and consider all incoming edges:
o(lV] + |E]).
0 no incoming edges,
sisiole] = e {dist[u] + ¢(u,v)} otherwise.
Store predeces;or!

Questions?

	Feedback of last exercises
	Shortest Paths
	Dijkstra
	Heaps, DecreaseKey and Lazy Deletion
	Running Time of the Algorithms
	Dijkstra and Negative Edge Weights?

	Programming Task
	In-Class-Exercise (theoretical)

