
11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked lists
[Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2]

295

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

296

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

296

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null

top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

296

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.

isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

296

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.

emptyStack(): Returns an empty stack.

296

Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

296

Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1. Create new list element with x and pointer to the value of top.
2. Assign the node with x to top.

297

Implementation Push

top xn xn−1 x1 null

x

push(x, S):
1. Create new list element with x and pointer to the value of top.

2. Assign the node with x to top.

297

Implementation Push

top xn xn−1 x1 null

x

push(x, S):
1. Create new list element with x and pointer to the value of top.
2. Assign the node with x to top.

297

Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1. If top=null, then return null
2. otherwise memorize pointer p of top in r.
3. Set top to p.next and return r

298

Implementation Pop

top xn xn−1 x1 null

r

pop(S):
1. If top=null, then return null

2. otherwise memorize pointer p of top in r.
3. Set top to p.next and return r

298

Implementation Pop

top xn xn−1 x1 null

r

pop(S):
1. If top=null, then return null
2. otherwise memorize pointer p of top in r.

3. Set top to p.next and return r

298

Implementation Pop

top xn xn−1 x1 null

r

pop(S):
1. If top=null, then return null
2. otherwise memorize pointer p of top in r.
3. Set top to p.next and return r

298

Analysis

Each of the operations push, pop, top and isEmpty on a stack can be
executed in O(1) steps.

299

Queue (fifo)

A queue is an ADT with the following operations

enqueue(x, Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)
head(Q): returns the object from the head of the queue (null otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

300

Queue (fifo)

A queue is an ADT with the following operations
enqueue(x, Q): adds x to the tail (=end) of the queue.

dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)
head(Q): returns the object from the head of the queue (null otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

300

Queue (fifo)

A queue is an ADT with the following operations
enqueue(x, Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)

head(Q): returns the object from the head of the queue (null otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

300

Queue (fifo)

A queue is an ADT with the following operations
enqueue(x, Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)
head(Q): returns the object from the head of the queue (null otherwise)

isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

300

Queue (fifo)

A queue is an ADT with the following operations
enqueue(x, Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)
head(Q): returns the object from the head of the queue (null otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false

emptyQueue(): returns empty queue.

300

Queue (fifo)

A queue is an ADT with the following operations
enqueue(x, Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x (null
otherwise)
head(Q): returns the object from the head of the queue (null otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

300

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1. Create a new list element with x and pointer to null.
2. If tail 6= null, then set tail.next to the node with x.
3. Set tail to the node with x.
4. If head = null, then set head to tail.

301

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):
1. Create a new list element with x and pointer to null.

2. If tail 6= null, then set tail.next to the node with x.
3. Set tail to the node with x.
4. If head = null, then set head to tail.

301

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):
1. Create a new list element with x and pointer to null.
2. If tail 6= null, then set tail.next to the node with x.

3. Set tail to the node with x.
4. If head = null, then set head to tail.

301

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):
1. Create a new list element with x and pointer to null.
2. If tail 6= null, then set tail.next to the node with x.
3. Set tail to the node with x.

4. If head = null, then set head to tail.

301

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):
1. Create a new list element with x and pointer to null.
2. If tail 6= null, then set tail.next to the node with x.
3. Set tail to the node with x.
4. If head = null, then set head to tail.

301

Invariants

x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

302

Invariants

x1 x2 xn−1 xn

head tail

null

With this implementation it holds that
either head = tail = null,

or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

302

Invariants

x1 x2 xn−1 xn

head tail

null

With this implementation it holds that
either head = tail = null,
or head = tail 6= null and head.next = null

or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

302

Invariants

x1 x2 xn−1 xn

head tail

null

With this implementation it holds that
either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

302

Implementation Queue

x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1. Store pointer to head in r. If r = null, then return r .
2. Set the pointer of head to head.next.
3. Is now head = null then set tail to null.
4. Return the value of r.

303

Implementation Queue

x1 x2 xn−1 xn

head tail

null

r

dequeue(S):
1. Store pointer to head in r. If r = null, then return r .

2. Set the pointer of head to head.next.
3. Is now head = null then set tail to null.
4. Return the value of r.

303

Implementation Queue

x1 x2 xn−1 xn

head tail

null

r

dequeue(S):
1. Store pointer to head in r. If r = null, then return r .
2. Set the pointer of head to head.next.

3. Is now head = null then set tail to null.
4. Return the value of r.

303

Implementation Queue

x1 x2 xn−1 xn

head tail

null

r

dequeue(S):
1. Store pointer to head in r. If r = null, then return r .
2. Set the pointer of head to head.next.
3. Is now head = null then set tail to null.

4. Return the value of r.

303

Implementation Queue

x1 x2 xn−1 xn

head tail

null

r

dequeue(S):
1. Store pointer to head in r. If r = null, then return r .
2. Set the pointer of head to head.next.
3. Is now head = null then set tail to null.
4. Return the value of r.

303

Analysis

Each of the operations enqueue, dequeue, head and isEmpty on the queue
can be executed in O(1) steps.

304

Implementation Variants of Linked Lists

List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)

305

Implementation Variants of Linked Lists

List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases
Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)

305

Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail

306

Overview

enqueue delete search concat
(A) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked

307

12. Amortized Analyis

Amortized Analysis: Aggregate Analysis, Account-Method, Potential-Method
[Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap. 17]

308

Multistack

Multistack adds to the stack operations push und pop
multipop(s, S): remove the min(size(S), k) most recently inserted objects
and return them.
Implementation as with the stack. Runtime of multipop is O(k).

309

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.
How to make a better estimation?

310

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?
Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?

310

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?
Certainly correct because each multipop may take O(n) steps.
How to make a better estimation?

310

Amortized Analysis

Upper bound: average performance of each considered operation in the
worst case.

1
n

n∑
i=1

cost(opi)

Makes use of the fact that a few expensive operations are opposed to
many cheap operations.
In amortized analysis we search for a credit or a potential function that
captures how the cheap operations can “compensate” for the expensive
ones.

311

Aggregate Analysis

Direct argument: compute a bound for the total number of elementary
operations and divide by the total number of operations.

312

Aggregate Analysis: (Stack)

n∑
i=1

cost(opi) ≤ 2n

amortized cost(opi) ≤ 2 ∈ O(1)

313

Accounting Method

Model
The computer is driven with coins: each elementary operation of the
machine costs a coin.
For each operation opk of a data structure, a number of coins ak has to
be put on an account A: Ak = Ak−1 + ak

Use the coins from the account A to pay the true costs tk of each
operation.
The account A needs to provide enough coins in order to pay each of
the ongoing operations opk: Ak − tk ≥ 0 ∀k.

⇒ ak are the amortized costs of opk.

314

Accounting Method (Stack)

Each call of push costs 1 CHF and additionally 1 CHF will be deposited on
the account. (ak = 2)
Each call to pop costs 1 CHF and will be paid from the account. (ak = 0)

Account will never have a negative balance.
ak ≤ 2 ∀ k, thus: constant amortized costs.

315

Potential Method

Slightly di�erent model
Define a potential Φi that is associated to the state of a data structure
at time i.
The potential shall be used to level out expensive operations und
therefore needs to be chosen such that it is increased during the
(frequent) cheap operations while it decreases for the (rare) expensive
operations.

316

Potential Method (Formal)

Let ti denote the real costs of the operation opi.
Potential function Φi ≥ 0 to the data structure after i operations.
Requirement: Φi ≥ Φ0 ∀i.
of the ith operation:

ai := ti + Φi − Φi−1.

It holds
n∑

i=1
ai =

n∑
i=1

(ti + Φi − Φi−1) =
(

n∑
i=1

ti

)
+ Φn − Φ0 ≥

n∑
i=1

ti.

317

Example stack

Potential function Φi = number element on the stack.
push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time. 12

12Note that we are not talking about the probabilistic mean but the (worst-case)
average of the costs.

318

Example Binary Counter

Binary counter with k bits. In the worst case for each count operation
maximally k bitflips. Thus O(n · k) bitflips for counting from 1 to n. Better
estimation?
Real costs ti = number bit flips from 0 to 1 plus number of bit-flips from 1
to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1

319

Binary Counter: Aggregate Analysis

Count the number of bit flips when counting from 0 to n− 1.
Observation

Bit 0 flips for each k − 1→ k

Bit 1 flips for each 2k − 1→ 2k

Bit 2 flips for each 4k − 1→ 4k

Total number bit flips ∑n−1
i=0

n
2i ≤ n ·∑∞i=0

1
2i = 2n

Amortized cost for each increase: O(1) bit flips.

320

Binary Counter: Account Method

Observation: for each increment exactly one bit is incremented to 1, while
many bits may be reset to 0. Only a bit that had previously been set to 1
can be reset to 0.
ai = 2: 1 CHF real cost for setting 0→ 1 plus 1 CHF to deposit on the
account. Every reset 1→ 0 can be paid from the account.

321

Binary Counter: Potential Method

...0 1111111︸ ︷︷ ︸
l ones

+1 = ...1 0000000︸ ︷︷ ︸
l zeros

potential function Φi: number of 1-bits of xi.

⇒ Φ0 = 0 ≤ Φi ∀i

⇒ Φi − Φi−1 = 1− l,

⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.

322

13. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with Array /
List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem
17-5]

323

Dictionary

ADT to manage keys from a set K with operations
insert(k, D): Insert k ∈ K to the dictionary D. Already exists⇒ error
messsage.
delete(k, D): Delete k from the dictionary D. Not existing⇒ error
message.
search(k, D): Returns true if k ∈ D, otherwise false

324

Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search

O(log n)

Insert

O(n)

Delete

O(n)

325

Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search O(log n)
Insert

O(n)

Delete

O(n)

325

Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search O(log n)
Insert O(n)
Delete

O(n)

325

Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search O(log n)
Insert O(n)
Delete O(n)

325

Other idea

Implement dictionary as a linked list
Worst case number of fundamental operations

Search

O(n)

Insert

O(1)13

Delete

O(n)

13Provided that we do not have to check existence.
326

Other idea

Implement dictionary as a linked list
Worst case number of fundamental operations

Search O(n)
Insert

O(1)13

Delete

O(n)

13Provided that we do not have to check existence.
326

Other idea

Implement dictionary as a linked list
Worst case number of fundamental operations

Search O(n)
Insert O(1)13

Delete

O(n)

13Provided that we do not have to check existence.
326

Other idea

Implement dictionary as a linked list
Worst case number of fundamental operations

Search O(n)
Insert O(1)13

Delete O(n)

13Provided that we do not have to check existence.
326

13.1 Self Ordering

327

Self Ordered Lists

Problematic with the adoption of a linked list: linear search time
Idea: Try to order the list elements such that accesses over time are
possible in a faster way
For example

Transpose: For each access to a key, the key is moved one position
closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved to the
front of the list.

328

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime:
Θ(n2)

329

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 knkn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime:
Θ(n2)

329

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime:
Θ(n2)

329

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn. Runtime:
Θ(n2)

329

Move-to-Front

Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic runtime,
e.g. access to the last element. But there is no obvious strategy to
counteract much better than MTF..

330

Move-to-Front

Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 kn

kn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic runtime,
e.g. access to the last element. But there is no obvious strategy to
counteract much better than MTF..

330

Move-to-Front

Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic runtime,
e.g. access to the last element. But there is no obvious strategy to
counteract much better than MTF..

330

Move-to-Front

Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic runtime,
e.g. access to the last element. But there is no obvious strategy to
counteract much better than MTF..

330

Move-to-Front

Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic runtime,
e.g. access to the last element. But there is no obvious strategy to
counteract much better than MTF..

330

Analysis

Compare MTF with the best-possible competitor (algorithm) A. How much
better can A be?
Assumptions:

MTF and A may only move the accessed element.
MTF and A start with the same list.

Let Mk and Ak designate the lists after the kth step. M0 = A0.

331

Analysis

Costs:
Access to x: position p of x in the list.
No further costs, if x is moved before p

Further costs q for each element that x is moved back starting from p.

x

p q

332

Amortized Analysis

Let an arbitrary sequence of search requests be given and let G
(M)
k and

G
(A)
k the costs in step k for Move-to-Front and A, respectively. Want

estimation of ∑k G
(M)
k compared with ∑k G

(A)
k .

⇒ Amortized analysis with potential function Φ.

333

Potential Function

Potential function Φ = Number of inversions of A vs. MTF.
Inversion = Pair x, y such that for the positions of a and y(
p(A)(x) < p(A)(y)

)
6=
(
p(M)(x) < p(M)(y)

)
Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

#inversion = #crossings

334

Estimating the Potential Function: MTF
Element i at position
pi := p(M)(i).

access costs C
(M)
k = pi.

xi: Number elements that are
in M before pi and in A after i .

MTF removes xi inversions.

pi − xi − 1: Number elements
that in M are before pi and in
A are before i.

MTF generates pi − 1− xi

inversions.

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9
xipi − 1− xi

1 24 7 8 9610 3

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9
xipi − 1− xi

1 24 3610 7 8 9

335

Estimating the Potential Function: A

Wlog element i at position
p(A)(i).

X
(A)
k : number movements to

the back (otherwise 0).

access costs for i:
C

(A)
k = p(A)(i) ≥ p(M)(i)− xi.

A increases the number of
inversions maximally by X

(A)
k .

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

1 2 3 4 6 7 8 9 10

Ak+1 1 2 3 4 6 7 5 8 9 10

Mk+1 5 4 1 2 106 3 7 8 9

1 2 3 4 6 7 8 9 10

336

Estimation

Φk+1 − Φk ≤ −xi + (pi − 1− xi) + X
(A)
k

Amortized costs of MTF in step k:

a
(M)
k = C

(M)
k + Φk+1 − Φk

≤ pi − xi + (pi − 1− xi) + X
(A)
k

= (pi − xi) + (pi − xi)− 1 + X
(A)
k

≤ C
(A)
k + C

(A)
k − 1 + X

(A)
k ≤ 2 · C(A)

k + X
(A)
k .

337

Estimation

Summing up costs∑
k

G
(M)
k =

∑
k

C
(M)
k ≤

∑
k

a
(M)
k ≤

∑
k

2 · C(A)
k + X

(A)
k

≤ 2 ·
∑

k

C
(A)
k + X

(A)
k

= 2 ·
∑

k

G
(A)
k

In the worst case MTF requires at most twice as many operations as the
optimal strategy.

338

13.2 Skip Lists

339

Sorted Linked List

2 5 8 18 22 23 31

Search for element / insertion position: worst-case n Steps.

340

Sorted Linked List with two Levels

l2

l1

l0

Number elements: n0 := n

Stepsize on level 1: n1

Stepsize on level 2: n2 = 1
⇒ Search for element / insertion position: worst-case n0

n1
+ n1

n2
.

⇒ Best Choice for14 n1: n1 = n0
n1

= √n0.
Search for element / insertion position: worst-case 2

√
n steps.

14Di�erentiate and set to zero, cf. appendix
341

Sorted Linked List with two Levels

l3

l2

l1

l0

Number elements: n0 := n

Stepsizes on levels 0 < i < 3: ni

Stepsize on level 3: n3 = 1
⇒ Best Choice for (n1, n2): n2 = n0

n1
= n1

n2
= 3
√

n0.
Search for element / insertion position: worst-case 3 · 3

√
n steps.

342

Sorted Linked List with k Levels (Skiplist)

Number elements: n0 := n

Stepsizes on levels 0 < i < k: ni

Stepsize on level k: nk = 1
⇒ Best Choice for (n1, . . . , nk): nk−1 = n0

n1
= n1

n2
= · · · = k

√
n0.

Search for element / insertion position: worst-case k · k
√

n steps15.
Assumption n = 2k

⇒ worst case log2 n · 2 steps and ni

ni+1
= 2∀ 0 ≤ i < log2 n.

15(Derivation: Appendix)
343

Search in a Skiplist

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0

1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1

2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2

3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

344

Analysis perfect skip list (worst cases)

Search in O(log n). Insert in O(n).

345

Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

346

Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

346

Analysis Randomized Skip List

Theorem 15
The expected number of fundamental operations for Search, Insert and
Delete of an element in a randomized skip list is O(log n).

The lengthy proof that will not be presented in this courseobserves the length of
a path from a searched node back to the starting point in the highest level.

347

13.3 Appendix

Mathematik zur Skipliste

348

[k-Level Skiplist Math]

Let the number of data points n0 and number levels k > 0 be given and let
nl be the numbers of elements skipped per level l, nk = 1. Maximum
number of total steps in the skip list:

f(~n) = n0

n1
+ n1

n2
+ . . .

nk−1

nk

Minimize f for (n1, . . . , nk−1): ∂f(~n)
∂nt

= 0 for all 0 < t < k,
∂f(~n)
∂nt

= −nt−1
nt

2 + 1
nt+1

= 0 ⇒ nt+1 = n2
t

nt−1
and nt+1

nt
= nt

nt−1
.

349

[k-Level Skiplist Math]

Previous slide⇒ nt

n0
= nt

nt−1

nt−1
nt−2

. . . n1
n0

=
(

n1
n0

)t

Particularly 1 = nk = nk
1

nk−1
0
⇒ n1 = k

√
nk−1

0

Thus nk−1 = n0
n1

= k

√
nk

0
nk−1

0
= k
√

n0.

Maximum number of total steps in the skip list: f(~n) = k · (k
√

n0)
Assume n0 = 2k, then nl

nl+1
= 2 for all 0 ≤ l < k (skiplist halves data in each

step) and f(n) = k · 2 = 2 log2 n ∈ Θ(log n).

350

	Fundamental Data Structures
	Stack
	Queue
	Implementation Variants of Linked Lists

	Amortized Analyis
	Amortized Analysis

	Dictionaries
	Self Ordering
	Skip Lists
	Appendix

