
9. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

248



9.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

249



Lower bound for sorting

Up to here: worst case sorting takes Ω(n log n) steps.
Is there a better way? No:

Theorem 14
Sorting procedures that are based on comparison require in the worst
case and on average at least Ω(n log n) key comparisons.

250



Comparison based sorting

An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,...,n .
At the beginning the algorithm know nothing about the array structure.
We consider the knowledge gain of the algorithm in the form of a
decision tree:

Nodes contain the remaining possibilities.
Edges contain the decisions.

251



Decision tree

a < b

b < c

abc a < c

acb cab

b < c

a < c

bac bca

cba

Yes No

Yes No Yes No

Yes No Yes No

abc acb cab bac bca cba

abc acb cab bac bca cba

acb cab bac bca

252



Decision tree

A binary tree with L leaves provides K = L− 1 inner nodes.10

The height of a binary tree with L leaves is at least log2 L. ⇒ The heigh of
the decision tree h ≥ log n! ∈ Ω(n log n).
Thus the length of the longest path in the decision tree ∈ Ω(n log n).
Remaining to show: mean length M(n) of a path M(n) ∈ Ω(n log n).

10Proof: start with emtpy tree (K = 0, L = 1). Each added node replaces a leaf by two
leaves, i.e.} K → K + 1⇒ L→ L+ 1.

253



Average lower bound

Tbl

Tbr

← br →
← bl →

Decision tree Tn with n leaves, average height
of a leaf m(Tn)

Assumption m(Tn) ≥ logn not for all n.

Choose smalles b with m(Tb) < log b⇒ b ≥ 2

bl + br = b with bl > 0 und br > 0⇒
bl < b, br < b⇒ m(Tbl

) ≥ log bl und
m(Tbr ) ≥ log br

254



Average lower bound

Average height of a leaf:

m(Tb) = bl

b
(m(Tbl

) + 1) + br

b
(m(Tbr ) + 1)

≥ 1
b

(bl(log bl + 1) + br(log br + 1)) = 1
b

(bl log 2bl + br log 2br)

≥ 1
b

(b log b) = log b.

Contradiction. �
The last inequality holds because f(x) = x log x is convex (f ′′(x) = 1/x > 0) and
for a convex function it holds that f((x+ y)/2) ≤ 1/2f(x) + 1/2f(y) (x = 2bl,
y = 2br ).11 Enter x = 2bl, y = 2br , and bl + br = b.

11generally f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.
255



9.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

256



Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No
further assumptions.
Di�erent idea: use more information about the keys.

257



Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

Examples

m = 10 decimal numbers 183 = 18310
m = 2 dual numbers 1012
m = 16 hexadecimal numbers A016
m = 26 words “INFORMATIK”

m is called the radix of the representation.

258



Assumptions

keys = m-adic numbers with same length.
Procedure z for the extraction of digit k in O(1) steps.

Example

z10(0, 85) = 5
z10(1, 85) = 8
z10(2, 85) = 0

259



Radix-Exchange-Sort

Keys with radix 2.
Observation: if for some k ≥ 0:

z2(i, x) = z2(i, y) for all i > k

and
z2(k, x) < z2(k, y),

then it holds that x < y.

260



Radix-Exchange-Sort

Idea:
Start with a maximal k.
Binary partition the data sets with z2(k, ·) = 0 vs. z2(k, ·) = 1 like with
quicksort.
k ← k − 1.

261



Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011 1000

0011 0001 0110 0111 1000

0001 0011 0110 0111 1000

0001 0011 0110 0111 1000

262



Algorithm RadixExchangeSort(A, l, r, b)

Input: Array A with length n, left and right bounds 1 ≤ l ≤ r ≤ n, bit position b
Output: Array A, sorted in the domain [l, r] by bits [0, . . . , b] .
if l < r and b ≥ 0 then

i← l − 1
j ← r + 1
repeat

repeat i← i+ 1 until z2(b, A[i]) = 1 or i ≥ j
repeat j ← j − 1 until z2(b, A[j]) = 0 or i ≥ j
if i < j then swap(A[i], A[j])

until i ≥ j
RadixExchangeSort(A, l, i− 1, b− 1)
RadixExchangeSort(A, i, r, b− 1)

263



Analysis

RadixExchangeSort provides recursion with maximal recursion depth =
maximal number of digits p.
Worst case run time O(p · n).

264



Bucket Sort

3 8 18 122 121 131 23 21 19 29

0 1 2 3 4 5 6 7 8 9

121
131
21

122 3
23

8
18

19
29

121 131 21 122 3 23 8 18 19 29 265



Bucket Sort

121 131 21 122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19

121
21
122
23
29

131

3 8 18 19 121 21 122 23 29
266



Bucket Sort

3 8 18 19 121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

3
8
18
19
21
23
29

121
122
131

3 8 18 19 21 23 29 121 122 131
267



implementation details

Bucket size varies greatly. Possibilities
Linked list or dynamic array for each digit.
One array of length n. compute o�sets for each digit in the first iteration.

Assumptions: Input length n , Number bits / integer: k , Number Buckets: 2b

Asymptotic running time O(k
b
· (n + 2b).

For Example: k = 32, 2b = 256 : k
b
· (n + 2b) = 4n + 1024.

268



Bucket Sort – Di�erent Assumption

Hypothesis: uniformly distributed data e.g. from [0, 1)
Input: Array A with length n, Ai ∈ [0, 1), constant M ∈ N+

Output: Sorted array
k ← dn/Me
B ← new array of k empty lists
for i← 1 to n do

B[bAi · kc].append(A[i])
for i← 1 to k do

sort B[i] // e.g. insertion sort, running time O(M2)
return B[0] ◦B[1] ◦ · · · ◦B[k] // concatenated

Expected asymptotic running time O(n) (Proof in Cormen et al, Kap. 8.4)

269


	Sorting III
	Lower bounds for comparison based sorting
	Radixsort and Bucketsort


