
9. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

248



9.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]
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Lower bound for sorting

Up to here: worst case sorting takes Ω(n log n) steps.
Is there a better way? No:

Theorem 14
Sorting procedures that are based on comparison require in the worst
case and on average at least Ω(n log n) key comparisons.
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Comparison based sorting

An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,...,n .
At the beginning the algorithm know nothing about the array structure.
We consider the knowledge gain of the algorithm in the form of a
decision tree:

Nodes contain the remaining possibilities.
Edges contain the decisions.
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Decision tree

a < b

b < c

abc a < c

acb cab

b < c

a < c

bac bca

cba

Yes No

Yes No Yes No

Yes No Yes No

abc acb cab bac bca cba

abc acb cab bac bca cba

acb cab bac bca
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Decision tree

A binary tree with L leaves provides K = L− 1 inner nodes.10

The height of a binary tree with L leaves is at least log2 L. ⇒ The heigh of
the decision tree h ≥ log n! ∈ Ω(n log n).
Thus the length of the longest path in the decision tree ∈ Ω(n log n).
Remaining to show: mean length M(n) of a path M(n) ∈ Ω(n log n).

10Proof: start with emtpy tree (K = 0, L = 1). Each added node replaces a leaf by two
leaves, i.e.} K → K + 1⇒ L→ L+ 1.
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Average lower bound

Tbl

Tbr

← br →
← bl →

Decision tree Tn with n leaves, average height
of a leaf m(Tn)

Assumption m(Tn) ≥ logn not for all n.

Choose smalles b with m(Tb) < log b⇒ b ≥ 2

bl + br = b with bl > 0 und br > 0⇒
bl < b, br < b⇒ m(Tbl

) ≥ log bl und
m(Tbr ) ≥ log br

254



Average lower bound

Average height of a leaf:

m(Tb) = bl

b
(m(Tbl

) + 1) + br

b
(m(Tbr ) + 1)

≥ 1
b

(bl(log bl + 1) + br(log br + 1)) = 1
b

(bl log 2bl + br log 2br)

≥ 1
b

(b log b) = log b.

Contradiction. �
The last inequality holds because f(x) = x log x is convex (f ′′(x) = 1/x > 0) and
for a convex function it holds that f((x+ y)/2) ≤ 1/2f(x) + 1/2f(y) (x = 2bl,
y = 2br ).11 Enter x = 2bl, y = 2br , and bl + br = b.

11generally f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.
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9.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]
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Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No
further assumptions.
Di�erent idea: use more information about the keys.
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Assumptions

Assumption: keys representable as words from an alphabet containing m
elements.

Examples

m = 10 decimal numbers 183 = 18310
m = 2 dual numbers 1012
m = 16 hexadecimal numbers A016
m = 26 words “INFORMATIK”

m is called the radix of the representation.
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Assumptions

keys = m-adic numbers with same length.
Procedure z for the extraction of digit k in O(1) steps.

Example

z10(0, 85) = 5
z10(1, 85) = 8
z10(2, 85) = 0
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Radix-Exchange-Sort

Keys with radix 2.
Observation: if for some k ≥ 0:

z2(i, x) = z2(i, y) for all i > k

and
z2(k, x) < z2(k, y),

then it holds that x < y.
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Radix-Exchange-Sort

Idea:
Start with a maximal k.
Binary partition the data sets with z2(k, ·) = 0 vs. z2(k, ·) = 1 like with
quicksort.
k ← k − 1.
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Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011 1000

0011 0001 0110 0111 1000

0001 0011 0110 0111 1000

0001 0011 0110 0111 1000
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Algorithm RadixExchangeSort(A, l, r, b)

Input: Array A with length n, left and right bounds 1 ≤ l ≤ r ≤ n, bit position b
Output: Array A, sorted in the domain [l, r] by bits [0, . . . , b] .
if l < r and b ≥ 0 then

i← l − 1
j ← r + 1
repeat

repeat i← i+ 1 until z2(b, A[i]) = 1 or i ≥ j
repeat j ← j − 1 until z2(b, A[j]) = 0 or i ≥ j
if i < j then swap(A[i], A[j])

until i ≥ j
RadixExchangeSort(A, l, i− 1, b− 1)
RadixExchangeSort(A, i, r, b− 1)
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Analysis

RadixExchangeSort provides recursion with maximal recursion depth =
maximal number of digits p.
Worst case run time O(p · n).
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Bucket Sort

3 8 18 122 121 131 23 21 19 29

0 1 2 3 4 5 6 7 8 9

121
131
21

122 3
23

8
18

19
29

121 131 21 122 3 23 8 18 19 29 265



Bucket Sort

121 131 21 122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19

121
21
122
23
29

131

3 8 18 19 121 21 122 23 29
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Bucket Sort

3 8 18 19 121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

3
8
18
19
21
23
29

121
122
131

3 8 18 19 21 23 29 121 122 131
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implementation details

Bucket size varies greatly. Possibilities
Linked list or dynamic array for each digit.
One array of length n. compute o�sets for each digit in the first iteration.

Assumptions: Input length n , Number bits / integer: k , Number Buckets: 2b

Asymptotic running time O(k
b
· (n + 2b).

For Example: k = 32, 2b = 256 : k
b
· (n + 2b) = 4n + 1024.

268



Bucket Sort – Di�erent Assumption

Hypothesis: uniformly distributed data e.g. from [0, 1)
Input: Array A with length n, Ai ∈ [0, 1), constant M ∈ N+

Output: Sorted array
k ← dn/Me
B ← new array of k empty lists
for i← 1 to n do

B[bAi · kc].append(A[i])
for i← 1 to k do

sort B[i] // e.g. insertion sort, running time O(M2)
return B[0] ◦B[1] ◦ · · · ◦B[k] // concatenated

Expected asymptotic running time O(n) (Proof in Cormen et al, Kap. 8.4)
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