4. Searching

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

The Search Problem

Provided

- A set of data sets
 - telephone book, dictionary, symbol table
- \blacksquare Each dataset has a key k.
- Keys are comparable: unique answer to the question $k_1 \le k_2$ for keys k_1 , k_2 .

Task: find data set by key k.

Search in Array

Provided

- \blacksquare Array A with n elements $(A[1], \ldots, A[n])$.
- \blacksquare Key b

Wanted: index k, $1 \le k \le n$ with A[k] = b or "not found".

22	20	32	10	35	24	42	38	28	41
		3							

Linear Search

Traverse the array from A[1] to A[n].

- **Best case:** 1 comparison.
- Worst case: *n* comparisons.
- Assumption: each permutation of the n keys with same probability. **Expected** number of comparisons for the successful search:

$$\frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Search in a Sorted Array

Provided

- Sorted array A with n elements $(A[1], \ldots, A[n])$ with $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- \blacksquare Key b

Wanted: index k, $1 \le k \le n$ with A[k] = b or "not found".

10	20	22	24	28	32	35	38	41	42
		3							

Divide and Conquer!

Search b = 23.

b < 28	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1

Binary Search Algorithm BSearch(A, l, r, b)

```
Input: Sorted array A of n keys. Key b. Bounds 1 \le l, r \le n mit l \le r or
       l = r + 1.
Output: Index m \in [l, ..., r+1], such that A[i] \leq b for all l \leq i < m and
          A[i] > b for all m < i < r.
m \leftarrow \lfloor (l+r)/2 \rfloor
if l > r then // Unsuccessful search
    return |
else if b = A[m] then// found
    return m
else if b < A[m] then// element to the left
   return BSearch(A, l, m - 1, b)
else //b > A[m]: element to the right
   return BSearch(A, m+1, r, b)
```

Analysis (worst case)

Recurrence $(n=2^k)$

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Compute:

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$

$$= T\left(\frac{n}{2^i}\right) + i \cdot c$$

$$= T\left(\frac{n}{n}\right) + \log_2 n \cdot c = d + c \cdot \log_2 n \in \Theta(\log n)$$

Analysis (worst case)

$$T(n) = \begin{cases} d & \text{if } n = 1, \\ T(n/2) + c & \text{if } n > 1. \end{cases}$$

Guess: $T(n) = d + c \cdot \log_2 n$

Proof by induction:

- Base clause: T(1) = d.
- Hypothesis: $T(n/2) = d + c \cdot \log_2 n/2$
- Step: $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

Result

Theorem 8

The binary sorted search algorithm requires $\Theta(\log n)$ fundamental operations.

Iterative Binary Search Algorithm

```
Input: Sorted array A of n keys. Key b.
Output: Index of the found element. 0, if unsuccessful.
l \leftarrow 1: r \leftarrow n
while l < r do
    m \leftarrow \lfloor (l+r)/2 \rfloor
    if A[m] = b then
         return m
    else if A[m] < b then
        l \leftarrow m+1
    else
      r \leftarrow m-1
```

return NotFound:

Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A[l..r]

Proof by induction

- Base clause $b \in A[1..n]$ (oder nicht)
- Hypothesis: invariant holds after *i* steps.
- Step:

$$b < A[m] \Rightarrow b \in A[l..m-1]$$

 $b > A[m] \Rightarrow b \in A[m+1..r]$

[Can this be improved?]

Assumption: values of the array are uniformly distributed.

Example

Search for "Becker" at the very beginning of a telephone book while search for "Wawrinka" rather close to the end.

Binary search always starts in the middle.

Binary search always takes $m = \left\lfloor l + \frac{r-l}{2} \right\rfloor$.

[Interpolation search]

Expected relative position of b in the search interval [l, r]

$$\rho = \frac{b - A[l]}{A[r] - A[l]} \in [0, 1].$$

New 'middle': $l + \rho \cdot (r - l)$

Expected number of comparisons $\mathcal{O}(\log \log n)$ (without proof).

Would you always prefer interpolation search?

No: worst case number of comparisons $\Omega(n)$.

Lower Bounds

Binary Search (worst case): $\Theta(\log n)$ comparisons. Does for *any* search algorithm in a sorted array (worst case) hold that number comparisons = $\Omega(\log n)$?

Decision tree

- For any input b = A[i] the algorithm must succeed \Rightarrow decision tree comprises at least n nodes
- Number comparisons in worst case = height of the tree = maximum number nodes from root to leaf.

Decision Tree

Binary tree with height h has at most $2^0 + 2^1 + \cdots + 2^{h-1} = 2^h - 1 < 2^h$ nodes.

$$2^h > n \Rightarrow h > \log_2 n$$

Decision tree with n node has at least height $\log_2 n$. Number decisions = $\Omega(\log n)$.

Theorem 9

Any comparison-based search algorithm on sorted data with length n requires in the worst case $\Omega(\log n)$ comparisons.

Lower bound for Search in Unsorted Array

Theorem 10

Any comparison-based search algorithm with unsorted data of length n requires in the worst case $\Omega(n)$ comparisons.

Attempt

Correct?

"Proof": to find b in A, b must be compared with each of the n elements A[i] ($1 \le i \le n$).

Wrong argument! It is still possible to compare elements within A.

Better Argument

- lacktriangle Different comparisons: Number comparisons with b: e Number comparisons without b: i
- Comparisons induce g groups. Initially g = n.
- To connect two groups at least one comparison is needed: $n g \le i$.
- lacktriangle At least one element per group must be compared with b.
- Number comparisons $i + e \ge n g + g = n$.

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

The Problem of Selection

Input

- \blacksquare unsorted array $A=(A_1,\ldots,A_n)$ with pairwise different values
- Number $1 \le k \le n$.

Output A[i] with $|\{j : A[j] < A[i]\}| = k - 1$

Special cases

k=1: Minimum: Algorithm with n comparison operations trivial.

k=n: Maximum: Algorithm with n comparison operations trivial.

 $k = \lfloor n/2 \rfloor$: Median.

Naive Algorithm

Repeatedly find and remove the minimum $\Theta(k \cdot n)$.

 \rightarrow Median in $\Theta(n^2)$

Min and Max

- $oldsymbol{O}$ To separately find minimum an maximum in $(A[1], \ldots, A[n])$, 2n comparisons are required. (How) can an algorithm with less than 2n comparisons for both values at a time can be found?
- igodellaop Possible with $\frac{3}{2}n$ comparisons: compare 2 elements each and then the smaller one with min and the greater one with max.⁵

⁵An indication that the naive algorithm can be improved.

Better Approaches

- Sorting (covered soon): $\Theta(n \log n)$
- Use a pivot: $\Theta(n)$!

Use a pivot

- 1. Choose a (an arbitrary) **pivot** p
- 2. Partition A in two parts, and determine the rank of p by counting the indices i with $A[i] \leq p$.
- 3. Recursion on the relevant part. If k = r then found.

Algorithm Partition(A, l, r, p)

```
Input: Array A, that contains the pivot p in A[l, ..., r] at least once.
Output: Array A partitioned in [l, \ldots, r] around p. Returns position of p.
while l \leq r do
    while A[l] < p do
    l \leftarrow l + 1
    while A[r] > p do
    r \leftarrow r - 1
    swap(A[l], A[r])
   if A[l] = A[r] then
    \lfloor l \leftarrow l+1 \rfloor
```

return |-1

Correctness: Invariant

return |-1

```
Invariant I: A_i  p \ \forall i \in (r, n], \exists k \in [l, r] : A_k = p.
while l < r do
     while A[l] < p do
     l \leftarrow l+1
                                          — I und A[l] > p
     while A[r] > p do
     r \leftarrow r - 1
                                         — I und A[r] \leq p
    swap(A[l], A[r])
                                           -I und A[l] \le p \le A[r]
    if A[l] = A[r] then
    l \leftarrow l + 1
```

129

Correctness: progress

```
\begin{array}{c|c} \textbf{while } l \leq r \ \textbf{do} \\ \hline & \textbf{while } A[l]  p \ \textbf{do} \\ & \bot \ r \leftarrow r-1 \\ \hline & \textbf{swap}(A[l], A[r]) \\ \hline & \textbf{if } A[l] = A[r] \ \textbf{then} \\ & \bot \ l \leftarrow l+1 \\ \hline \end{array} \quad \begin{array}{c} \textbf{progress if } A[l]  p \ \textbf{oder } A[r]
```

return |-1

Choice of the pivot.

The minimum is a bad pivot: worst case $\Theta(n^2)$

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

A good pivot has a linear number of elements on both sides.

Analysis

Partitioning with factor q (0 < q < 1): two groups with $q \cdot n$ and $(1 - q) \cdot n$ elements (without loss of generality $g \ge 1 - q$).

$$\begin{split} T(n) &\leq T(q \cdot n) + c \cdot n \\ &\leq c \cdot n + q \cdot c \cdot n + T(q^2 \cdot n) \leq \ldots = c \cdot n \sum_{i=0}^{\log_q(n)-1} q^i + T(1) \\ &\leq c \cdot n \sum_{i=0}^{\infty} q^i \quad + d = c \cdot n \cdot \frac{1}{1-q} + d = \mathcal{O}(n) \end{split}$$

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a random pivot.

Probability for a good pivot in one trial: $\frac{1}{2} =: \rho$.

Probability for a good pivot after k trials: $(1-\rho)^{k-1} \cdot \rho$.

Expected number of trials: $1/\rho=2$ (Expected value of the geometric distribution:)

Algorithm Quickselect (A, l, r, k)

```
Input: Array A with length n. Indices 1 < l < k < r < n, such that for all
        x \in A[l..r] : |\{j|A[j] < x\}| > l \text{ and } |\{j|A[j] < x\}| < r.
Output: Value x \in A[l..r] with |\{j|A[j] \le x\}| \ge k and |\{j|x \le A[j]\}| \ge n - k + 1
if |=r then
return A[l]:
x \leftarrow \mathtt{RandomPivot}(A, l, r)
m \leftarrow \mathtt{Partition}(A, l, r, x)
if k < m then
    return QuickSelect(A, l, m-1, k)
else if k > m then
    return QuickSelect(A, m+1, r, k)
else
    return A[k]
```

Algorithm RandomPivot (A, l, r)

```
Input: Array A with length n. Indices 1 \le l \le r \le n
Output: Random "good" pivot x \in A[l, ..., r]
repeat
     choose a random pivot x \in A[l..r]
     p \leftarrow l
     for i = l to r do
     \lfloor \quad if A[j] \leq x then p \leftarrow p+1
until \left| \frac{3l+r}{4} \right| \le p \le \left\lceil \frac{l+3r}{4} \right\rceil
return x
```

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot can be chosen or a deterministic one such as the median of three elements.

Median of medians

Goal: find an algorithm that even in worst case requires only linearly many steps.

Algorithm Select (k-smallest)

- Consider groups of five elements.
- Compute the median of each group (straighforward)
- Apply Select recursively on the group medians.
- \blacksquare Partition the array around the found median of medians. Result: i
- If i = k then result. Otherwise: select recursively on the proper side.

Median of medians

Algorithmus $\mathtt{MMSelect}(A, l, r, k)$

```
Input: Array A with length n with pair-wise different entries. 1 \le l \le k \le r \le n.
        A[i] < A[k] \ \forall \ 1 \le i < l, \ A[i] > A[k] \ \forall \ r < i \le n
Output: Value x \in A with |\{i|A[i] < x\}| = k
m \leftarrow \texttt{MMChoose}(A, l, r)
i \leftarrow \mathtt{Partition}(A, l, r, m)
if k < i then
    return MMSelect(A, l, i-1, k)
else if k > i then
    return MMSelect(A, i + 1, r, k)
else
    return A[i]
```

Algorithmus $\mathtt{MMChoose}(A, l, r)$

```
\begin{array}{l} \textbf{Input:} \  \, \mathsf{Array} \,\, A \,\, \mathsf{with} \,\, \mathsf{length} \,\, n \,\, \mathsf{with} \,\, \mathsf{pair-wise} \,\, \mathsf{different} \,\, \mathsf{entries.} \,\, 1 \leq l \leq r \leq n. \\ \textbf{Output:} \,\, \mathsf{Median} \,\, m \,\, \mathsf{of} \,\, \mathsf{medians} \\ \textbf{if} \,\, r - l \leq 5 \,\, \textbf{then} \\ | \,\, \mathsf{return} \,\, \mathsf{MedianOf5}(A[l, \ldots, r]) \\ \textbf{else} \\ | \,\, A' \leftarrow \mathsf{MedianOf5Array}(A[l, \ldots, r]) \\ | \,\, \mathsf{return} \,\, \mathsf{MMSelect}(A', 1, |A'|, \left\lfloor \frac{|A'|}{2} \right\rfloor) \end{array}
```

How good is this?

- Number groups of five: $\lceil \frac{n}{5} \rceil$, without median group: $\lceil \frac{n}{5} \rceil 1$
- lacksquare Minimal number groups left / right of Mediangroup $\left\lfloor rac{1}{2} \left(\left\lceil rac{n}{5}
 ight
 ceil 1
 ight)
 ight
 floor$
- lacktriangle Minimal number of points less than / greater than m

$$3\left\lfloor \frac{1}{2} \left(\left\lceil \frac{n}{5} \right\rceil - 1 \right) \right\rfloor \ge 3\left\lfloor \frac{1}{2} \left(\frac{n}{5} - 1 \right) \right\rfloor \ge 3\left(\frac{n}{10} - \frac{1}{2} - 1 \right) > \frac{3n}{10} - 6$$

(Fill rest group with points from the median group)

 \Rightarrow Recursive call with maximally $\lceil \frac{7n}{10} + 6 \rceil$ elements.

Analysis

Recursion inequality:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n.$$

with some constant d.

Claim:

$$T(n) = \mathcal{O}(n).$$

Proof

Base clause: 6 choose c large enough such that

$$T(n) \leq c \cdot n$$
 für alle $n \leq n_0$.

Induction hypothesis: H(n)

$$T(i) \le c \cdot i$$
 für alle $i < n$.

Induction step: $H(k)_{k < n} \to H(n)$

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n$$

$$\le c \cdot \left\lceil \frac{n}{5}\right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6\right\rceil + d \cdot n \qquad (\text{for } n > 20).$$

 6 It will turn out in the induction step that the base case has to hold of some fixed $n_0>0$. Because an arbitrarily large value can be chosen for c and because there is a limited number of terms, this is a simple extension of the base case for n=1

Proof

Induction step:

$$T(n) \stackrel{n>20}{\leq} c \cdot \left[\frac{n}{5} \right] + c \cdot \left[\frac{7n}{10} + 6 \right] + d \cdot n$$

$$\leq c \cdot \frac{n}{5} + c + c \cdot \frac{7n}{10} + 6c + c + d \cdot n = \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n.$$

To show

$$\exists n_0, \exists c \mid \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n \le cn \quad \forall n \ge n_0$$

thus

$$8c + d \cdot n \le \frac{1}{10}cn \quad \Leftrightarrow \quad n \ge \frac{80c}{c - 10d}$$

Set, for example $c = 90d, n_0 = 91$ $\Rightarrow T(n) \le cn \ \forall \ n \ge n_0$

Result

Theorem 11

The k-th element of a sequence of n elements can, in the worst case, be found in $\Theta(n)$ steps.

Overview

1.	Repeatedly find minimum	$\mathcal{O}(n^2)$
2.	Sorting and choosing $A[i]$	$\mathcal{O}(n\log n)$
3.	Quickselect with random pivot	$\mathcal{O}(n)$ expected
4.	Median of Medians (Blum)	$\mathcal{O}(n)$ worst case

5.1 Appendix

Derivation of some mathemmatical formulas

[Expected value of the Geometric Distribution]

Random variable $X \in \mathbb{N}^+$ with $\mathbb{P}(X=k) = (1-p)^{k-1} \cdot p$. Expected value

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot (1-q)$$

$$= \sum_{k=1}^{\infty} k \cdot q^{k-1} - k \cdot q^k = \sum_{k=0}^{\infty} (k+1) \cdot q^k - k \cdot q^k$$

$$= \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$