4. Searching

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

102

The Search Problem

Provided
m A set of data sets
telephone book, dictionary, symbol table

m Fach dataset has a key k.

m Keys are comparable: unique answer to the question k; < ko for keys k;,
ks.

Task: find data set by key k.

103

Search in Array

Provided

m Array A with n elements (A[1],...

m Key b

, Aln]).

Wanted: index k, 1 < k < n with A[k] = b or "not found".

22

20

32

10

35

24

42

38

28

41

1

2

3

4

5

6

10

104

Linear Search

Traverse the array from A[1] to An].

m Best case: 1 comparison.
m Worst case: n comparisons.

m Assumption: each permutation of the n keys with same probability.

Expected number of comparisons for the successful search:

105

Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1], ..
Al < A[2] < -+ < Aln).

m Key b

., Aln]) with

Wanted: index k, 1 < k < n with A[k] = b or "not found".

10

20

22

24

28

32

35

38

41

42

1

2

3

10

106

Divide and Conquer!

Search b = 23.

10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 1
0 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 45 6 7 8 9 10
10 | 20 | 22| 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 34 s 6 7 8 9 10
10 | 20 | 22 | & | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 s 6 7 8 9 10
10 | 20 | 22 | 24| 28 | 32 | 35|38 | 41| 42
1 2 E 5 6 7 8 9 10

b <28

b>20

b>22

b< 24

erfolglos

107

Binary Search Algorithm BSearch(A,[,r,b)

Input: Sorted array A of n keys. Key b. Bounds 1 <I,r <n mitl <7 or
l=r+1.
Output: Index m € [l,...,r + 1], such that A[i] < b for all [< i < m and
Ali] > b forallm <i<r.
m e [(1+7)/2)
if [> r then // Unsuccessful search
‘ return |
else if b = A[m| then// found
‘ return m
else if b < A[m] then// element to the left
return BSearch(A,l,m — 1,b)
else // b > A[m]: element to the right
. return BSearch(A, m +1,7,b)

108

Analysis (worst case)

Recurrence (n = 2F)

d fallsn =1,
T(n) =
T(n/2)+c fallsn>1

Compute:

T() +logan-c=d+c-logyn € O(logn)
n

109

Analysis (worst case)

d ifn=1,
Tn) = {T(n/2) te ifa> L

Guess : T'(n) =d+c-logyn
Proof by induction:

m Base clause: T'(1) = d.
m Hypothesis: T'(n/2) = d+ ¢ - logyn/2
m Step: (n/2 — n)

T(n)=T(n/2)+c=d+c-(logyn — 1)+ c=d+ clogyn.

110

Result

Theorem 8

The binary sorted search algorithm requires ©(log n) fundamental oper-
ations.

m

lterative Binary Search Algorithm

Input: Sorted array A of n keys. Key b.

Output: Index of the found element. 0, if unsuccessful.

l+—1,r+n

while | < r do

m <« [(I+7)/2]

if Alm] =10 then
return m

else if A{m| < b then

‘ l+~m+1

else

t r—m-—1

r;turn NotFound;

2

Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then bis in domain All..r|
Proof by induction

m Base clause b € A[l..n] (oder nicht)

m Hypothesis: invariant holds after i steps.

m Step:
b< Alm|=be All.m —1]
b> A[m|=be Alm+ 1..r]

3

[Can this be improved?]

Assumption: values of the array are uniformly distributed.
Example

Search for "Becker” at the very beginning of a telephone book while search
for "Wawrinka" rather close to the end.

Binary search always starts in the middle.
Binary search always takes m = V + ’”T‘IJ

N4

[Interpolation search]

Expected relative position of b in the search interval [Z, |

b— All]

p:me[o,l]

New 'middle: i+ p- (r—1)
Expected number of comparisons O(loglogn) (without proof).
Would you always prefer interpolation search?

No: worst case number of comparisons Q(n).

115

Lower Bounds

Binary Search (worst case): ©(logn) comparisons.
Does for any search algorithm in a sorted array (worst case) hold that
number comparisons = Q(logn)?

116

Decision tree

3
b< A[3] b> A[3] m Forany input b = Ai] the
algorithm must succeed =
decision tree comprises at
least n nodes.

1 5
m Number comparisons in worst
b>All] b < A[S] b > A[5] case = height of the tree =
maximum number nodes from
root to leaf.
4

n7

Decision Tree

Binary tree with height h has at most 20 +2! 4 ... 4 2"t =2h] < 2h
nodes.
2" > n = h > log,n

Decision tree with n node has at least height log, n.
Number decisions = Q(logn).

Theorem 9

Any comparison-based search algorithm on sorted data with length n
requires in the worst case (logn) comparisons.

118

Lower bound for Search in Unsorted Array

Theorem 10

Any comparison-based search algorithm with unsorted data of length
n requires in the worst case Q(n) comparisons.

119

Attempt

Correct?

"Proof”: to find b in A, b must be compared with each of the n elements
Ali] (1 <i <n).

Wrong argument! It is still possible to compare elements within A.

120

Better Argument

L [] o | e |

m Different comparisons: Number comparisons with b: e Number
comparisons without b:

m Comparisons induce g groups. Initially g = n.

m To connect two groups at least one comparison is needed: n — g < 4.

m At least one element per group must be compared with b.

m Number comparisonsi+e>n—g+g=mn. |

1

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case Selection
[Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

122

The Problem of Selection

Input

m unsorted array A = (Ay, ..., A,) with pairwise different values
m Number1 <k <n.

Output Afi] with [{j : Alj] < Ali]}| =k —1

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial.

k = n: Maximum: Algorithm with n comparison operations trivial.

k = |n/2]: Median.

123

Naive Algorithm

Repeatedly find and remove the minimum ©(k - n).
— Median in ©(n?)

124

Min and Max

® 1o separately find minimum an maximum in (A[1],..., An]), 2n
comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

® Ppossible with 3n comparisons: compare 2 elements each and then the
smaller one with min and the greater one with max.>

SAn indication that the naive algorithm can be improved.
125

Better Approaches

m Sorting (covered soon): O(nlogn)
m Use a pivot: O(n) !

126

Use a pivot

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, and determine the rank of p by counting the
indices i with A[i] < p.

3. Recursion on the relevant part. If £ = r then found.

<|l<|l<l<|<|p|>|>]>]>

1 r n

Algorithm Partition(A, [, r, p)

Input: Array A, that contains the pivot p in A[l,...,r] at least once.

Output: Array A partitioned in [I, ..

while | < r do

while A[l] < p do
L 1+ 14+1

while A[r] > p do
| r+<r—1

swap(A[l], A[r])

if A[l] = Alr| then
R A |

return |-1

.,r] around p. Returns position of p.

128

Correctness: Invariant

Invariant I: A; <pVi € [0,1), A; >pVie€ (r,n], Ik €[l,r]: Ay = p.
while [< r do

while A[l] < p do I
Ll 1+1
while A[r] > p do Iund Al = p
Lrer—1 7 und A <
un rI<p
swap(A[l], A[r])
<p< -
if All] = A[r] then Tund Al < p < Afr]
L1+ ,

return |-1

129

Correctness: progress

while [< r do

while A[l] < p do progress if A[l] <p

Ll 1+1

while A[r] > p do progress if A[r] > p

|l r7+r—1

swap(A[l], A[r]) progress if A[l] > p oder A[r] <p
if A[l] = Alr] then progress if A[l] = Alr]=p

Ll 1+1

return |-1

130

Choice of the pivot.

The minimum is a bad pivot: worst case ©(n?)

b1 b2 b3 yZt D5

A good pivot has a linear number of elements on both sides.

Analysis

Partitioning with factor ¢ (0 < ¢ < 1): two groups with ¢-nand (1 —¢q) - n
elements (without loss of generality g > 1 —).

T(n)<T(g-n)+c-n

logq(n)—l
<cn+qgcn+T(@ n)<..=cn > ¢+T(1)
i=0
. 1
<c-n Zq’ +d:c-n-1 +d=0(n)
i=0 -

——
geom. Reihe

132

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a
random pivot.

[=

N[=

=

< A) ?
schlecht gute Pivots schlecht

Probability for a good pivot in one trial: 5 =: p.

Probability for a good pivot after k trials: (1 — p)&=t - p.

Expected number of trials: 1/p = 2 (Expected value of the geometric
distribution:)

133

Algorithm Quickselect (A, 1, k)

Input: Array A with length n. Indices 1 <[< k < r < n, such that for all
z € Allr] : [{j1A[j) < x}| > L and |{j|A[j) < 2}| <.
Output: Value z € A[l..r] with [{j|A]j] < z}| >k and [{jlz < A[j]}| >n—k+1
if |=r then
. return A[l];
x < RandomPivot(A,l,r)
m < Partition(A,[, 7, x)
if £ <m then
' return QuickSelect(A,l,m — 1,k)
else if £ > m then
' return QuickSelect(A,m + 1,7, k)
else
. return A[k]

Algorithm RandomPivot (A4, 1, r)

Input: Array A with length n. Indices 1 <[<r <n
Output: Random “good” pivot x € A[l,...,r]
repeat
choose a random pivot z € A[l..r]
p<1
for j =1 tor do
L if A[jj<zthenp<«+p+1

o |3l 1+3
until L%J <p< {%W
return =
This algorithm is only of theoretical interest and delivers a good pivot in 2
expected iterations. Practically, in algorithm QuickSelect a uniformly chosen

random pivot can be chosen or a deterministic one such as the median of three
elements.

135

Median of medians

Goal: find an algorithm that even in worst case requires only linearly many
steps.

Algorithm Select (k-smallest)

m Consider groups of five elements.

m Compute the median of each group (straighforward)

m Apply Select recursively on the group medians.

m Partition the array around the found median of medians. Result: 4

m If i = k then result. Otherwise: select recursively on the proper side.

136

Median of medians
[2= o

. groups of five

2. medians

3. recursion for pivot

4. base case

5. pivot (level 1)

6. partition (level 1)

7. median = pivot level 0

. 2. recursion starts 137

oo

Algorithmus MMSelect(A, [, k)

Input: Array A with length n with pair-wise different entries. 1 <[<k <7r < n,
All] < ARV 1<i<l Ali] > Alk]Vr<i<n
Output: Value z € A with |{j|A[j] <z}| =k
m < MMChoose(A,,r)
i < Partition(A,l,r,m)
if £ <i then
| return MMSelect(A,l,i — 1,k)
else if k£ > ¢ then
| return MMSelect(A,i + 1,7, k)
else
return Ali]

138

Algorithmus MMChoose(A, [,)

Input: Array A with length n with pair-wise different entries. 1 <[< r <n.
Output: Median m of medians
if r —1 <5 then
. return MedianOf5(A[l,...,7])
else
A" < MedianOf5Array(A[l, ..., 7))

return MMSelect(4’,1,|A4'|, {%J)

139

How good is this?

T
N/ e
DDDDDDDDDDI]:[N o
D D = 9 [
N O

m Number groups of five: [¢], without median group: [5] — 1
®m Minimal number groups left / right of Mediangroup EG% — 1)J
m Minimal number of points less than / greater than m

1/7n 1/n n 1 3n
—(l=]=1)]>3|=(=—-1 — ——-=—1 — =
3(51-0)] 295G -] =G -3-1) > 5 -0
(Fill rest group with points from the median group)
= Recursive call with maximally [Z2 + 6] elements.

140

Analysis

Recursion inequality:

T(n) gTq

with some constant d.
Claim:

n

5

[) ([

)+aon

14

Proof

Base clause:® choose ¢ large enough such that
T(n) < c-nfuralle n < ny.
Induction hypothesis: H(n)
T(i) <c-ifurallei <n.

Induction step: H(k)g<n — H(n)

ro<1([2]) ([T]

n ™m
Sc-hw—l—c-[lo—i—(ﬂ%—d-n (for n > 20).
61t will turn out in the induction step that the base case has to hold of some fixed
ng > 0. Because an arbitrarily large value can be chosen for c and because there is a
limited number of terms, this is a simple extension of the base case for n =1

142

Proof

Induction step:

n>20
T(n) >§ c- Fg—‘—i-o Hg—l—fi-‘—i—d-n

7 9
Sc-g+c+c-1—g+60+c+d-n:E~c-n+8c+d-n.

To show 9
dng, Je | E-c'n+8c+d'n§cn Vn > ng
thus
Setdon<ten o n>-_S%
cran=a5" "= T0d

Set, for example ¢ = 90d, ny = 91 =T(n) <enVn>ng

143

Result

Theorem 11

The k-th element of a sequence of n elements can, in the worst case, be
found in ©(n) steps.

144

Overview

—_

Repeatedly find minimum

O

n?)

Sorting and choosing Ali]

O(nlogn)

2
3. Quickselect with random pivot
4. Median of Medians (Blum)

(
(

O(n) expected
(

O(n) worst case

=

N[

=

Vi

\

\l
r\

Y schlecht gute Pivots

\l
r\

schlecht *

145

5. Appendix

Derivation of some mathemmatical formulas

146

[Expected value of the Geometric Distribution]

Random variable X € N* with P(X = k) = (1 —p)kL.p.
Expected value

k=1 k=1

=D kg kgt =3 (k+1) "~k
k=1 k=0
> 1 1

147

	Searching
	Selection
	Appendix

