33. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, ldea of
lock-free programming

[C++ Futures: Williams, Kap. 4.21-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4,
5.2.7] [C++ Lockfree: Williams, Kap. 71.-7.21]

1045



Futures: Motivation

Up to this point, threads have been functions without a result:

void action(some parameters){
}
std: :thread t(action, parameters);

t.join();
// potentially read result written via ref-parameters

1046



Futures: Motivation

Now we would like to have the following

T action(some parameters)q{ main

return value; .
} action

>
std: :thread t(action, parameters); &

value = get_value_from_thread();

1047



We can do this already!

m We make use of the producer/consumer pattern, implemented with
condition variables

m Start the thread with reference to a buffer
m \We get the result from the buffer.
m Synchronisation is already implemented

1048



Reminder

template <typename T>
class Buffer {
std: :queue<T> buf;
std: :mutex m;
std::condition_variable cond;
public:
void put(T x){ std::unique_lock<std::mutex> g(m);
buf.push(x);
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());1});
T x = buf.front(); buf.pop(); return x;
}

} 3 1049



Simpler: only one value

template <typename T>
class Buffer {

T value; bool received = false;

std: :mutex m;

std::condition_variable cond;

public:

void put(T x){ std::unique_lock<std::mutex> g(m);
value = x; received = true;
cond.notify_one();

}

T get(){ std::unique_lock<std::mutex> g(m);
cond.wait(g, [&]{return received;});
return value;

}

};

1050



Application

void action(Buffer<int>& c){ main
// some long lasting operation ...
c.put(42); i
} action
&
int main(){ &

Buffer<int> c;

std::thread t(action, std::ref(c));

t.detach(); // no join required for free running thread
// can do some more work here in parallel

int val = c.get();

// use result

return O;

1051



With features of C++11

int action(){ main
// some long lasting operation

return 42; )
} action

int main(Q{ &
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return O;

1052



Disclaimer

The explanations above are simplified. The real implementation of a
Future can deal with timeouts, exceptions, memory allocators and is
generally written more closely to the unerlying operating system.

1053



33.2 Read-Modify-Write

1054



Example: Atomic Operations in Hardware

CMPXCHG Compare and Exchange 4,5 | ock prefix

CMPXCHG mem, reg

«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the

«The lock prefix causes certain kinds ‘

of memory read-modify-write
instructions to occur atomically»

second operand to the first operand
and sets the ZF flag in the flag
regsiters to 1. Otherwise it copies
the value in the first operand to A
register and clears ZF flag to O»

AMDG64 Architecture
Programmer’s Manual

1055



Read-Modify-Write

Concept of Read-Modify-Write: The effect of reading, modifying and writing
back becomes visible at one point in time (happens atomically).

1056



Psudocode for CAS - Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){
variable = desired;
return true;
}
elseq{
expected = variable;
return false;
}
}

atomic

1057



Application example CAS in C++11

We build our own (spin-)lock:

class Spinlock{
std: :atomic<bool> taken {falsel};
public:
void lock(){
bool old = false;
while (!taken.compare_exchange_strong(old=false, true)){}
}
void unlock(){
bool o0ld = true;
assert (taken.compare_exchange_strong(old, false));
}
s

1058



33.3 Lock-Free Programming

deas

1059



Lock-free programming

Data structure is called

m lock-free: at least one thread always makes progress in bounded time
even if other algorithms run concurrently. Implies system-wide progress
but not freedom from starvation.

m wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

1060



Progress Conditions

Non-Blocking Blocking
Everyone makes Wait-free Starvation-free
progress
Someone makes Lock-free Deadlock-free

progress

1061



Implication

m Programming with locks: each thread can block other threads
indefinitely.

m Lock-free: failure or suspension of one thread cannot cause failure or
suspension of another thread !

1062



Lock-free programming: how?

Beobachtung:
m RMW-operations are implemented wait-free by hardware.
m Every thread sees his result of a CAS or TAS in bounded time.

ldea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.

1063



Example: lock-free stack

Simplified variant of a stack in the following

m pop pruft nicht, ob der Stack leer ist
m pop gibt nichts zuruck

1064



(Node)

Nodes:

struct Node {

};

T value;

Node<T>* next;
Node(T v, Node<T>* nxt): value(v), next(nxt) {}

value
next

value
next

value
next

value
next

1065



(Blocking Version)

template <typename T>
class Stack {
Node<T> *top=nullptr;
std: :mutex m;
public:
void push(T val){ guard g(m);
top = new Node<T>(val, top);
%
void pop(){ guard g(m);
Node<T>* old_top = top;
top = top->next;
delete old_top;

top = value

next

value
next

value
next

value
next

1066



Lock-Free

template <typename T>
class Stack {
std: :atomic<Node<T>*> top {nullptr};
public:
void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
void pop(O){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next));
delete old_top;
3
s

1067



Push

void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

}
2 Threads:

new

top - = -
new

1068



Pop

void pop(O{

Node<T>* old_top = top;

while (!top.compare_exchange_weak(old_top, old_top->next));

delete old_top;
X

2 Threads:

top

o
(@

(@)
[@N
M~
~

1069



Lock-Free Programming - Limits

m Lock-Free Programming is complicated.

m If more than one value has to be changed in an algorithm (example:
queue), it is becoming even more complicated: threads have to “help
each other” in order to make an algorithm lock-free.

m The ABA problem can occur if memory is reused in an algorithm. A
solution of this problem can be quite expensive.

1070



	Parallel Programming IV
	C++ Futures
	Read-Modify-Write
	Lock-Free Programming


