
31. Parallel Programming II

Shared Memory, Concurrency, Excursion: lock algorithm (Peterson), Mutual
Exclusion Race Conditions [C++ Threads: Williams, Kap. 2.1-2.2], [C++ Race
Conditions: Williams, Kap. 3.1] [C++ Mutexes: Williams, Kap. 3.2.1, 3.3.3]

958

31.1 Shared Memory, Concurrency

959

Sharing Resources (Memory)

Up to now: fork-join algorithms: data parallel or divide-and-conquer
Simple structure (data independence of the threads) to avoid race
conditions
Does not work any more when threads access shared memory.

960

Managing state

Managing state: Main challenge of concurrent programming.

Approaches:
Immutability, for example constants.
Isolated Mutability, for example thread-local variables, stack.
Shared mutable data, for example references to shared memory, global
variables

961

Protect the shared state

Method 1: locks, guarantee exclusive access to shared data.
Method 2: lock-free data structures, exclusive access with a much finer
granularity.
Method 3: transactional memory (not treated in class)

962

Canonical Example

class BankAccount {
int balance = 0;

public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

int b = getBalance();
setBalance(b - amount);

}
// deposit etc.

};

(correct in a single-threaded world)

963

Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1

int b = getBalance();

setBalance(b-amount);

Thread 2

int b = getBalance();

setBalance(b-amount);
t

964

Tempting Traps

WRONG:
void withdraw(int amount) {

int b = getBalance();
if (b==getBalance())

setBalance(b - amount);
}

Bad interleavings cannot be solved with a repeated reading

965

Tempting Traps

also WRONG:
void withdraw(int amount) {

setBalance(getBalance() - amount);
}

Assumptions about atomicity of operations are almost always wrong

966

Mutual Exclusion

We need a concept for mutual exclusion
Only one thread may execute the operation withdraw on the same
account at a time.
The programmer has to make sure that mutual exclusion is used.

967

More Tempting Traps

class BankAccount {
int balance = 0;
bool busy = false;

public:
void withdraw(int amount) {

while (busy); // spin wait
busy = true;
int b = getBalance();
setBalance(b - amount);
busy = false;

}

// deposit would spin on the same boolean
};

does not work!

968

Just moved the problem!

Thread 1

while (busy); //spin

busy = true;

int b = getBalance();

setBalance(b - amount);

Thread 2

while (busy); //spin

busy = true;

int b = getBalance();
setBalance(b - amount);

t

969

How ist this correctly implemented?

We use locks (mutexes) from libraries
They use hardware primitives, Read-Modify-Write (RMW) operations
that can, in an atomic way, read and write depending on the read result.
Without RMW Operations the algorithm is non-trivial and requires at
least atomic access to variable of primitive type.

970

31.2 Mutual Exclusion

971

Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread) at a
time.
Mutual Exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm\\
... // critical section

release_mutex(); // exit algorithm

972

Required Properties of Mutual Exclusion

Correctness (Safety)
At most one process executes the critical
section code

Liveness
Acquiring the mutex must terminate in
finite time when no process executes in
the critical section

973

Almost Correct

class BankAccount {
int balance = 0;
std::mutex m; // requires #include <mutex>

public:
...
void withdraw(int amount) {

m.lock();
int b = getBalance();
setBalance(b - amount);
m.unlock();

}
};

What if an exception occurs?
974

RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b - amount);

} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?

975

Reentrant Locks

Reentrant Lock (recursive lock)
remembers the currently a�ected thread;
provides a counter

Call of lock: counter incremented
Call of unlock: counter is decremented. If counter = 0 the lock is released.

976

Account with reentrant lock

class BankAccount {
int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);

int b = getBalance();
setBalance(b - amount);

}
};

977

31.3 Race Conditions

978

Race Condition

A race condition occurs when the result of a computation depends on
scheduling.
We make a distinction between bad interleavings and data races
Bad interleavings can occur even when a mutex is used.

979

Example: Stack

Stack with correctly synchronized access:
template <typename T>
class stack{

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); ... }
T pop(){ guard g(m); ...}

};

980

Peek

Forgot to implement peek. Like this?
template <typename T>
T peek (stack<T> &s){

T value = s.pop();
s.push(value);
return value;

}

not thread-safe!

Despite its questionable style the code is correct in a sequential world.
Not so in concurrent programming.

981

Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.
Thread 1 pushes a value and checks that the stack is then non-empty.
Thread 2 reads the topmost value using peek().

Thread 1

s.push(5);

assert(!s.isEmpty());

Thread 2

int value = s.pop();

s.push(value);
return value;

t

982

The fix

Peek must be protected with the same lock as the other access methods

983

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a di�erent form of race condition: data race.

984

How about this?

class counter{
int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int increase(){

guard g(m); return ++count;
}
int get(){

return count;
}

}

not thread-safe!

985

Why wrong?

It looks like nothing can go wrong because the update of count happens in
a “tiny step”.
But this code is still wrong and depends on language-implementation
details you cannot assume.
This problem is called Data-Race
Moral: Do not introduce a data race, even if every interleaving you can
think of is correct. Don’t make assumptions on the memory order.

986

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insu�ciently synchronized accesses of a shared resource by
multiple threads, e.g. Simultaneous read/write or write/write of the same
memory location
Bad Interleaving (High Level Race Condition) Erroneous program behavior
caused by an unfavorable execution order of a multithreaded algorithm,
even if that makes use of otherwise well synchronized resources.

987

We look deeper

class C {
int x = 0;
int y = 0;

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a);

}
}

A
B

C
D

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

A B C D X

A C B D X

A C D B X

C A B D X

C C D B X

C D A B X

It can nevertheless fail!

988

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes that do
not a�ect the semantics of a sequentially executed program

void f() {
x = 1;
y = x+1;
z = x+1;

}

⇐⇒
sequentially equivalent

void f() {
x = 1;
z = x+1;
y = x+1;

}

989

From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

Some memory accesses may be even optimized away completely!
Huge potential for optimizations – and for errors, when you make the
wrong assumptions

990

Example: Self-made Rendevouz

int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Assume thread 1 calls wait, later thread 2 calls
arrive. What happens?

thread 1

thread 2

wait

arrive

991

Compilation
Source
int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Without optimisation

wait:
movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

arrive:
movl $0x2, x

With optimisation

wait:
movl $0x1, x
test:
jmp test

arrive
movl $0x2, x

if equal
always

992

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all instructions
for performance reasons:

Most processors have a pipelined architecture and can execute (parts
of) multiple instructions simultaneously. They can even reorder
instructions internally.
Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at di�erent times

993

Memory Hierarchy

Registers

L1 Cache

L2 Cache

...

System Memory slow,high latency,low cost,high capac-
ity

fast,low latency, high cost, low capacity

994

An Analogy

995

Schematic

996

Memory Models

When and if e�ects of memory operations become visible for threads,
depends on hardware, runtime system and programming language.
A memory model (e.g. that of C++) provides minimal guarantees for the
e�ect of memory operations

leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a mutex
is used.

997

Fixed

class C {
int x = 0;
int y = 0;
std::mutex m;

public:
void f() {

m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();

}
void g() {

m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot fail

}
}; 998

Atomic
Here also possible:
class C {

std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a); // cannot fail

}
}; 999

31.4 Appendix / Excursion: lock algorithm

not relevant for an exam

1000

Alice’s Cat vs. Bob’s Dog

1001

Required: Mutual Exclusion

1002

Required: No Lockout When Free

1003

Communication Types

Transient: Parties participate at the same time

Persistent: Parties participate at di�erent times

Mutual exclusion: persistent communication

1004

Communication Idea 1

1005

Access Protocol

1006

Problem!

1007

Communication Idea 2

1008

Access Protocol 2.1

1009

Di�erent Scenario

1010

Problem: No Mutual Exclusion

1011

Checking Flags Twice: Deadlock

1012

Access Protocol 2.2

1013

Access Protocol 2.2:provably correct

1014

Weniger schwerwiegend: Starvation

1015

Final Solution

1016

General Problem of Locking remains

1017

Peterson’s Algorithm (not relevant for the exam)

for two processes is provable correct and free from starvation
non-critical section

flag[me] = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (flag[you] && victim == me) {};

critical section

flag[me] = false

The code assumes that the access to flag / victim
is atomic and particularly linearizable or sequential
consistent. An assumption that – as we will see be-
low – is not necessarily given for normal variables.
The Peterson-lock is not used on modern hardware.

1018

	Parallel Programming II
	Shared Memory, Concurrency
	Mutual Exclusion
	Race Conditions
	Appendix / Excursion: lock algorithm

