
29. Push-Relabel Algorithmus

866

Disclaimer

These slides contain the most important formalities around the
Push-Relabel algorithm and its correctness. One example is still missing.
We motivate the algorithm in the lectures and give more examples there.
The conception of this lecture taken from Tim Roughgarden (Stanford)
https://www.youtube.com/watch?v=0hI89H39USg

867

https://www.youtube.com/watch?v=0hI89H39USg

Beispiel

s t
k k k k

1

1 1

1

k

k

Here, the Ford-Fulkerson algorithm (and Edmonds-Karp) executes Ω(k2)
steps.

868

Pre-Flow

A pre-flow f : V × V → R is a flow with a relaxed flow conservation
condition:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Relaxed flow condition:
For all u ∈ V \ {s, t}:

αf (u) :=
∑
v∈V

f(v, u) ≥ 0.

The quantitiy αf (u) is called excess of f at u

u
4|3

2|2

2|1

2|2

node with excess
αf (u) = 3 + 2− 1− 2 = 2.

869

Algorithmus Push(u, v)

The residual network Gf remains defined for a pre-flow as before for a
flow.

if αf (u) > 0 then
if cf (u, v) > 0 in Gf then

∆← min{cf (u, v), αf (u)}
f(u, v)← f(u, v) + ∆.

870

Height Function

A height function hV → N0 on G will make sure that the flow is not
pushed infinitely often in circles. Moreover, the following invariants makes
sure that s keeps being disconnected from t in the residual network.

Invariants of the height function

1. h(s) = n

2. h(t) = 0
3. for each u, v ∈ V with cf (u, v) > 0 it holds that h(u) ≤ h(v) + 1.

871

Beispiel

u

v1

v2

v3

cf > 0

3

6

4

≤ 4

872

Beispiel

u

v1

v2

v3

cf > 0

3

6

4

≤ 4

Edges in the residual network go at most down by one (or stay on the
same height or go up)

872

No Augmenting Path

The length of a path from s to t in the residual network is at most n− 1.
Because for each edge (u, v) with cf (u, v) > 0 it holds that h(v) ≥ h(u)− 1
and since h(s) = n and h(t) = 0 (thus a path from height n to height 0
requires at least n steps), no augmenting path exists when the invariants
are preserved.

873

Strategies

Ford-Fulkerson (conservative)

Invariant: flow conservation
Steps: augmenting paths
Goal: separate s from t in the residual network.

Push-Relabel

Invariant: height invariant (no augmenting path!)
Steps: push flow
Goal: achieve flow conservation

874

Push-Relabel-Algorithmus

Input: Flow graph G = (V,E, c), with source s and sink t n := |v|

h(s)← n
foreach v 6= s do h(v)← 0
foreach (u, v) ∈ E do f(u, v)← 0
foreach (s, v) ∈ E do f(s, v)← c(s, v)

while ∃u ∈ V \ {s, t} : αf (u) > 0 do
choose u with αf (u) > 0 and maximal h(u)
if ∃v ∈ V : cf (u, v) > 0 ∧ h(v) = h(u)− 1 then

push(u, v) // push
else

h(u)← h(u) + 1 // relabel

875

Correctness: Invariants Lemma

Lemma 38
During the execution of the Push-Relabel algorithm, the invariants for
the height functions are preserved

Immediate conclusion: when the Push-Relabel algorithm terminates, it
terminates with a max-flow.

876

Invariants-Lemma: Proof

Proof:
After initialization, the invariants are fulfilled because only for edges
(s, u) the height di�erence less than −1, but there we have cf (s, u) = 0
Invariants on s and t are preserved because the height of s and t is
never changed.
Execution of push(u, v) can at most yield a new edge (v, u) in the
residual network with h(v) > h(u)
Execution of relabel takes place only when there is no downward edge.
Thus after a relabel it holds that h(u) ≥ h(v)− 1 for all edges (u, v)

�

877

Termination and Running Time

Theorem 39
The Push-Relabel algorithm terminates after
O(n2) relabel operations, and
O(n3) push operations.

The proof is conducted in the following separately for relabel and push.

878

Key Lemma

Lemma 40
Let f be a pre-flow in G If αf (u) > 0 holds for some node u ∈ V − {s, t},
then there is some path p : u s in the residual network Gf

879

Key Lemma: Proof

Proof: Let A := {u ∈ V : ∃p : s u mit f(e) > 0 ∀ e ∈ p} and B := V \ A.
For each u ∈ A there is a path from s with positive flow. Therefore in the
residual network there is a path from u to s.
Let u ∈ B. Then ∑

v∈V f(v, u) ≥ 0, because f is a pre-flow.
But also ∑

v∈V

∑
u∈B f(v, u) =

∑
v∈A

∑
u∈B

f(v, u)︸ ︷︷ ︸
≤0

+
∑
v∈B

∑
u∈B

f(v, u)︸ ︷︷ ︸
=0

≤ 0 because

there cannot be an edge with postiive weight from A to B and for each
edge within B it holds that f(u, v) = −f(v, u). ⇒ αf (u) = 0 ∀ u ∈ B. Thus
αf (u) > 0 implies that u ∈ A.

�

880

Maximum Node Height

Corollary 41

During the execution of the Push-Relabel algorithm it holds that h(u) <
2n for all u ∈ V .

Proof:
Mainlemma: for each node t with αf (u) > 0 there is a path p : u s in residual
network

Height invariants: edges in Gf go down by at most one step. , h(s) = n.

Maximal length of p : u s (no cycles!) is n− 1. ⇒ Maximum height of node is
n+ n− 1 = 2n− 1.

�
881

Number Relabels

From the previous corollary immediately follows

Corollary 42

The Push-Relabel algorithm executes O(n2 relabel operations.

882

(Non-)Saturating Pushes

push(u, v) is called
saturating, if cf (u, v) ≤ αf (u)

u v

αf = 3
cf = 2 ⇒ u v

αf = 1

non-saturating, if cf (u, v) > αf (u)

u v

αf = 3
cf = 4 ⇒ u v

cf = 1
αf = 0

883

Number Saturating Pushes

Lemma 43
Between two non-saturing pushes an the same edge (u, v), the Push-
Relabel algorithm executes at least two relabel operations.

Immediate conlusion: there are O(n3) saturating push operations overal
because for each node by corollary 41 there are at O(n) relabels.

884

Proof: Number Saturating Pushes

Proof:
After a saturing push(u, v) (with h(u) = h(v) + 1) edge (u, v) disappears
from the residual network.
In order to (u, v) to reappear on the residual network, push(v, u) (reverse
edge) has to be executed. But before it must hold that h(v) = h(u) + 1
therefore to relabels of v are required.
Two more relabels are required on u before a call to push(u, v")

�

885

Number Non-Saturating pushes

Lemma 44
Between two relabel-operations, the Push-Relabel algorithm executes
at most n non-saturating pushes.

Immediate conlusion: there are O(n3) non-saturating push operations
overal because by corollary 42 there are O(n2) relabel operations.

886

Proof: Number Non-saturating pushes

Proof:
Let Af := {v ∈ V : αf (v) > 0}
Choice of u for push: u ∈ Af with h(u) ≥ h(v) for all v ∈ Af .
During a non-saturating push u disappears from Af . During this push
and following pushes only v ∈ Af with h(v) < h(u) are added to Af-
Before a new relabel has been executed, it holds thus that u 6∈ Af .
Because this argument holds for all chosen u, until the next relabel
operation at most n non-saturating pushes can be executed.

�

887

	Push-Relabel Algorithmus

