28. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut Theorem,
Ford-Fulkerson Method, Edmonds-Karp Algorithm, Maximal Bipartite
Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]
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Motivation

m Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.

m Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball Eliminination...
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Flow Network

m Flow network G = (V, E, ¢): directed graph

with capacities V] ——3 U3

m Antiparallel edges forbidden: 1V Y{O
(u,v) € E = (v,u) ¢ E. ) | . )

m Model a missing edge (u,v) by ¢(u,v) = 0. 9

m Source s and sink ¢: special nodes. Every 1&1 A
node v is on a path between sand ¢ : V2 T) (!

S~ U st
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Flow

AFlow f : V x V — R fulfills the following
conditions:

o 12/12 t
m Bounded Capacity: y )

For all w,v € V: f(u,v) < c(u,v). s 414
m Skew Symmetry: 1%‘ |
Forall u,v € V: f(u,v) = —f(v,u). ‘ “ 14/10’ .

m Conservation of flow:

Forallu e V'\ {s,t}: Value of the flow:
|fl=2Xvev fs,0).
Zf(u,v)zo. Here |f|il8.

veV
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How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from ¢: Partition of V into S and T'with s € S, t € T.

m Capacity of a cut: ¢(S,T) = X ,cgrer c(v, V')
®m Minimal cut: cut with minimal capacity.
m Flow over the cut: f(S5,7) = X c5er f(v,0)
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Implicit Summation

Nota

Thus

m |f|
m f

m
mf(
m f(

tion: Let U, U’ CV
fOU) =30 flud),  fuU):= f({u},U)

uelU
u' €U’

= f(s,V)

UU)=0

UU")=—-fU",U)
XUY,Z2)=f(X,2)+ f(Y,Z),if XNnY =0.
R, V)=0if RN {s,t} = 0. [flow conversation!]
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How large can a flow possibly be?

For each flow and each cut it holds that f(S,T) = | f|:

f(S,T):f(S,V)—f(S,S):f(S,V)

N—_——
0
= f(s,V)+ f(§—{s}, V) =[]
N——
Ft,Fs
12/12
U1 v3 R4
s 4/4AIA .;’;/6 t
9/4.
1% 4/4
V2 V4

L4710
.

843



Maximal Flow ?

In particular, for each cut (S,T") of V.

[f1< > e(v,)=c(S,T)

veSv'eT
Will discover that equality holds for ming 7 ¢(S, T)).
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Maximal Flow ?

Naive Procedure
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Conclusion: greedy increase of flow does not solve the problem.
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The Method of Ford-Fulkerson

m Start with f(u,v) =0 forall u,v € V

m Determine rest network™* Gy and expansion path in Gy
m Increase flow via expansion path*

m Repeat until no expansion path available.

Gpi= (V. Ep,¢q)
cr(u,v) == c(u,v) — f(u,v) Yu,veV
E;:={(u,v) € V x Vics(u,v) >0}

*Will now be explained
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Increase of flow, negative!

Let some flow f in the network be given.

Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < ¢(u,v).
Rest capacity ¢s(u,v) = ¢(u,v) — f(u,v) > 0.

m Increase of flow against the direction of the edge possible, if flow can
be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity ¢s(v,u) = f(u,v) > 0.
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Rest Network

Rest network G provided by the edges with positive rest capacity:

12
8 V] —— U3 14
ﬁ 4 \‘

s 4 5 1 6 t
" 12/12 v 3
A N, 4
: \UJ / }G/'t 10 (%) —)4 V4
13/10 4/4 &—/
“ 14/10 “ 10

Rest networks provide the same kind of properties as flow networks with the exception of
permitting antiparallel capacity-edges
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Observation

Theorem 33

Let G = (V, E,c) be a flow network with source s and sink t and f a flow
in G. Let Gy be the corresponding rest networks and let f" be a flow in
Gy. Then f & f" with

(f & f)(u,v) = flu,v) + f'(u,v)

defines a flow in G with value | f| + |f/|.

849



Proof

f @ f' defines a flow in G:
m capacity limit

(f D f/)(uv U) = f(uv U) + f/(u’ U) < c(u, U)

m skew symmetry
(f S f/)(uvv) = _f(vau> + _f/(vvu) = _(f S f’)(v,u)
m flow conservationu € V — {s,t}:

Z(f@f quv%—quv-O

veV veV veV



Proof

Value of f & f/

ifefl=ef)sV)
= Z f(s>u) —{—f’(s,u)

ueV
= f(S,V) +f/(8,V)
= fl+1f]
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Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network Gj.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}
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Flow in Gy

Theorem 34
The mapping f, : V xV = R,

¢sp)  if (wv) edge inp
fo(u,v) = ¢ —c¢(p) if (v,u) edge inp
0 otherwise

provides a flow in Gy with value |f,| = c¢(p) > 0.

f, is a flow (easy to show). there is one and only one u € V with (s,u) € p.
Thus |fp| = Ypev fo(5,0) = fo(s,u) = Cf(p)-
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Consequence

Strategy for an algorithm:
With an expansion path p in Gy the flow f @ f, defines a new flow with
value [f @ fol = [f] + |/l > |/].
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Max-Flow Min-Cut Theorem

Theorem 35

Let f be a flow in a flow network G = (V, E, ¢) with source s and sink t.

The following statementsa are equivalent:
fIs a maximal flow in G
The rest network G ¢ does not provide any expansion paths
It holds that | f| = ¢(S,T) for a cut (S,T) of G.
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Proof

m(3)= (1)
It holds that |f| < ¢(S,T) for all cuts S, T. From |f| = ¢(S,T) it follows
that | f] is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: G has some expansion path
If® f,l =1fl+1fy| > |f]. Contradiction.
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Proof (2) = (3)

Assumption: Gy has no expansion path

Define S ={v € V: thereisa path s~ vin Gs}.

(S, T):=(S,V\S)isacut se S,teT.

Letw € Sand v € T. Then ¢f(u,v) =0, also ¢f(u,v) = c(u,v) — f(u,v) = 0.
Somit f(u,v) = c(u,v).

Thus
If] = Zquv ZZC(U,U):C(S,T).

ueS veT ueS veT
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, ¢)
Output: Maximal flow f.

for (u,v) € E do
- flu,v) 0
while Exists path p : s ~ ¢ in rest network Gy do
cf(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do
L flu,v) < f(u,v) +cp(p)
f(v,u) < f(v,u) = cr(p)
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Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative flow
egdes are usually not stored because their value always equals the
negated value of the antiparallel edge.

f(u,v) < f(u,v) + c¢(p)
fo,u) « fv,u) — cf(p)
Is then transformed to
if (u,v) € E then

- f(u,v) = f(u,v) 4+ cf(p)
else

L f(v’u) — f(v’u) - Cf(p)
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Analysis

m The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.

m For an integer flow, the algorithms requires
maximally | fmax| Iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with DFS or
BFS) O(|E|) Therefore O( fuax|E|).

U

100y Y?OO

S 1 t

100&1 A)OO

v

With  an unlucky
choice the algorithm
may require up to
2000 iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G, the
expansion path of shortest possible length (e.g. with BFS)
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Edmonds-Karp Algorithm

Theorem 36

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of

flow increases applied by the algorithm is in O(|V| - |E]).
= Overal asymptotic runtime: O(|V| - |E|?)

[Without proof]
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Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
Matching M: M C E suchthat |{m e M :vem}| <1lforallveV.

Maximal Matching M: Matching M, such that |M| > |M’| for each matching
M’

XY
NAV
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Corresponding flow network
Construct a flow network that corresponds to the partition L, R of a

bipartite graph with source s and sink ¢, with directed edges from s to L,
from L to R and from R to ¢. Each edge has capacity 1.
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Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow
generated by the Ford-Fulkerson method provides integer numbers for
each f(u,v), u,v € V.

[without proof]
Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v): f(u,v) =1}
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