
27. Minimum Spanning Trees

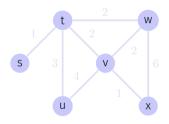
Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra, Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Problem

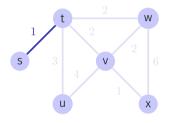
Given: Undirected, weighted, connected graph G = (V, E, c).

Wanted: Minimum Spanning Tree T=(V,E'): connected, cycle-free subgraph $E'\subset E$, such that $\sum_{e\in E'}c(e)$ minimal.

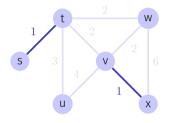
Application Examples

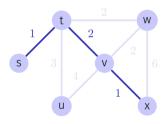

- Network-Design: find the cheapest / shortest network that connects all nodes.
- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

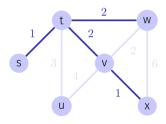
Greedy Procedure

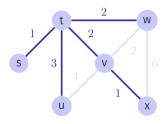

Recall:

- Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
- Most problems cannot be solved with a greedy algorithm.
- The Minimum Spanning Tree problem can be solved with a greedy strategy.


Construct T by adding the cheapest edge that does not generate a cycle.


Construct T by adding the cheapest edge that does not generate a cycle.


Construct T by adding the cheapest edge that does not generate a cycle.


Construct T by adding the cheapest edge that does not generate a cycle.

Construct T by adding the cheapest edge that does not generate a cycle.

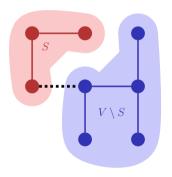
Construct T by adding the cheapest edge that does not generate a cycle.

Algorithm MST-Kruskal(G)

Correctness

At each point in the algorithm (V, A) is a forest, a set of trees.

MST-Kruskal considers each edge e_k exactly once and either chooses or rejects e_k


Notation (snapshot of the state in the running algorithm)

- *A*: Set of selected edges
- R: Set of rejected edges
- *U*: Set of yet undecided edges

Cut

A cut of G is a partition S, V - S of V. $(S \subseteq V)$.

An edge crosses a cut when one of its endpoints is in S and the other is in $V\setminus S$.

Rules

- Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
- 2. Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

Rules

Kruskal applies both rules:

- 1. A selected e_k connects two connection components, otherwise it would generate a cycle. e_k is minimal, i.e. a cut can be chosen such that e_k crosses and e_k has minimal weight.
- 2. A rejected e_k is contained in a cycle. Within the cycle e_k has minimal weight.

Correctness

Theorem 29

Every algorithm that applies the rules above in a step-wise manner until $U=\emptyset$ is correct.

Consequence: MST-Kruskal is correct.

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct. Induction:

- At beginning: U = E, $R = A = \emptyset$. Invariant obviously holds.
- Invariant is preserved at each step of the algorithm.
- At the end: $U = \emptyset$, $R \cup A = E \Rightarrow (V, A)$ is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

Selection rule preserves the invariant

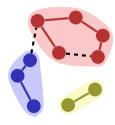
At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with minimal weight.

- \blacksquare Case 1: $e \in T$ (done)
- Case 2: $e \not\in T$. Then $T \cup \{e\}$ contains a cycle that contains e Cycle must have a second edge e' that also crosses the cut.⁴⁶ Because $e' \not\in R$, $e' \in U$. Thus $c(e) \leq c(e')$ and $T' = T \setminus \{e'\} \cup \{e\}$ is also a minimal spanning tree (and c(e) = c(e')).

⁴⁶Such a cycle contains at least one node in S and one node in $V\setminus S$ and therefore at lease to edges between S and $V\setminus S$.

Rejection rule preserves the invariant


At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge e with maximal weight.

- Case 1: $e \notin T$ (done)
- Case 2: $e \in T$. Remove e from T, This yields a cut. This cut must be crossed by another edge e' of the cycle. Because $c(e') \le c(e)$, $T' = T \setminus \{e\} \cup \{e'\}$ is also minimal (and c(e) = c(e')).

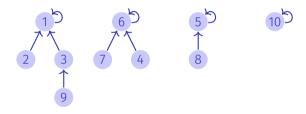
Implementation Issues

Consider a set of sets $i \equiv A_i \subset V$. To identify cuts and cycles: membership of the both ends of an edge to sets?

Implementation Issues

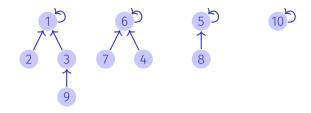
```
General problem: partition (set of subsets) .e.g. \{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}
```

Required: Abstract data type "Union-Find" with the following operations


- Make-Set(i): create a new set represented by i.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(G)

```
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.
Sort edges by weight c(e_1) \leq ... \leq c(e_m)
A \leftarrow \emptyset
for k=1 to |V| do
    MakeSet(k)
for k=1 to m do
    (u,v) \leftarrow e_k
    if Find(u) \neq Find(v) then
        Union(Find(u), Find(v))
        A \leftarrow A \cup e_k
    else
                                                              // conceptual: R \leftarrow R \cup e_k
return (V, A, c)
```


Implementation Union-Find

Idea: tree for each subset in the partition, e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

roots = names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10 Parent 1 1 1 6 5 6 5 5 3 10

Implementation Union-Find

⁴⁷i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8,7), Union(7,6), Union(6,5), ...

```
Index 1 2 3 4 5 6 7 8 .. Parent 1 1 2 3 4 5 6 7 ..
```

Worst-case running time of Find in $\Theta(n)$.

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

$$\begin{aligned} & \mathsf{Make}\text{-Set}(i) \quad p[i] \leftarrow i; \ g[i] \leftarrow 1; \ \mathsf{return} \ i \\ & & \mathsf{if} \ g[j] > g[i] \ \mathsf{then} \ \mathsf{swap}(i,j) \\ & & \mathsf{p}[j] \leftarrow i \\ & & \mathsf{if} \ g[i] = g[j] \ \mathsf{then} \ g[i] \leftarrow g[i] + 1 \end{aligned}$$

 \Rightarrow Tree depth (and worst-case running time for Find) in $\Theta(\log n)$

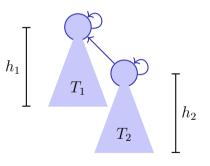
Observation

Theorem 30

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^h nodes.

Immediate consequence: runtime Find = $O(\log n)$.

Proof


Induction: by assumption, sub-trees have at least 2^{h_i} nodes. WLOG: $h_2 \leq h_1$

 $h_2 < h_1$:

$$h(T_1 \oplus T_2) = h_1 \Rightarrow g(T_1 \oplus T_2) \ge 2^h$$

 $h_2 = h_1$:

$$g(T_1) \ge g(T_2) \ge 2^{h_2}$$

 $\Rightarrow g(T_1 \oplus T_2) = g(T_1) + g(T_2) \ge 2 \cdot 2^{h_2} = 2^{h(T_1 \oplus T_2)}$

Further improvement

Link all nodes to the root when Find is called.

```
\begin{aligned} & \mathsf{Find}(i) \\ & j \leftarrow i \\ & \mathsf{while} \ (p[i] \neq i) \ \mathsf{do} \ i \leftarrow p[i] \\ & \mathsf{while} \ (j \neq i) \ \mathsf{do} \\ & \begin{vmatrix} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{aligned}
```

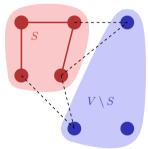
return i

Cost: amortised *nearly* constant (inverse of the Ackermann-function).⁴⁸

⁴⁸We do not go into details here.

Running time of Kruskal's Algorithm

- Sorting of the edges: $\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$. ⁴⁹
- lacktriangle Initialisation of the Union-Find data structure $\Theta(|V|)$
- $|E| \times \text{Union(Find}(x),\text{Find}(y))$: $\mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|)$.


Overal $\Theta(|E|\log|V|)$.

⁴⁹because G is connected: $|V| \le |E| \le |V|^2$

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

$$\begin{array}{l} A \leftarrow \emptyset \\ S \leftarrow \{v_0\} \\ \text{for } i \leftarrow 1 \text{ to } |V| \text{ do} \\ & \quad \text{Choose cheapest } (u,v) \text{ mit } u \in S, \, v \not \in S \\ & \quad A \leftarrow A \cup \{(u,v)\} \\ & \quad S \leftarrow S \cup \{v\} \; // \; \text{(Coloring)} \end{array}$$

Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Running time

Trivially $\mathcal{O}(|V|\cdot |E|)$. Improvement (like with Dijkstra's ShortestPath)

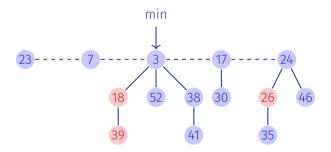
- With Min-Heap: costs
 - Initialization (node coloring) $\mathcal{O}(|V|)$
 - $|V| \times \text{ExtractMin} = \mathcal{O}(|V| \log |V|),$
 - lacksquare |E| imes Insert or DecreaseKey: $\mathcal{O}(|E|\log|V|)$,

$$\mathcal{O}(|E| \cdot \log |V|)$$

■ With a Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

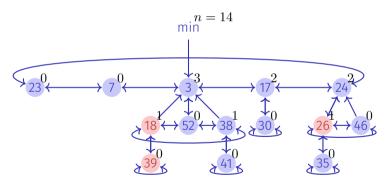
Fibonacci Heaps

Data structure for elements with key with operations


- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- \blacksquare Minimum(H): return a pointer to element m with minimal key
- **ExtractMin**(H): return and remove (from H) pointer to the element m
- Union (H_1, H_2) : return a heap merged from H_1 and H_2
- DecreaseKey(H, x, k): decrease the key of x in H to k
- Delete (H, x): remove element x from H

Advantage over binary heap?

	Binary Heap (worst-Case)	Fibonacci Heap (amortized)
MakeHeap Insert	$\Theta(1) \\ \Theta(\log n)$	$\Theta(1)$ $\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin Union	$\Theta(\log n) \ \Theta(n)$	$\Theta(\log n) \\ \Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$


Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
 - 1. Insert new element into root-list
 - 2. If key is smaller than minimum, reset min-pointer.
- Union (H_1, H_2)
 - 1. Concatenate root-lists of H_1 and H_2
 - 2. Reset min-pointer.
- Delete(H, e)
 - 1. DecreaseKey $(H, e, -\infty)$
 - 2. ExtractMin(H)

ExtractMin

- 1. Remove minimal node m from the root list
- 2. Insert children of m into the root list
- 3. Merge heap-ordered trees with the same degrees until all trees have a different degree:

Array of degrees a[0, ..., n] of elements, empty at beginning. For each element e of the root list:

- a Let g be the degree of e
- $\text{b If } a[g] = nil \text{: } a[g] \leftarrow e.$
- c If $e' := a[g] \neq nil$: Merge e with e' resulting in e'' and set $a[g] \leftarrow nil$. Set e'' unmarked. Re-iterate with $e \leftarrow e''$ having degree g+1.

DecreaseKey (H, e, k)

- 1. Remove e from its parent node p (if existing) and decrease the degree of p by one.
- 2. Insert(H, e)
- 3. Avoid too thin trees:
 - a If p = nil then done.
 - b If p is unmarked: mark p and done.
 - c If p marked: unmark p and cut p from its parent pp. Insert (H,p). Iterate with $p \leftarrow pp$.

Estimation of the degree

Theorem 31

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the ith child node has a degree of at least i-2.

Proof: p may have had more children and lost by cutting. When the ith child p_i was linked, p and p_i must at least have had degree i-1. p_i may have lost at least one child (marking!), thus at least degree i-2 remains.

Estimation of the degree

Theorem 32

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F: Fibonacci-Folge)

Proof: Let S_k be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_0=1$, $S_1=2$. With the previous theorem $S_k\geq 2+\sum_{i=0}^{k-2}S_i, k\geq 2$ (p and nodes p_1 each 1). For Fibonacci numbers it holds that (induction) $F_k\geq 2+\sum_{i=2}^kF_i, k\geq 2$ and thus (also induction) $S_k\geq F_{k+2}$. Fibonacci numbers grow exponentially fast $(\mathcal{O}(\varphi^k))$ Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked nodes in H not within the root-list, Potential function $\Phi(H) = t(H) + 2 \cdot m(H)$. At the beginnning $\Phi(H) = 0$. Potential always non-negative.

Amortized costs:

- Insert(H, x): t'(H) = t(H) + 1, m'(H) = m(H), Increase of the potential: 1, Amortized costs $\Theta(1) + 1 = \Theta(1)$
- Minimum(H): Amortized costs = real costs = $\Theta(1)$
- Union(H_1, H_2): Amortized costs = real costs = $\Theta(1)$

Amortized costs of ExtractMin

- \blacksquare Number trees in the root list t(H).
- Real costs of ExtractMin operation $\mathcal{O}(\log n + t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.
- Number of markings can only get smaller when trees are merged
- Thus maximal amortized costs of ExtractMin

$$\mathcal{O}(\log n + t(H)) + \mathcal{O}(\log n) - \mathcal{O}(t(H)) = \mathcal{O}(\log n).$$

Amortized costs of DecreaseKey

- Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs $\mathcal{O}(c)$
- c nodes are added to the root list
- lacktriangle Delete (c-1) mark flags, addition of at most one mark flag
- Amortized costs of DecreaseKey:

$$\mathcal{O}(c) + (t(H) + c) + 2 \cdot (m(H) - c + 2)) - (t(H) + 2m(H)) = \mathcal{O}(1)$$