26.8 A*-Algorithm

These slides contain the most important formalities around the A*-algorithm and its correctness. We motivate the algorithm in the lectures and give more examples there. Another nice motivation of the algorithm can found here: https://www.youtube.com/watch?v=bRvs8r0QU-Q

Prerequisites

- Positively weighted graph G = (V, E, c)
- G finite or δ -Graph: $\exists \ \delta > 0 : c(e) \ge \delta$ for all $e \in E$
- $\blacksquare \ s \in V \text{, } t \in V$
- Distance estimate $\hat{h}_t(v) \leq h_t(v) := \delta(v, t) \; \forall \; v \in V.$
- $\blacksquare \text{ Wanted: shortest path } p: s \rightsquigarrow t$

A*-Algorithm(G, s, t, \hat{h})

Input: Positively weighted Graph G = (V, E, c), starting point $s \in V$, end point $t \in V$, estimate $\hat{h}(v) \leq \delta(v, t)$

Output: Existence and value of a shortest path from s to t

return failure

Notation

Let f(v) be the distance of a shortest path from s to t via v, thus

let p be a shortest path from s to t. It holds that $f(s) = \delta(s, t)$ and f(v) = f(s) for all $v \in p$. Let $\hat{g}(v) := d[v]$ be an estimate of g(v) in the algorithm above. It holds that $\hat{g}(v) \ge g(v)$. $\hat{h}(v)$ is an estimate of h(v) with $\hat{h}(v) \le h(v)$.

Lemma 26

Let $u \in V$ and, at a time during the execution of the algorithm, $u \notin M$. Let p be a shortest path from s to u. Then there is a $u' \in p$ with $\widehat{g}(u') = g(u')$ and $u' \in R$.

The lemma states that there is always a node in the open set R with the minimal distance from s already computed and that belongs to a shortest path (if existing).

Illustration and Proof

Proof: If $s \in R$, then $\hat{q}(s) = q(s) = 0$. Therefore, let $s \notin R$. Let $p = \langle s = u_0, u_1, \dots, u_k = u \rangle$ and $\Delta = \{u_i \in p, u_i \in M, \hat{q}(u_i) = q(u_i)\}$. $\Delta \neq \emptyset$, because $s \in \Delta$. Let $m = \max\{i : u_i \in \Delta\}$, $u^* = u_m$. Then $u^* \neq u$, since $u \notin M$. Let $u' = u_{m+1}$. 1. $\hat{q}(u') < \hat{q}(u^*) + c(u^*, u')$ (construction of \hat{q}) 2. $\widehat{q}(u^*) = q(u^*)$ (because $u^* \in \Delta$) 3. $q(u') = q(u^*) + c(u^*, u')$ (because p optimal) 4. $\hat{g}(u') \ge g(u')$ (construction of \hat{g}) Therefore: $\hat{g}(u') = q(u')$ and thus also $u' \in R$.

Corollary 27

Wenn $\hat{h}(u) \leq h(u)$ für alle $u \in V$ und A*- Algorithmus hat noch nicht terminiert. Dann existiert für jeden kürzesten Pfad p von s nach t ein Knoten $u' \in p$ mit $\hat{f}(u') \leq \delta(s, t)$.

If there is a shortest path p from s to t, then there is always a node in the open set T that underestimates the overal distance and that is on the shortest path.

Proof of the Corollary

Proof:

From the lemma: $\exists u' \in p$ with $\widehat{g}(u') = g(u')$. Therefore:

$$\widehat{f}(u') = \widehat{g}(u') + \widehat{h}(u')$$
$$= g(u') + \widehat{h}(u')$$
$$\leq g(u') + h(u') = f(u')$$

Because p is shortest path: $f(u') = \delta(s, t)$.

Zulässigkeit

Theorem 28

Under the conditions stated on page 1498 the A*-algorithm is admissible: if there is a shortest path from s to t then A* terminates with $\hat{g}(t)=\delta(s,t)$

Proof: If the algorithm terminates, then it termines with t with $f(t) = \hat{g}(t) + 0 = g(t)$. That is because \hat{g} overestimates g at most and by the corollary above that algorithm always finds an element $v \in R$ with $f(v) \leq \delta(s, t)$.

The algorithm terminates in finitely many steps. For finite graphs the maximal number of relaxing steps is bounded.

45

⁴⁵For a δ -graph the maximum number of relaxing steps before R contains only nodes with $\hat{f}(s) > \delta(s,t)$ is limited as well. The exact argument can be found in the seminal article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic

Revisiting nodes

- The A*-algorithm can re-insert nodes that had been extracted from R before.
- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \hat{h} , in addition to being admissible ($\hat{h}(v) \leq h(v)$ for all $v \in V$), fulfils monotonicity, i.e. if for all $(u, u') \in E$:

$$\widehat{h}(u') \leq \widehat{h}(u) + c(u', u)$$

then the A*-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u, v) = c(u, v) + \hat{h}(u) - \hat{h}(v)$, and no node is re-inserted into R. It is not always possible to find monotone heuristics.