26.8 A*-Algorithm

Disclaimer

These slides contain the most important formalities around the A^{*}-algorithm and its correctness. We motivate the algorithm in the lectures and give more examples there.
Another nice motivation of the algorithm can found here: https://www.youtube.com/watch?v=bRvs8rOQU-Q

A*-Algorithm

Prerequisites

■ Positively weighted graph $G=(V, E, c)$
■ G finite or δ-Graph: $\exists \delta>0: c(e) \geq \delta$ for all $e \in E$
■ $s \in V, t \in V$
■ Distance estimate $\widehat{h}_{t}(v) \leq h_{t}(v):=\delta(v, t) \forall v \in V$.
■ Wanted: shortest path $p: s \rightsquigarrow t$

A*-Algorithm (G, s, t, \hat{h})

Input: Positively weighted Graph $G=(V, E, c)$, starting point $s \in V$, end point $t \in V$, estimate $\widehat{h}(v) \leq \delta(v, t)$
Output: Existence and value of a shortest path from s to t
foreach $u \in V$ do
$d[u] \leftarrow \infty ; \widehat{f}[u] \leftarrow \infty ; \pi[u] \leftarrow$ null
$d[s] \leftarrow 0 ; \widehat{f}[s] \leftarrow \widehat{h}(s) ; R \leftarrow\{s\} ; M \leftarrow\{ \}$
while $R \neq \emptyset$ do
$u \leftarrow \operatorname{ExtractMin}_{\widehat{f}}(R) ; M \leftarrow M \cup\{u\}$
if $u=t$ then return success
foreach $v \in N^{+}(u)$ with $d[v]>d[u]+c(u, v)$ do

$$
\begin{aligned}
& d[v] \leftarrow d[u]+c(u, v) ; \hat{f}[v] \leftarrow d[v]+\widehat{h}(v) ; \pi[v] \leftarrow u \\
& R \leftarrow R \cup\{v\} ; M \leftarrow M-\{v\}
\end{aligned}
$$

return failure

Notation

Let $f(v)$ be the distance of a shortest path from s to t via v, thus

$$
f(v):=\underbrace{\delta(s, v)}_{g(v)}+\underbrace{\delta(v, t)}_{h(v)}
$$

let p be a shortest path from s to t.
It holds that $f(s)=\delta(s, t)$ and $f(v)=f(s)$ for all $v \in p$.
Let $\widehat{g}(v):=d[v]$ be an estimate of $g(v)$ in the algorithm above. It holds that $\hat{g}(v) \geq g(v)$.
$\widehat{h}(v)$ is an estimate of $h(v)$ with $\widehat{h}(v) \leq h(v)$.

Why the Algorithm Works

Lemma 26

Let $u \in V$ and, at a time during the execution of the algorithm, $u \notin M$. Let p be a shortest path from s to u. Then there is a $u^{\prime} \in p$ with $\widehat{g}\left(u^{\prime}\right)=$ $g\left(u^{\prime}\right)$ and $u^{\prime} \in R$.
The lemma states that there is always a node in the open set R with the minimal distance from s already computed and that belongs to a shortest path (if existing).

Illustration and Proof

Proof: If $s \in R$, then $\widehat{g}(s)=g(s)=0$. Therefore, let $s \notin R$.
Let $p=\left\langle s=u_{0}, u_{1}, \ldots, u_{k}=u\right\rangle$ and $\Delta=\left\{u_{i} \in p, u_{i} \in M, \widehat{g}\left(u_{i}\right)=g\left(u_{i}\right)\right\}$.
$\Delta \neq \emptyset$, because $s \in \Delta$.
Let $m=\max \left\{i: u_{i} \in \Delta\right\}, u^{*}=u_{m}$. Then $u^{*} \neq u$, since $u \notin M$. Let $u^{\prime}=u_{m+1}$.

1. $\widehat{g}\left(u^{\prime}\right) \leq \widehat{g}\left(u^{*}\right)+c\left(u^{*}, u^{\prime}\right)$ (construction of \hat{g})
2. $\widehat{g}\left(u^{*}\right)=g\left(u^{*}\right)$ (because $u^{*} \in \Delta$)
3. $g\left(u^{\prime}\right)=g\left(u^{*}\right)+c\left(u^{*}, u^{\prime}\right)$ (because p optimal)
4. $\hat{g}\left(u^{\prime}\right) \geq g\left(u^{\prime}\right)$ (construction of \hat{g})

Therefore: $\widehat{g}\left(u^{\prime}\right)=g\left(u^{\prime}\right)$ and thus also $u^{\prime} \in R$.

Corollary

Corollary 27

Wenn $\widehat{h}(u) \leq h(u)$ für alle $u \in V$ und A^{*} - Algorithmus hat noch nicht terminiert. Dann existiert für jeden kürzesten Pfad p von s nach t ein Knoten $u^{\prime} \in p$ mit $\hat{f}\left(u^{\prime}\right) \leq \delta(s, t)$.
If there is a shortest path p from s to t, then there is always a node in the open set T that underestimates the overal distance and that is on the shortest path.

Proof of the Corollary

Proof:

From the lemma: $\exists u^{\prime} \in p$ with $\widehat{g}\left(u^{\prime}\right)=g\left(u^{\prime}\right)$.
Therefore:

$$
\begin{aligned}
\widehat{f}\left(u^{\prime}\right) & =\widehat{g}\left(u^{\prime}\right)+\widehat{h}\left(u^{\prime}\right) \\
& =g\left(u^{\prime}\right)+\widehat{h}\left(u^{\prime}\right) \\
& \leq g\left(u^{\prime}\right)+h\left(u^{\prime}\right)=f\left(u^{\prime}\right)
\end{aligned}
$$

Because p is shortest path: $f\left(u^{\prime}\right)=\delta(s, t)$.

Zulässigkeit

Theorem 28

Under the conditions stated on page 1498 the A^{*}-algorithm is admissible: if there is a shortest path from s to t then A^{*} terminates with $\hat{g}(t)=\delta(s, t)$

Proof: If the algorithm terminates, then it termines with t with $f(t)=\widehat{g}(t)+0=g(t)$. That is because \widehat{g} overestimates g at most and by the corollary above that algorithm always finds an element $v \in R$ with $f(v) \leq \delta(s, t)$.
The algorithm terminates in finitely many steps. For finite graphs the maximal number of relaxing steps is bounded.
45
${ }^{45}$ For a δ-graph the maximum number of relaxing steps before R contains only nodes with $\hat{f}(s)>\delta(s, t)$ is limited as well. The exact argument can be found in the seminal article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic

Revisiting nodes

■ The A*-algorithm can re-insert nodes that had been extracted from R before.

- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
- If \widehat{h}, in addition to being admissible $(\widehat{h}(v) \leq h(v)$ for all $v \in V)$, fulfils monotonicity, i.e. if for all $\left(u, u^{\prime}\right) \in E$:

$$
\widehat{h}\left(u^{\prime}\right) \leq \widehat{h}(u)+c\left(u^{\prime}, u\right)
$$

then the A^{*}-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u, v)=c(u, v)+\widehat{h}(u)-\widehat{h}(v)$, and no node is re-inserted into R.
■ It is not always possible to find monotone heuristics.

