
26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm
[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

742

River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 42

K K K

M M M
B

42There are slight variations of this problem. It is equivalent to the jealous husbands
problem.

743

Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer

744

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

745

Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

746

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

747

Route Finding

Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
748

Simplest Case
Constant edge weight 1 (wlog)
Solution: Breadth First Search

S

t

749

Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) := ∑k−1

i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

750

Shortest Paths

Notation: we write
u

p
 v oder p : u v

and mean a path p from u to v
Notation: δ(u, v) = weight of a shortest path from u to v:

δ(u, v) =

∞ no path from u to v
min{c(p) : u p

 v} otherwise

751

Observations (1)

It may happen that a shortest paths does not exist: negative cycles can
occur.

s u

v

w

t
1

1

−1

−1

1

1

752

Observations (2)

There can be exponentially many paths.

s

t
(at least 2|V |/2 paths from s to t)

⇒ To try all paths is too ine�cient

753

Observations (3)

Triangle Inequality
For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u

754

Observations (4)

Optimal Substructure
Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉 be a
shortest path from v0 to vk. Then each of the sub-paths pij = 〈vi, . . . , vj〉
(0 ≤ i < j ≤ k) is a shortest path from vi to vj .

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.

755

Observations (5)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).

756

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V

757

General Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relaxiere (u, v):
if ds[v] > d[u] + c(u, v) then

ds[v]← ds[u] + c(u, v)
πs[v]← u

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

758

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

759

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

759

Central Question

How / in which order should edges be chosen in above algorithm?

760

Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4

−3

1

−1

2

−2

2

−2

2

3

−1

0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
761

Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4

−3

1

−1

2

−2

2

−2

2

3

−1
0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
761

Assumption (preliminary)

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.

762

Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further

763

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

764

Induction

Induction over |M |: choose nodes from R
with smallest upper bound. Add r to M and
update R and U accordingly.

Correctness: if within the “wavefront” a node
with minimal weight w has been found then
no path over later nodes (providing weight ≥
d) can provide any improvement.

s

2

2

5

3

5

2

1

2

765

Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}

766

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
s

M = {s}

R = {}

U = {a, b, c, d, e}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

M = {s}

R = {a, b}

U = {c, d, e}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

M = {s, a}

R = {b, c}

U = {d, e}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}

R = {c, d}

U = {e}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

M = {s, a, b, d}

R = {c, e}

U = {}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6

M = {s, a, b, d, e}

R = {c}

U = {}

767

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6
c

M = {s, a, b, d, e, c}

R = {}

U = {}

767

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!

768

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
768

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).43

43For lazy deletion a pair of egde (or target node) and distance is required.
769

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes

alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).43

43For lazy deletion a pair of egde (or target node) and distance is required.
769

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes

alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).43

43For lazy deletion a pair of egde (or target node) and distance is required.
769

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).43

43For lazy deletion a pair of egde (or target node) and distance is required.
769

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime O(|E|+ |V | log |V |).

770

General Weighted Graphs
Relaxing Step as before but with a return value:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds[u] + c(u, v) < ds[v] then

ds[v]← ds[u] + c(u, v)
πs[v]← u
return true

return false

s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a shortest
path is not guaranteed to exist.

771

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

772

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n− 1 iterations. If still changes, then there
is no shortest path.

773

Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)
if f = false then return true

return false;

Runtime O(|E| · |V |).
774

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.
|V |× Application of Dijkstra’s Shortest Path algorithm O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!

775

Induction via node number

Consider weights of all shortest paths Sk with intermediate nodes in44

V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1 with
intermediate nodes in V k−1 are given.
vk no intermediate node of a shortest path of vi vj in V k: Weight of a
shortest path vi vj in Sk−1 is then also weight of shortest path in Sk.
vk intermediate node of a shortest path vi vj in V k: Sub-paths vi vk

and vk vj contain intermediate nodes only from Sk−1.

44like for the algorithm of the reflexive transitive closure of Warshall
776

DP Induction

dk(u, v) = Minimal weight of a path u v with intermediate nodes in V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)
d0(u, v) = c(u, v)

777

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V,E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

778

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.
The following does not work. The graphs are not equivalent in terms of
shortest paths.

s

t

u

v

1

1

1

1

−1 c→c+2=⇒ s’

t’

u’

v’

3

3

3

3

1

779

Reweighting

Other Idea: “Potential” (Height) on the nodes
G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V)

780

Reweighting

Observation: A path p is shortest path in in G = (V,E, c) i� it is shortest
path in in G̃ = (V,E, c̃)

c̃(p) =
k∑

i=1
c̃(vi−1, vi) =

k∑
i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑

i=1
c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0 vk ⇐⇒ c(p) minimal in all v0 vk .
Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)

781

Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)
V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V)

782

Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.

783

Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)

784

Analysis

Runtimes
Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))

785

	Shortest Paths
	Motivation
	Constant Edge Weights
	General Algorithm
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Floyd-Warshall Algorithm
	Johnson Algorithm

