
26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm
[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]
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River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 42

K K K

M M M
B

42There are slight variations of this problem. It is equivalent to the jealous husbands
problem.
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Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer
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The whole problem as a graph
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Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8
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Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8
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Route Finding

Provided cities A - Z and Distances between cities.

A

B

C

D

E
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G

H

I Z
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7
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7 4
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10

5

What is the shortest path from A to Z?
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Simplest Case
Constant edge weight 1 (wlog)
Solution: Breadth First Search

S

t
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Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) := ∑k−1

i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9
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Shortest Paths

Notation: we write
u

p
 v oder p : u v

and mean a path p from u to v
Notation: δ(u, v) = weight of a shortest path from u to v:

δ(u, v) =

∞ no path from u to v
min{c(p) : u p

 v} otherwise
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Observations (1)

It may happen that a shortest paths does not exist: negative cycles can
occur.

s u

v

w

t
1

1

−1

−1

1

1
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Observations (2)

There can be exponentially many paths.

s

t
(at least 2|V |/2 paths from s to t)

⇒ To try all paths is too ine�cient
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Observations (3)

Triangle Inequality
For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u
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Observations (4)

Optimal Substructure
Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉 be a
shortest path from v0 to vk. Then each of the sub-paths pij = 〈vi, . . . , vj〉
(0 ≤ i < j ≤ k) is a shortest path from vi to vj .

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.
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Observations (5)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).
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Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V
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General Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relaxiere (u, v):
if ds[v] > d[u] + c(u, v) then

ds[v]← ds[u] + c(u, v)
πs[v]← u

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)
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It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)
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Central Question

How / in which order should edges be chosen in above algorithm?
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Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4
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−1

2

−2

2

−2

2

3

−1

0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
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Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order
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Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
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Assumption (preliminary)

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.
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Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further
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Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2
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Induction

Induction over |M |: choose nodes from R
with smallest upper bound. Add r to M and
update R and U accordingly.

Correctness: if within the “wavefront” a node
with minimal weight w has been found then
no path over later nodes (providing weight ≥
d) can provide any improvement.

s

2

2

5

3

5

2

1

2
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Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}
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Example

s
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c

d

e
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1

3

1

1
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Example
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∞

∞

∞
s

M = {s}

R = {}

U = {a, b, c, d, e}
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Example
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Example
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Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
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DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).43

43For lazy deletion a pair of egde (or target node) and distance is required.
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Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime O(|E|+ |V | log |V |).
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General Weighted Graphs
Relaxing Step as before but with a return value:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds[u] + c(u, v) < ds[v] then

ds[v]← ds[u] + c(u, v)
πs[v]← u
return true

return false

s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a shortest
path is not guaranteed to exist.
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Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.
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Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
... ... ... ... ... ...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n− 1 iterations. If still changes, then there
is no shortest path.
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Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)
if f = false then return true

return false;

Runtime O(|E| · |V |).
774



All shortest Paths

Compute the weight of a shortest path for each pair of nodes.
|V |× Application of Dijkstra’s Shortest Path algorithm O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!
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Induction via node number

Consider weights of all shortest paths Sk with intermediate nodes in44

V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1 with
intermediate nodes in V k−1 are given.
vk no intermediate node of a shortest path of vi  vj in V k: Weight of a
shortest path vi  vj in Sk−1 is then also weight of shortest path in Sk.
vk intermediate node of a shortest path vi  vj in V k: Sub-paths vi  vk

and vk  vj contain intermediate nodes only from Sk−1.

44like for the algorithm of the reflexive transitive closure of Warshall
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DP Induction

dk(u, v) = Minimal weight of a path u v with intermediate nodes in V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)
d0(u, v) = c(u, v)
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DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V,E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).
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Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.
The following does not work. The graphs are not equivalent in terms of
shortest paths.

s

t

u

v

1

1

1

1

−1 c→c+2=⇒ s’

t’

u’

v’

3

3

3

3

1
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Reweighting

Other Idea: “Potential” (Height) on the nodes
G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V )
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Reweighting

Observation: A path p is shortest path in in G = (V,E, c) i� it is shortest
path in in G̃ = (V,E, c̃)

c̃(p) =
k∑

i=1
c̃(vi−1, vi) =

k∑
i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑

i=1
c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0  vk ⇐⇒ c(p) minimal in all v0  vk .
Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)
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Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)
V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V )
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Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the shortest
paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.
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Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)
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Analysis

Runtimes
Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))
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