25. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting,
Reflexive transitive closure, Connected components [Ottman/Widmayer,
Kap. 91 - 9.4,Cormen et al, Kap. 22]

683

Konigsberg 1736

684

Konigsberg 1736

KONINGSBERGA

684

—_——

—

[Multi]Graph

[Multi]Graph

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once? ()‘\

686

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

686

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

m Such a cycle is called Eulerian path. A D

686

m s there a cycle through the town (the graph)

that uses each bridge (each edge) exactly C
once?
m Euler (1736): no.

m Such a cycle is called Eulerian path. A D

m Eulerian path < each node provides an even
number of edges (each node is of an even ()
degree).
‘=" Is straightforward, “<" ist a bit more difficult but B
still elementary.

686

AN
<

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{1, 2}, {17 3}, {2, 3}, {2,4}, FE :{(1, 3), (2, 1), (2, 5), (3, 2),

{2,5},{3,4},{3,5}, {4,5}} (3,4),(4,2),(4,5),(5,3)}

687

Notation

A directed graph consists of a set V = {1, ...,v,} of nodes (Vertices) and
aset E CV xV of Edges. The same edges may not be contained more

than once.
M @

e—® %

loop

688

Notation

An undirected graph consists of a set V = {vy,...,v,} of nodes a and a
set £ C {{u,v}|u,v € V} of edges. Edges may bot be contained more than

once.”

undirected graph

“IAs opposed to the introductory example - it is then called multi-graph.
689

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise different nodes is called complete.

a complete undirected graph

690

A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in Wis called bipartite.

691

A weighted graph G = (V, F, ¢) is a graph G = (V, E)) with an edge weight
function ¢ : £ — R. ¢(e) is called weight of the edge e.

692

For directed graphs G = (V, E)
m w e Viscalled adjacenttov € V, if (v,w) € E

693

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € E

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: N*(v) := {u € V|(v,u) € E}

693

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = [N T (v)|

N, @

deg™ (v) = 3, deg™t (v) = 2 deg™ (w) =1, deg® (w) =1

694

For undirected graphs G = (V, E):
m w e Viscalled adjacenttov € V, if {v,w} € FE

695

For undirected graphs G = (V, E):
m w e Viscalled adjacenttov € V, if {v,w} € FE
m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

695

For undirected graphs G = (V, E):

m w e Viscalled adjacenttov € V, if {v,w} € FE

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) =2

695

Ip between node

For each graph G = (V, E) it holds
1. Yper deg™ (v) = e degt (v) = |E|, for G directed
2. Y ,ey deg(v) = 2|E|, for G undirected.

696

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to v;;; .

697

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to v;;; .

m Length of a path: number of contained edges k.

697

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to v;;; .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): =%, ¢((vi, vit1)) (bzw.
Zf:l c({vi, vi1}))

697

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to v;;; .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): =%, ¢((vi, vit1)) (bzw.
Zf:l c({vi, Ui+1}))

m Simple path: path without repeating vertices

697

Connectedness

m An undirected graph is called connected, if for eacheach pairv,w e V
there is a connecting path.

m A directed graph is called strongly connected, if for each pair v,w € V
there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

698

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = MVI=D (undirected)

m Maximally |E| = |V|? (directed),|E| = YEWHD (undirected)

699

m Cycle: path (v, ..., vk1) With v = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

700

Representation using a Matrix

Graph G = (V, E) with nodes v; ..., v, stored as adjacency matrix
Ag = (ai)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption ©(|V|?). Ag is symmetric, if G undirected.

701

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v,
provide much less than n? edges. Represen- ol [o] [o
tation with adjacency list: Array A[1], ..., A[n],
A; comprises a linked list of nodes in Nt (v;).

Memory Consumption O(|V| + | E]).

702

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V'
find v € V without neighbour/successor
(u,v) € E7?

Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n)

find v € V without neighbour/successor
(u,v) € E7?
Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor
(u,v) € E7?
Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor = ©(n?)
(u,v) € E7?
Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7?
Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)
find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? o(1)

Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)
find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge O(1)

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge (1) (1)

Delete edge

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge (1) (1)
Delete edge O(1)

703

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge (1) (1)
Delete edge O(1) O(deg’v)

703

Depth First Search

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

NG N . .
P, "¢ Adjazenzliste

N

a b ¢ d e f h i
N ol b Lo
Xe) s(f b ¢ f e b h e
T l | |
d f i
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

NG N . .
P, "¢ Adjazenzliste

N

a| b ¢ d e f h i
N ool b Lo
Xe) s(f b ¢ f e b h e
T l | |
d f i
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

nE Adjazenzliste
a| b ¢ d e f h i
| A A Lo

NI bl c f e b h e
I | |
d f i
|

G—— :

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° nE Adjazenzliste
allb| c d e f h i
N | A A A o
d ¥ e S f bl c f e b h e
</
T) | |
d f i
|

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° nE Adjazenzliste
allb| c d e f h i
N | A A o
d ¥ e S f bilc| f e b h e
</
T) | |
d f i
|

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° » Adjazenzliste
allb|lc|d e f h i
N | R A o
d ¥ e S f bilc| f e b h e
</
T) | |
d f i
|

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

° » Adjazenzliste
allb|lc|d e f h i
N | T A o
d ¥ e S f bilcl| fle b h e
</
T) | |
d f i
|

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>e » Adjazenzliste

allb|lc|d e |f h i
N | Vo
d M e > bilcl| fle b h e
N
T) | |
d f 1
!

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>e » Adjazenzliste

allb|lc|d e |f h i
N | Vo
d M e > bilcl| fle b h e
N
T) | |
d f 1
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>e » Adjazenzliste

allb|lcl|dl| e|f h i
N | N A Vol
e > bilc||fle b h e
T) | |
d f 1
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
>e » Adjazenzliste

allb|lcl|dl| e|f h i
N | Vol
e > bic| file]|b h e
T) | |
d f 1
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e 7 Adjazenzliste

b c d e

|

y > c|lfille]d
|

f

\
7
D «— QU [O

—

S — D —

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e 7 Adjazenzliste

b c d e

Vool b

y > c|lfille] b
'

f

\
?
D «— QU [O

—

S — D —

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e 7 Adjazenzliste

allbilc|d]|elf h i
| Vol
y > bilc| filelbd h e
T) y |
d f i
l

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e 7 Adjazenzliste

allbilc|d]|elf h i
| Vol
y > bilc| filelbd h e
T) y |
d f i
)

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e 7 Adjazenzliste

allb|lc|dlfel| fllg]|r
| | [
y > bilc| filelbd h e
T) } |
d f i
0—— [

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
e 7 Adjazenzliste

allb|lc|dlfel| fllg]|r
| | |
y > bilc| filelbd h| e
T) } |
d f i
0—— .

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » Adjazenzliste

allbijlc|d|lelflal|hr]|:
| Vo
y > bllelfflelbd h| e
T) | |
d f i
)
o—0 ¢ :

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

>e » Adjazenzliste

allbijlc|d|lelflal|hr]|:
| Vo
y > bllelfflelbd hi e
T) | !
d f i
)
o—0—0C :

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e » Adjazenzliste
allbjlc|d|lelflalrl|:
| | vl

y > bilc| filelbd h| e

T) } !

d f i
)

y > B

o0 -0

Order a,b,c, f,d,e, g, h,i

705

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

e » Adjazenzliste
allbjlc|d|lelflalrl|:
| | vl

y > bilc| filelbd h| e

T) } }

d f i
)

y > B

o0 -0

Order a,b,c, f,d,e, g, h,i

705

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered and entirely processed.

706

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V, E), Knoten v.

v.color < grey
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without recursion):
O(deg™ v)

707

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + Lyev(deg™(v) + 1)) = (V] + | E]).

708

lterative DFS-Visit(G, v)

Input: graph G = (V, E), v € V with v.color = white

Stack S < 0
v.color < grey; S.push(v) // invariant: grey nodes always on stack
while S # () do

w <— nextWhiteSuccessor(v) // code: next slide

if w # null then

w.color < grey; S.push(w)
V4= w // work on w. parent remains on the stack
else

v.color < black // no grey successors, v becomes black

if S # () then
v+ S.pop() // visit/revisit next node
if v.color = grey then S.push(v)

L - Memory Consumption Stack ©(|V])

709

nextWhiteSuccessor(v)

Input: nodev eV
Output: Successor node u of v with u.color = white, null otherwise

foreach u € N*(v) do
if u.color = white then
L return u

return null

710

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge
m Grey node: Zyklus (“back-egde”)
m Black node: forward- / cross edge

m

Breadth First Search

R %Zou

oSu senbergstr.

7.
‘ , ! Zirichbergstr.
E
O
aus
M S
7

bBergstatian

000
&
A
OHdlderlinsteig <l §
%510,

“50

712

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

’@ nE Adjazenzliste
b ¢ d e f i
ol [
,\e> o f c f e b b
A~ i
f

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

’@ nE Adjazenzliste
b ¢ d e f i
ol [
,\e> o f c f e b b
A~ i
f

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjazenzliste

b
Vol
f

C e

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjazenzliste

b
Vol
f

C e

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjazenzliste

b
Vol
f

C e

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjazenzliste
allb|c d e f i
R A A Lo
d >\‘e\> s f lj c f e [j h i
d f
D—m—O [

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjazenzliste
allb|c d e f i
N A A Lo
d >\‘e\> s f lj c| f e [j h i
d f
D—m—O [

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjazenzliste

a |l b c |d| e f 7

N A A Vo
>\e> NG blle|l f e b hooi
A~ i i

d f

)

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

° nE Adjazenzliste

a |l b c |d| e f 7

| A Vo
>\e> NG blle| flelod hooi
A~ i i

d f

)

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e nE Adjazenzliste

a |l b c |die]| f 7

| A [
y i bilcl| flel|bd h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e nE Adjazenzliste

a |l b c |die]| f 7

| A [
y i bilcl| flelbd h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e nE Adjazenzliste

a |l b c |die]| f 7

| A [
y i bilcl| flelbd h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjazenzliste

a |l b clldlle] f 7

| [
y i bilcl| flelbd h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjazenzliste

a |l b clldlle] f 7

| [
y i bilcl| flel®d h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjazenzliste

a |l b clldilell f 7

| [
y > bilcl| flel®d h i
A i i

d /

J

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjazenzliste
allbfcl|dlel fllg| hn i
| [
y > bilcl| flel®d h i
A i i
d /
J
o—+—o |

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

e » Adjazenzliste
allbfcl|dlel fllg| hn i
| |
y > bilcl| flel®d h| i
A i i
d /
J
o — .

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

>e » Adjazenzliste

bllc|d|ellflI9]|n]| ¢
Vv Vo
y > cll fllelbd h| i
|
f

\
7
O [U [S R

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

>e » Adjazenzliste

bllc|d|ellflI9]|n]| ¢
Vv Vo
y > cll fllelbd h| i
|
f

\
7
O [U [S R

713

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

>e » Adjazenzliste

allbllcl|dl|lel fIl9g
|)
y > bllelfflelbd h
T) y
d /
)
o —0 0 :

Order a,b,d,e,c, f, g, h,i

713

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)
Queue Q <+ 0

v.color < grey
enqueue(Q,v)
while Q # () do
w <+ dequeue(Q)
foreach c € N (w) do
if c.color = white then
c.color < grey

~enqueue(Q, ¢)

w.color < black

Algorithm requires extra space of O(|V]).

74

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘ v.color < white

foreach v € V do
if v.color = white then

. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: ©(|V| + | E|).

715

Topological Sorting

o . [
AZRERBLE R @ HT =
i s ey Pl gl e Daet Lnap bt o > e
Er Time” R g™ Funcims | Mg 8 > indow o

8 ColelateNow

16 = £
A B C D E F G H |
1 Task 1 Task 2 Task 3 Task 4 Total Note
2 TOTAL 8 8 16 16
3 Arleen 3 5 15} S 4
4 Hans t 3 2 3 X;\\ 1.5
5 Mike 7 5 4 18 3
6 |Selina 6 5 8 2 2% 3.5 |
7
8 Durchschnitt 18 3
9
10
11
12
13
14

Evaluation Order?

716

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping
ord: V = {1,...,|V|}
such that
ord(v) < ord(w) V (v,w) € E.

Identify i with Element v; := ord (¢). Topological sorting = (vy,...,v).

7

(Counter-)Examples

0 e >
@ D o> D
H—@ arend > ot (i)

Cyclic graph: cannot be sorted topo- A possible toplogical sorting of the graph:
logically. Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,

718

Observation

Theorem 22

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

719

Observation

Theorem 22

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

Proof “=": If G contains a cycle it cannot permit a topological sorting,
because in a cycle (v;,,...,v;,,) itwould hold that v;, < -+ <w;,, < ;.

719

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.

720

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically

720

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.
m Hypothesis: Graph with n nodes can be sorted topologically

m Step (n — n+ 1)

720

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically

m Step (n — n+ 1)

1. G contains a node v, with in-degree deg™ (v4) = 0. Otherwise iteratively
follow edges backwards - after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

720

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n+ 1)

1. G contains a node v, with in-degree deg™ (v4) = 0. Otherwise iteratively
follow edges backwards - after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) - 1.

720

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1

1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

Worst case runtime:

1

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1

1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

Worst case runtime:

71

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.

Worst case runtime:

71

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1

1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.
4. Remove v, and his edges from G.

Worst case runtime:

71

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.

4. Remove v, and his edges from G.

5. 1fV#£0,thend < d+1,¢gotostep 1.
Worst case runtime:

1

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.

4. Remove v, and his edges from G.

5. 1fV#£0,thend < d+1,¢gotostep 1.
Worst case runtime:

1

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.

4. Remove v, and his edges from G.

5. 1fV#£0,thend < d+1,¢gotostep 1.
Worst case runtime: O(|V]?).

1

Improvement

ldea?

722

Improvement

ldea?
Compute the in-degree of all nodes in advance and traverse the nodes
with in-degree 0 while correcting the in-degrees of following nodes.

722

Algorithm Topological-Sort(G)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S «+ 0
foreach v € V do A[v] < 0
foreach (v, w) € E do A[w] < A[w] +1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
1< 1
while S # () do

v < pop(S); ord[v] «i; i < i+ 1 // Choose node with in-degree 0

foreach (v,w) € E do // Decrease in-degree of successors

Alw] Alw] — 1
L if Ajw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

723

Algorithm Correctness

Theorem 23

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime ©(|V| + | E|).

724

Algorithm Correctness

Theorem 23

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime ©(|V| + | E|).

Proof: follows from previous theorem:
1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] < i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

724

Algorithm Correctness

Theorem 24

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V'| + | E|) steps and detects a cycle.

725

Algorithm Correctness

Theorem 24

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V'| + | E|) steps and detects a cycle.

Proof: let (v;,,...,v;,) be a cycle in G. In each step of the algorithm remains
Alv;,] > 1forallj =1,...,k Thus k nodes are never pushed on the stack und
therefore at the end it holds that: <V +1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E|).

725

Alternative: Algorithm DFS-Topsort(G, v)

Input: graph G = (V, E), node v, node list L.
if v.color = grey then
. stop (Cycle)

if v.color = black then
‘ return

v.color < grey
foreach w € N*(v) do
. DFS-Topsort(G, w)

v.color < black
Add v to head of L

Call this algorithm for each node that has not yet been visited. Asymptotic
Running Time O(|V|+ |E|).

726

)
(®)
-

o
(©)
—

o
x

-
+
(40}

=
>
o
[
(D}
(®)

.©

©
<<

727

Interpretation

Theorem 25

Let G = (V, E) beagraph and k € N. Then the element al(f“j) of the matrix
(aﬁ?)lgi,jgn = (Ag)* provides the number of paths with length k from v;
to (3

728

By Induction.

Base case: straightforward for k =1. q; ; = al(lj). (1)

Hypothesis: claim is true for all & <1 ’
Step (I — [+ 1) @
(l+1 i

ap; = 1 iff egde k to j, 0 otherwise. Sum counts the number paths of
length [from node v; to all nodes v, that provide a direct direction to
node vj, i.e. all paths with length [4 1.

729

Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path?

730

Example: Shortest Path

Question: is there a path from i to j? How long is the shortest path?
Answer: exponentiate Ag until for some k < n it holds that aﬁ? > 0. k

provides the path length of the shortest path. If ag,’j-) =0foralll1 <k <n,
then there is no path from i to j.

730

Example: Number triangles

Question: How many triangular path does an undirected graph contain?

731

Example: Number triangles

Question: How many triangular path does an undirected graph contain?

Answer: Remove all cycles (diagonal entries). Compute A, a§§> determines
the number of paths of length 3 that contain i.

00111 4 4 8 8 8
00111 4 4 8 8 8
11011 =1 8 8 8 8 8
11100 8§ 8 8 4 4
11100 8§ 8 8 4 4

731

Example: Number triangles

Question: How many triangular path does an undirected graph contain?

Answer: Remove all cycles (diagonal entries). Compute A, a§§> determines
the number of paths of length 3 that contain 4. There are 6 different
permutations of a triangular path. Thus for the number of triangles:

?zla’z('?)/a
0011 1\° 4 4 8 8 8
00111 448 8 8
11011 =|28282838S3 :.24/k6—4
11100 8 8 8 4 4 reiecke.
11100 8 8 8 4 4

731

Given a finite set V

(Binary) Relation R on V: Subset of the cartesian product
VxV={(ablacV,beV}

Relation R C V x V is called

m reflexive, if (v,v) € RforallveV

m symmetric, if (v,w) € R = (w,v) € R

m transitive, if (v,2) € R, (z,w) € R= (v,w) € R

The (Reflexive) Transitive Closure R* of R is the smallest extension
R C R* CV x V such that R* is reflexive and transitive.

732

Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation ECV x V over V

733

Graphs and Relations

Graph G = (V, E)
adjacencies Ag = Relation ECV x V over V

m reflexive < a;; = 1 foralli=1,...,n. (loops)
m symmetric < a;; = a;, forall4,j =1,...,n (undirected)
m transitive < (u,v) € E, (v,w) € E = (u,w) € E. (reachability)

733

Example: Equivalence Relation

Equivalence relation < symmetric, transitive, reflexive relation <
collection of complete, undirected graphs where each element has a loop.

Example: Equivalence classes of the numbers
{0,...,7} modulo 3

734

Reflexive Transitive Closure

Reflexive transitive closure of G < Reachability relation £*: (v,w) € E*
iff 3 path from node v to w.

01001 L
000 1 0 01110
0100 0 01110
0010 0 01110
000 10 0 L 1 11

735

Computation of the Reflexive Transitive Closure

Goal: Computation of B = (bij>1§i,j§n with bij =1 (Ui, Uj) € E*
Observation: a;; = 1 already implies (v;,v;) € E*.

736

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;j)1<ij<n With b;; = 1 < (v;,v;) € E*
Observation: a;; = 1 already implies (v;,v;) € E*.

First idea:

m Start with B < A and set b; = 1 for each i (Reflexivity.).

m [terate over i, j,k and set b;; = 1, if by, = 1 and by; = 1. Then all paths
with lenght 1 and 2 taken into account.

m Repeated iteration = all paths with length 1...4 taken into account.
m [log, n] iterations required. = running time n3[log, n]

736

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node wvy.

S OO O =
OO = O =
O = O OO
_ o O = O
o OO O

737

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : ¢ < k}. Add
node wvy.

S OO O =
O O ==
oOR O oo
—_ O = =
[l el el

737

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node w.

SO O O
O =
O = = O O
—_ O = =
OO OO

737

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node .

11 1 11
01 110
01 1 10
0O 1 1 10
01 1 10

737

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}. Add
node .

S OO O
= e e
I T e T =
e T T
—_o o o

737

Algorithm TransitiveClosure(A¢)

Input: Adjacency matrix Ag = (aij)ij=1..n
Output: Reflexive transitive closure B = (bi;); j=1..n of G

B + AG
for k + 1 ton do
agp <+ 1 // Reflexivity
for i< 1 tondo
for j < 1tondo
L ‘ bij — max{bij, bk - bkj} // All paths via vy,

return B

Runtime ©(n?).

738

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in A considered.
m Hypothesis: invariant (k) fulfilled.

m Step (k — k + 1): For each path from v; to v; via nodes with maximal
index k: by the hypothesis b;, = 1 and by; = 1. Therefore in the k-th
iteration: b;; < 1.

(v<t) (V<)

739

Connected Components

Connected components of an undirected graph G: equivalence classes of
the reflexive, transitive closure of G. Connected component = subgraph
G' = (V' FE), E' ={{v,w} € Elv,w € V'} with

{{v,wy e ElveV'vweV'}=FE={{v,w} € Elve V' AweV'}

a—ae ©

Graph with connected compo-
9 G nents {1,2,3,4}, {5,7}, {6}.

740

Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
Vvl?) Vk
m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each new
start of DFSSearch(G, v) or BFSSearch(G,v) a new empty connected
component is created and all nodes being traversed are added.

74

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting
	Graphs and Relations
	Connected Components

