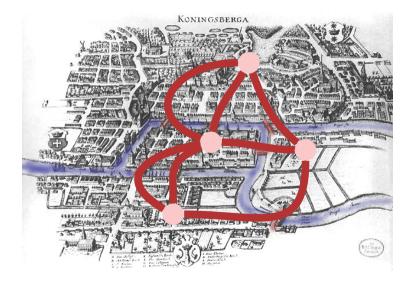
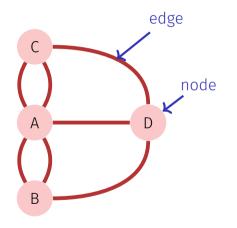
25. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting , Reflexive transitive closure, Connected components [Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

Königsberg 1736



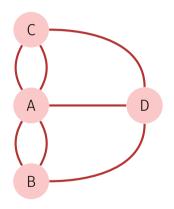
[Multi]Graph

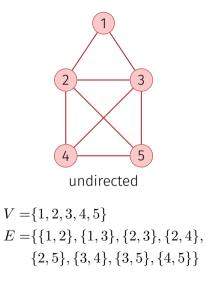


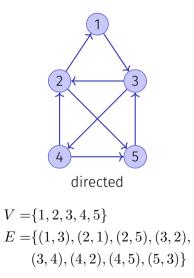
Cycles

- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a cycle is called Eulerian path.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an *even degree*).

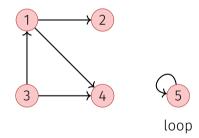
' \Rightarrow " is straightforward, " \Leftarrow " ist a bit more difficult but still elementary.



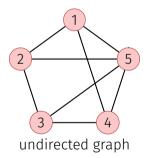




A **directed graph** consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.

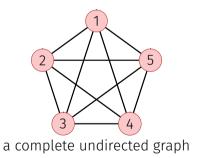


An **undirected graph** consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes a and a set $E \subseteq \{\{u, v\} | u, v \in V\}$ of edges. Edges may bot be contained more than once.⁴¹

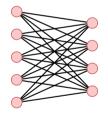


⁴¹As opposed to the introductory example – it is then called multi-graph.

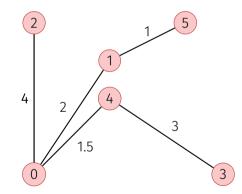
An undirected graph G = (V, E) without loops where E comprises all edges between pairwise different nodes is called **complete**.



A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called **bipartite**.



A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge weight function $c : E \to \mathbb{R}$. c(e) is called weight of the edge e.



For directed graphs G = (V, E)

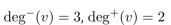
• $w \in V$ is called adjacent to $v \in V$, if $(v, w) \in E$

■ Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$



For directed graphs G = (V, E)

■ In-Degree: deg⁻(v) = |N⁻(v)|,
 Out-Degree: deg⁺(v) = |N⁺(v)|



$$\deg^{-}(w) = 1, \deg^{+}(w) = 1$$

For undirected graphs G = (V, E):

- $w \in V$ is called **adjacent** to $v \in V$, if $\{v, w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- **Degree** of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

Relationship between node degrees and number of edges

For each graph G = (V, E) it holds

- 1. $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$, for G directed
- 2. $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

Paths

- **Path**: a sequence of nodes $\langle v_1, \ldots, v_{k+1} \rangle$ such that for each $i \in \{1 \ldots k\}$ there is an edge from v_i to v_{i+1} .
- **Length** of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^{k} c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^{k} c(\{v_i, v_{i+1}\}))$
- **Simple path**: path without repeating vertices

Connectedness

- An undirected graph is called **connected**, if for each each pair $v, w \in V$ there is a connecting path.
- A directed graph is called **strongly connected**, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called **weakly connected**, if the corresponding undirected graph is connected.

Simple Observations

- generally: $0 \le |E| \in \mathcal{O}(|V|^2)$
- connected graph: $|E| \in \Omega(|V|)$
- complete graph: $|E| = \frac{|V| \cdot (|V|-1)}{2}$ (undirected)

• Maximally $|E| = |V|^2$ (directed), $|E| = \frac{|V| \cdot (|V|+1)}{2}$ (undirected)

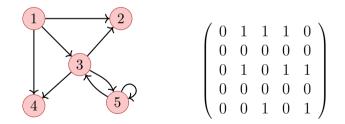
Cycles

- **Cycle**: path $\langle v_1, \ldots, v_{k+1} \rangle$ with $v_1 = v_{k+1}$
- **Simple cycle**: Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

Representation using a Matrix

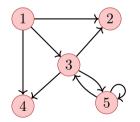
Graph G = (V, E) with nodes $v_1 \dots, v_n$ stored as **adjacency matrix** $A_G = (a_{ij})_{1 \le i,j \le n}$ with entries from $\{0,1\}$. $a_{ij} = 1$ if and only if edge from v_i to v_j .

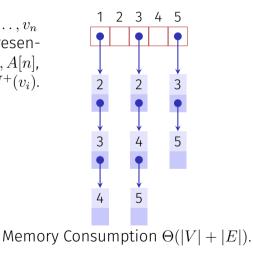


Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G = (V, E) with nodes v_1, \ldots, v_n provide much less than n^2 edges. Representation with **adjacency list**: Array $A[1], \ldots, A[n]$, A_i comprises a linked list of nodes in $N^+(v_i)$.

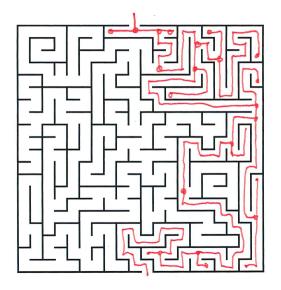




Runtimes of simple Operations

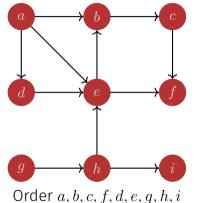
Operation	Matrix	List
Find neighbours/successors of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
find $v \in V$ without neighbour/successor	$\Theta(n^2)$	$\Theta(n)$
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Insert edge	$\Theta(1)$	$\Theta(1)$
Delete edge	$\Theta(1)$	$\Theta(\deg^+ v)$

Depth First Search

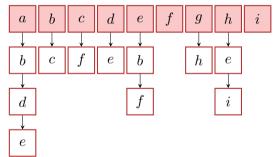


Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.



Adjazenzliste



Colors

Conceptual coloring of nodes

- **white:** node has not been discovered yet.
- **grey:** node has been discovered and is marked for traversal / being processed.
- **black:** node was discovered and entirely processed.

Algorithm Depth First visit DFS-Visit(G, v)

```
Input: graph G = (V, E), Knoten v.
```

 $v.color \gets \mathsf{black}$

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(G)

```
Input: graph G = (V, E)
foreach v \in V do
\lfloor v.color \leftarrow white
foreach v \in V do
\mid if v.color = white then
\lfloor DFS-Visit(G,v)
```

Depth First Search for all nodes of a graph. Running time: $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

Iterative DFS-Visit(G, v)

```
Input: graph G = (V, E), v \in V with v.color = white
Stack S \leftarrow \emptyset
v.color \leftarrow grey; S.push(v)
                                                  // invariant: grey nodes always on stack
while S \neq \emptyset do
    w \leftarrow \mathsf{nextWhiteSuccessor}(v)
                                                                            // code: next slide
    if w \neq null then
         w.color \leftarrow grey; S.push(w)
                                               // work on w. parent remains on the stack
         v \leftarrow w
    else
         v.color \leftarrow black
                                                   // no grey successors, v becomes black
         if S \neq \emptyset then
             v \leftarrow S.pop()
                                                                    // visit/revisit next node
            if v.color = grey then S.push(v)
                                                         Memory Consumption Stack \Theta(|V|)
```

nextWhiteSuccessor(v)

```
Input: node v \in V
Output: Successor node u of v with u.color = white, null otherwise
```

```
foreach u \in N^+(v) do
if u.color = white then
return u
```

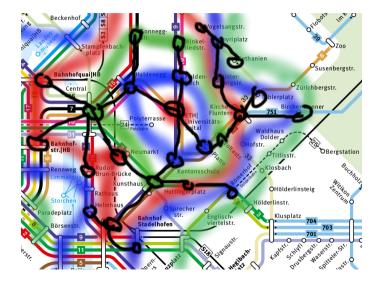
return null

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases

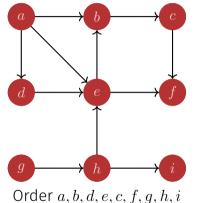
- White node: new tree edge
- Grey node: Zyklus ("back-egde")
- Black node: forward- / cross edge

Breadth First Search

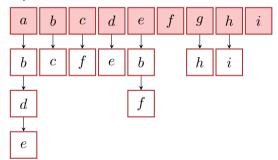


Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.



Adjazenzliste



(Iterative) BFS-Visit(G, v)

```
Input: graph G = (V, E)
Queue Q \leftarrow \emptyset
v.color \leftarrow grey
enqueue(Q, v)
while Q \neq \emptyset do
     w \leftarrow \mathsf{dequeue}(Q)
     foreach c \in N^+(w) do
          if c.color = white then
              c.color \leftarrow grey
              enqueue(Q, c)
     w.color \leftarrow black
```

Algorithm requires extra space of $\mathcal{O}(|V|)$.

Main program BFS-Visit(G)

```
Input: graph G = (V, E)
foreach v \in V do
\lfloor v.color \leftarrow white
foreach v \in V do
if v.color = white then
\lfloor BFS-Visit(G,v)
```

Breadth First Search for all nodes of a graph. Running time: $\Theta(|V| + |E|)$.

Topological Sorting

	j fy e de s z Je Home Inset Pagelavout <mark>Formulai</mark> Data Review View Add-ins PowerPout Taam Q Tell-me-uhutyou-wavetto.do									trace_depsatsr - Excel				
File fx Insert Inction	Home Insert Page L AutoSum Recently Financial L Used * Financial L Financial L Financial L	ogical Test Date & Lookup • Time * Referen unction Library	B: Math & M	ore Name H	Define Name 🔹 👫 🕅	race Precedents race Dependents emove Arrows	頭 Show Formulas ∳ Error Checking	. 60	Calculation III Calco					
	А	В		С	D		Е		F	G	Н	1		
1		Task 1	Task	2	Task 3	Task	4	Tota	al		Note			
2	TOTAL	•	8	8	1	0	10		36					
3	Arleen	•	4	5		6	9		24			4		
4	Hans	•	1	3		2	3	-	9	\sim		1.5		
5	Mike	•	2	7		5	4	-	18			3		
6	Selina	•	6	5		8	2	-	21			3.5		
7														
8						Durc	hschnitt	•	18		*	3		
9														
10														
11														
12														
13														
14														

Evaluation Order?

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E): Bijective mapping

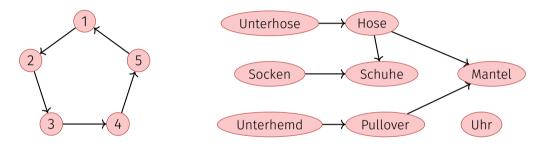
$$\mathrm{ord}: V \to \{1, \dots, |V|\}$$

such that

$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identify *i* with Element $v_i := \text{ord}^1(i)$. Topological sorting $\hat{=} \langle v_1, \ldots, v_{|V|} \rangle$.

(Counter-)Examples



Cyclic graph: cannot be sorted topologically.

A possible toplogical sorting of the graph: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,S

Observation

Theorem 22

A directed graph G = (V, E) permits a topological sorting if and only if it is acyclic.

Proof " \Rightarrow ": If G contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

Inductive Proof Opposite Direction

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, setord $(v_1) = 1$.
- Hypothesis: Graph with *n* nodes can be sorted topologically

• Step $(n \rightarrow n+1)$:

- 1. G contains a node v_q with in-degree deg⁻(v_q) = 0. Otherwise iteratively follow edges backwards after at most n + 1 iterations a node would be revisited. Contradiction to the cycle-freeness.
- 2. Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

Preliminary Sketch of an Algorithm

 $\mathsf{Graph}\; G = (V, E).\; d \gets 1$

- 1. Traverse backwards starting from any node until a node v_q with in-degree 0 is found.
- 2. If no node with in-degree 0 found after n stepsm, then the graph has a cycle.
- 3. Set $\operatorname{ord}(v_q) \leftarrow d$.
- 4. Remove v_q and his edges from G.
- 5. If $V \neq \emptyset$, then $d \leftarrow d + 1$, go to step 1.

Worst case runtime: $\Theta(|V|^2)$.

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

Algorithm Topological-Sort(G)

```
Input: graph G = (V, E).
Output: Topological sorting ord
Stack S \leftarrow \emptyset
foreach v \in V do A[v] \leftarrow 0
foreach (v, w) \in E do A[w] \leftarrow A[w] + 1 // Compute in-degrees
foreach v \in V with A[v] = 0 do push(S, v) / / Memorize nodes with in-degree 0
i \leftarrow 1
while S \neq \emptyset do
    v \leftarrow \mathsf{pop}(S); \operatorname{ord}[v] \leftarrow i; i \leftarrow i+1 // Choose node with in-degree 0
    foreach (v, w) \in E do // Decrease in-degree of successors
         A[w] \leftarrow A[w] - 1
        if A[w] = 0 then push(S, w)
```

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithm Correctness

Theorem 23

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- 1. Decreasing the in-degree corresponds with node removal.
- 2. In the algorithm it holds for each node v with A[v] = 0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value $\operatorname{ord}[u] \leftarrow i$ and thus $\operatorname{ord}[v] > \operatorname{ord}[u]$ for all predecessors u of v. Nodes are put to the stack only once.
- 3. Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem 24

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort terminates within $\Theta(|V| + |E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1}, \ldots, v_{i_k} \rangle$ be a cycle in *G*. In each step of the algorithm remains $A[v_{i_j}] \ge 1$ for all $j = 1, \ldots, k$. Thus *k* nodes are never pushed on the stack und therefore at the end it holds that $i \le V + 1 - k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V| + |E|)$.

Alternative: Algorithm DFS-Topsort(G, v)

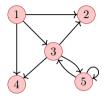
```
Input: graph G = (V, E), node v, node list L.
```

```
if v.color = grey then
    stop (Cycle)
if v.color = black then
    return
v.color \leftarrow grey
foreach w \in N^+(v) do
    DFS-Topsort(G, w)
v.color \leftarrow black
Add v to head of L
```

Call this algorithm for each node that has not yet been visited. Asymptotic Running Time $\Theta(|V| + |E|)$.

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$



Interpretation

Theorem 25

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1 \leq i,j \leq n} = (A_G)^k$ provides the number of paths with length k from v_i to v_j .

Proof

By Induction.

Base case: straightforward for k = 1. $a_{i,j} = a_{i,j}^{(1)}$. Hypothesis: claim is true for all $k \le l$ Step $(l \to l+1)$: $a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$ (l)

 $a_{k,j} = 1$ iff egde k to j, 0 otherwise. Sum counts the number paths of length l from node v_i to all nodes v_k that provide a direct direction to node v_j , i.e. all paths with length l + 1.

Example: Shortest Path

Question: is there a path from *i* to *j*? How long is the shortest path? **Answer:** exponentiate A_G until for some k < n it holds that $a_{i,j}^{(k)} > 0$. k provides the path length of the shortest path. If $a_{i,j}^{(k)} = 0$ for all $1 \le k < n$, then there is no path from *i* to *j*.

Example: Number triangles

Question: How many triangular path does an undirected graph contain? **Answer:** Remove all cycles (diagonal entries). Compute A_G^3 . $a_{ii}^{(3)}$ determines the number of paths of length 3 that contain *i*. There are 6 different permutations of a triangular path. Thus for the number of triangles: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.

Relation

Given a finite set V

(Binary) **Relation** R on V: Subset of the cartesian product $V \times V = \{(a, b) | a \in V, b \in V\}$ Relation $R \subseteq V \times V$ is called

- **reflexive**, if $(v, v) \in R$ for all $v \in V$
- **symmetric**, if $(v, w) \in R \Rightarrow (w, v) \in R$
- **Transitive**, if $(v, x) \in R$, $(x, w) \in R \Rightarrow (v, w) \in R$

The (Reflexive) Transitive Closure R^* of R is the smallest extension $R \subseteq R^* \subseteq V \times V$ such that R^* is reflexive and transitive.

Graphs and Relations

Graph G = (V, E)adjacencies $A_G \cong$ Relation $E \subseteq V \times V$ over V

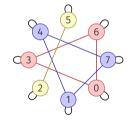
reflexive
$$\Leftrightarrow a_{i,i} = 1$$
 for all $i = 1, \dots, n$. (loops)

- **symmetric** \Leftrightarrow $a_{i,j} = a_{j,i}$ for all $i, j = 1, \dots, n$ (undirected)
- **transitive** \Leftrightarrow $(u, v) \in E$, $(v, w) \in E \Rightarrow (u, w) \in E$. (reachability)

Example: Equivalence Relation

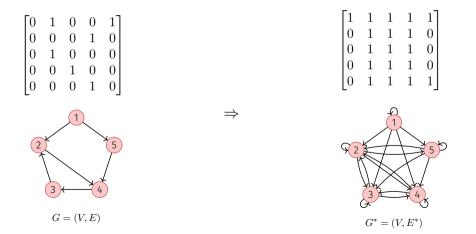
Equivalence relation \Leftrightarrow symmetric, transitive, reflexive relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.

Example: Equivalence classes of the numbers $\{0, ..., 7\}$ modulo 3



Reflexive Transitive Closure

Reflexive transitive closure of $G \Leftrightarrow$ **Reachability relation** E^* : $(v, w) \in E^*$ iff \exists path from node v to w.



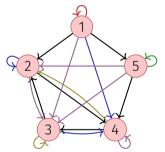
Computation of the Reflexive Transitive Closure

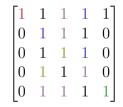
Goal: computation of $B = (b_{ij})_{1 \le i,j \le n}$ with $b_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E^*$ **Observation:** $a_{ij} = 1$ already implies $(v_i, v_j) \in E^*$. First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each *i* (Reflexivity.).
- Iterate over i, j, k and set $b_{ij} = 1$, if $b_{ik} = 1$ and $b_{kj} = 1$. Then all paths with lenght 1 and 2 taken into account.
- **\blacksquare** Repeated iteration \Rightarrow all paths with length $1 \dots 4$ taken into account.
- $\lceil \log_2 n \rceil$ iterations required. \Rightarrow running time $n^3 \lceil \log_2 n \rceil$

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .





Algorithm TransitiveClosure(A_G)

Input: Adjacency matrix $A_G = (a_{ij})_{i,j=1...n}$ **Output:** Reflexive transitive closure $B = (b_{ij})_{i,j=1...n}$ of G

 $B \leftarrow A_G$ for $k \leftarrow 1$ to n do $a_{kk} \leftarrow 1$ for $i \leftarrow 1$ to n do $for j \leftarrow 1$ to n do $b_{ij} \leftarrow \max\{b_{ij}, b_{ik} \cdot b_{kj}\}$

// Reflexivity

/ All paths via v_k

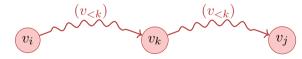
return B

Runtime $\Theta(n^3)$.

Correctness of the Algorithm (Induction)

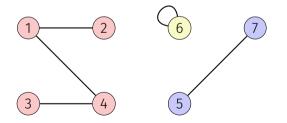
Invariant (k**)**: all paths via nodes with maximal index < k considered.

- **Base case (**k = 1**)**: All directed paths (all edges) in A_G considered.
- **Hypothesis**: invariant (*k*) fulfilled.
- **Step** $(k \rightarrow k + 1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.



Connected Components

Connected components of an undirected graph G: equivalence classes of the reflexive, transitive closure of G. Connected component = subgraph $G' = (V', E'), E' = \{\{v, w\} \in E | v, w \in V'\}$ with $\{\{v, w\} \in E | v \in V' \lor w \in V'\} = E = \{\{v, w\} \in E | v \in V' \land w \in V'\}$



Graph with connected components $\{1, 2, 3, 4\}$, $\{5, 7\}$, $\{6\}$.

Computation of the Connected Components

- Computation of a partitioning of V into pairwise disjoint subsets V_1, \ldots, V_k
- such that each V_i contains the nodes of a connected component.
- Algorithm: depth-first search or breadth-first search. Upon each new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty connected component is created and all nodes being traversed are added.