23. Greedy Algorithms

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 161, 16.3]

650

The Fractional Knapsack Problem

setof n € N items {1,...,n} Each item ¢ has value v; € N and weight
w; € N. The maximum weight is given as W € N. Input is denoted as

Wanted: Fractions 0 < ¢; < 1 (1 <i < n) that maximise the sum 37, ¢; - v;
under ¥, g - w; < W.

651

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v;/w; > viy1 /Wi

let j =max{0 <k <n:¥% w; <W} Set
mg=1foralll<i<j.

J .
i=1 Wi

W G = Wj+1
mg=0foralli>j+1.
That is fast: ©(nlogn) for sorting and ©(n) for the computation of the ;.

652

Correctness

Assumption: optimal solution (r;) (1 <1 < n).

The knapsack is full: >, 7 - w; =3, ¢ - w; = W.

Consider k: smallest i with r; # ¢; Definition of greedy: ¢, > r. Let

T =qr— T > 0.

Construct a new solution (r}): r; = Vi < k. r;, = qx. Remove weight
1 0 = x - wy, from items k£ + 1 to n. This works because

Z?:k T Wy = Z?:k qi - Wj.

653

Correctness

n / o n v;
E TV = TRV + TWE— + E (ryw; — ;) —
: Wi i k+1 Ww;

> rpUk +:cwk— + Z nwl — 6 —
Wk =gt Wi Wk

Vk Vk
= TV + :L'wk— — xwk— + Z 7“ZwZ = val
Wk Wk k1 Wi

Thus (r}) is also optimal. Iterative application of this idea generates the
solution (g¢;).

654

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary
code with code words..

Example

File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b C d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

655

Huffman-Codes

m Consider prefix-codes: no code word can start with a different codeword.

m Prefix codes can, compared with other codes, achieve the optimal data
compression (without proof here).

m Encoding: concatenation of the code words without stop character

(difference to morsing).
affe—0-1100-1100- 1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe

656

Code trees

/\

/\
TAANY

a4s b3 c¢12 die e9

Code words with fixed length

/
\1

f:5

/\
/\

0 1 O/ 1
C:12/ \b:13 A 14 1\d:16
f:5/ \e:9
Code words with variable length

657

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete binary
tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a codeword ¢
and dr(c) the depth of a code word in tree T Define the cost of a tree as

B(T)=_ f(c) - dr(c).

ceC

(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

658

Algorithm Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest
frequency by a new parent
node.

a:45

100

N
55
/ AN
30
25 q
/\

b:13

c12

d16

/\

e9 f5

659

Algorithm Huffman(C)

Input: code words ¢ € C
Output: Root of an optimal code tree

n <« |C|
Q<+ C
fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q)
z.right < ExtractMin(Q)
z.freq < z.left.freq + z.right.freq

Insert(Q, z)

return ExtractMin(Q)

// extract word with minimal frequency.

660

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n Elements.
Yields a runtime of O(nlogn).

661

The greedy approach is correct

Theorem 21

Let z, y be two symbols with smallest frequencies in C' and let T'(C")
be an optimal code tree to the alphabet C' = C — {z,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is
constructed from T'(C") by replacing the node z by an inner node with
children x and y Is an optimal code tree for the alphabet C.

662

Proof

It holds that

f(@)-dp(x)+ f(y)-dr(y) = (f(2)+f(y)-(dr(2)+1) = f(2)-dr(x)+ f(x)+ f(y).
Thus B(T") = B(T) — f(z) — f(y)-

Assumption: T is not optimal. Then there is an optimal tree T” with

B(T") < B(T). We assume that « and y are brothers in 7”. Let 7" be the
tree where the inner node with children z and y is replaced by z. Then it
holds that B(T"") = B(T") — f(z) — f(y) < B(T) — f(x) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that x and y are brothers in T” can be justified because a
swap of elements with smallest frequency to the lowest level of the tree
can at most decrease the value of B.

663

24. C++ advanced (1V): Exceptions

Some operations that can fail

m Opening files for reading and writing
std::ifstream input("myfile.txt");
m Parsing
int value = std::stoi("12-8");
m Memory allocation

std: :vector<double> data(ManyMillions);

m Invalid data

int a = b/x; // what if x is zero?

665

Possibilities of Error Handling

m None (inacceptable)

m Global error variable (flags)

m Functions returning Error Codes
m Objects that keep error status
m Exceptions

666

Global error variables

m Common in older C-Code
m Concurrency is a problem.

m Error handling at good will. Requires extreme discipline, documentation
and litters the code with seemingly unrelated checks.

667

Functions Returning Error Codes

m Every call to a function yields a result.

m Typical for large APIs (e.g. OS level). Often combined with global error
code. 0

m Caller can check the return value of a function in order to check the
correct execution.

“40Global error code thread-safety provided via thread-local storage.
668

Functions Returning Error Codes

Example

#include <errno.h>

pf = fopen ("notexisting.txt", "r+");
if (pf == NULL) {
fprintf (stderr, "Error opening file: %s\n", strerror(errmo));
}
else { // ...
fclose (pf);
}

669

Error state Stored in Object

m Error state of an object stored internally in the object.

Example

int 1i;
std::cin >> i;
if (std::cin.good()){// success, continue

}

670

Exceptions

m Exceptions break the normal control flow
m Exceptions can be thrown (throw) and catched (catch)
m Exceptions can become effective accross function boundaries.

671

Example: throw exception

class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i-1);

}

int main()

{

£(4); . : : .
return O;ternnnatecaued after throwing an instance of '‘MyException’

} Aborted

672

Example: catch exception

class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i-1);

}

int main(Q{
try{
£(4);
}
catch (MyException e){

std::cout << "exception caught\n";

}
}

I

exception caught

673

Resources get closed

class MyException{};
struct SomeResource{
~SomeResource(){std: :cout << "closed resource\n";}

};

void f(int i){

if (i==0) throw MyException();
SomeResource x;

f(i-1);

}

int main(Q{
try{£(5);}
catch (MyException e){

}

}

std::cout << "exception caught\n";

closed resource
closed resource
closed resource
closed resource
closed resource
exception caught

674

When Exceptions?

Exceptions are used for error handling exclusively.

m Use throw only in order to identify an error that violates the
post-condition of a function or that makes the continued execution of
the code impossible in an other way.

m Use catch only when it is clear how to handle the error (potentially
re-throwing the exception)

m Do not use throw in order to show a programming error or a violation of
invariants, use assert instead.

m Do not use exceptions in order to change the control flow. Throw is not
a better return.

675

Why Exceptions?

This:
int ret = £();
if (ret == 0) {
// ...
} else {

// ...code that handles the error...

}
may look better than this on a first sight:

try {
£0;
/] ...
} catch (std::exception& e) {

// ...code that handles the error...

}

676

Why exceptions?

Truth is that toy examples do not necessarily hit the point.

Using return-codes for error handling either pollutes the code with checks
or the error handling is not done right in the first place.

677

That's why

Example 1: Expression evaluation (expression parser from Introduction to
programming)

Input: 1 + 83 *x6 / (/ 7))

Error is deap in the recursion hierarchy. How to produce a meaningful
error message (and continue execution)? Would have to pass error code
over recursion steps.

678

Second Example

Value type with guarantee: values in range provided.

template <typename T, T min, T max>
class Range{
public:
Range () {}
Range (const T& v) : value (v) {
if (value < min) throw Underflow ();
if (value > max) throw Overflow ();
}

operator const T& () const {return value;}

Error handling in the con-
structor.

private:
T value;

};

679

Types of Exceptions, Hierarchical

class RangeException {};

class Overflow : public RangeException {};
class Underflow : public RangeException {};
class DivisionByZero: public RangeException {};
class FormatError: public RangeException {};

680

Operators

template <typename T, T min, T max>
Range<T, min, max> operator/ (const Range<T, min, max>& a,
const Range<T, min, max>& b){
if (b == 0) throw DivisionByZero();
return T (a) * T(b);
}

template <typename T, T min, T max>

std::istream& operator >> (std::istream& is, Range<T, min, max>& a){
T value;
if ('(is >> value)) throw FormatError();
a = value;

Error handling in the opera-

return is;

}

681

Error handling (central)

Range<int,-10,10> a,b,c;
try{

std::cin >> a;

std::cin >> b;

std::cin >> c;

a=a/b+4x*x (b-c);

std::cout << a;
}
catch(FormatError& e){ std::cout << "Format error\n'"; }
catch(Underflow& e){ std::cout << "Underflow\n"; }
catch(Overflow& e){ std::cout << "Overflow\n"; }
catch(DivisionByZero& e){ std::cout << "Divison By Zero\n"; }

682

	Greedy Algorithms
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding

	C++ advanced (IV): Exceptions

