20. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)

[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers

$$F_n := \begin{cases} n & \text{if } n < 2\\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

Analysis: why ist the recursive algorithm so slow?

Algorithm FibonacciRecursive(n)

Input: $n \ge 0$ **Output:** *n*-th Fibonacci number

T(n): Number executed operations. n = 0, 1: $T(n) = \Theta(1)$ T(n): Number executed operations. n = 0, 1: $T(n) = \Theta(1)$

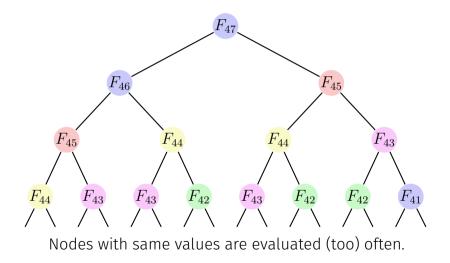
■
$$n \ge 2$$
: $T(n) = T(n-2) + T(n-1) + c$.

$$\begin{split} T(n)&: \text{Number executed operations.} \\ \bullet \ n = 0, 1: \ T(n) = \Theta(1) \\ \bullet \ n \geq 2: \ T(n) = T(n-2) + T(n-1) + c. \\ T(n) = T(n-2) + T(n-1) + c \geq 2T(n-2) + c \geq 2^{n/2}c' = (\sqrt{2})^n c' \end{split}$$

$$\begin{split} T(n)&: \text{Number executed operations.} \\ \bullet \ n = 0, 1: \ T(n) = \Theta(1) \\ \bullet \ n \geq 2: \ T(n) = T(n-2) + T(n-1) + c. \\ T(n) = T(n-2) + T(n-1) + c \geq 2T(n-2) + c \geq 2^{n/2}c' = (\sqrt{2})^n c' \end{split}$$

Algorithm is **exponential** in *n*.

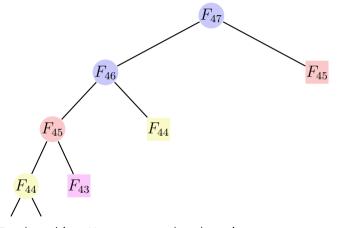
Reason (visual)



Memoization (sic) saving intermediate results.

- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.
- Otherwise the algorithm is executed and the result is saved accordingly.

Memoization with Fibonacci



Rechteckige Knoten wurden bereits ausgewertet.

Algorithm FibonacciMemoization(*n*)

```
Input: n \ge 0
Output: n-th Fibonacci number
if n < 2 then
     f \leftarrow 1
else if \exists memo[n] then
     f \leftarrow \mathsf{memo}[n]
else
     f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2)
     \mathsf{memo}[n] \leftarrow f
return f
```

Computational complexity:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

because after the call to f(n-1), f(n-2) has already been computed. A different argument: f(n) is computed exactly once recursively for each n. Runtime costs: n calls with $\Theta(1)$ costs per call $n \cdot c \in \Theta(n)$. The recursion vanishes from the running time computation. Algorithm requires $\Theta(n)$ memory.³³

 $^{^{\}rm 33}{\rm But}$ the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

... the algorithm computes the values of F_1 , F_2 , F_3 ,... in the **top-down** approach of the recursion.

Can write the algorithm **bottom-up**. This is characteristic for **dynamic programming**.

Algorithm FibonacciBottomUp(n)

Input: $n \ge 0$ **Output:** *n*-th Fibonacci number

 $\begin{array}{l} F[1] \leftarrow 1 \\ F[2] \leftarrow 1 \\ \text{for } i \leftarrow 3, \dots, n \text{ do} \\ \lfloor F[i] \leftarrow F[i-1] + F[i-2] \\ \text{return } F[n] \end{array}$

Dynamic Programming: Idea

- Divide a complex problem into a reasonable number of sub-problems
- The solution of the sub-problems will be used to solve the more complex problem
- Identical problems will be computed only once

Dynamic Programming Consequence

Identical problems will be computed only once

 \Rightarrow Results are saved

192.– **HyperX** Fury (2x, 8GB, DDR4-2400, DIMM 288)

***** 16

1. Use a **DP-table** with information to the subproblems. Dimension of the entries? Semantics of the entries?

- 1. Use a **DP-table** with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2. Computation of the **base cases** Which entries do not depend on others?

- 1. Use a **DP-table** with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2. Computation of the **base cases** Which entries do not depend on others?
- 3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?

- 1. Use a **DP-table** with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2. Computation of the **base cases** Which entries do not depend on others?
- 3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?

4. Read-out the solution

How can the solution be read out from the table?

- 1. Use a **DP-table** with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2. Computation of the **base cases** Which entries do not depend on others?
- 3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?

4. Read-out the **solution**

How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

Dimension of the table? Semantics of the entries?

1.

Dimension of the table? Semantics of the entries?

1.

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries?

2.

1.

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries?

1.

2.

Values F_1 and F_2 can be computed easily and independently.

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries?

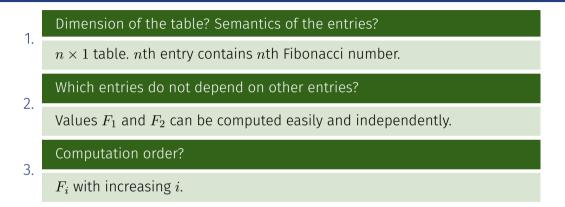
Values F_1 and F_2 can be computed easily and independently.

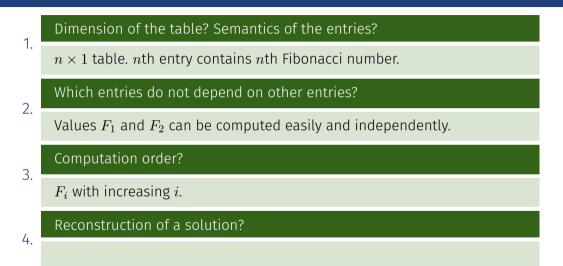
Computation order?

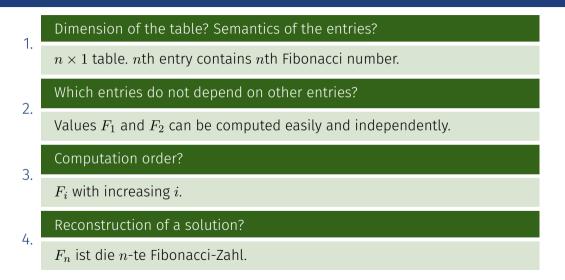
3.

1.

2.







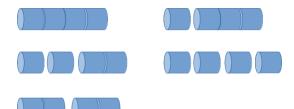
Dynamic Programming = Divide-And-Conquer ?

- In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
- Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
- DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

- Rods (metal sticks) are cut and sold.
- **\blacksquare** Rods of length $n \in \mathbb{N}$ are available. A cut does not provide any costs.
- For each length $l \in \mathbb{N}$, $l \leq n$ known is the value $v_l \in \mathbb{R}^+$
- Goal: cut the rods such (into $k \in \mathbb{N}$ pieces) that

$$\sum_{i=1}^k v_{l_i}$$
 is maximized subject to $\sum_{i=1}^k l_i = n$.

Rod Cutting: Example



Possibilities to cut a rod of length 4 (without permutations)

Length	0	1	2	3	4	$\frac{4}{9} \Rightarrow \text{Best cut: } 3 + 1 \text{ with value } 10.$
Price	0	2	3	8	9	

Wie findet man den DP Algorithms

- 0. Exact formulation of the wanted solution
- 1. Define sub-problems (and compute the cardinality)
- 2. Guess / Enumerate (and determine the running time for guessing)
- 3. Recursion: relate sub-problems
- 4. Memoize / Tabularize. Determine the dependencies of the sub-problems
- 5. Solve the problem

Running time = #sub-problems × time/sub-problem

Structure of the problem

- 0. Wanted: r_n = maximal value of rod (cut or as a whole) with length n.
- 1. **sub-problems**: maximal value r_k for each $0 \le k < n$
- 2. Guess the length of the first piece
- 3. Recursion

$$r_k = \max\{v_i + r_{k-i} : 0 < i \le k\}, \quad k > 0$$

$$r_0 = 0$$

- 4. **Dependency:** r_k depends (only) on values v_i , $1 \le i \le k$ and the optimal cuts r_i , i < k
- 5. Solution in r_n

Input: $n \ge 0$, Prices v**Output:** best value

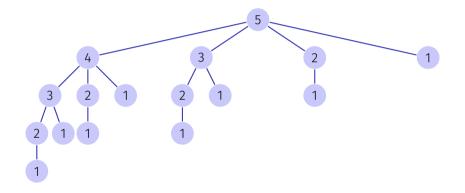
 $\begin{array}{l} q \leftarrow 0 \\ \text{if } n > 0 \text{ then} \\ & \left[\begin{array}{c} \text{for } i \leftarrow 1, \dots, n \text{ do} \\ & \left[\begin{array}{c} q \leftarrow \max\{q, v_i + \mathsf{RodCut}(v, n - i)\}; \end{array} \right] \end{array} \right] \end{array}$

return q

Running time $T(n) = \sum_{i=0}^{n-1} T(i) + c \quad \Rightarrow^{34} \quad T(n) \in \Theta(2^n)$

$${}^{\mathbf{34}}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1)-c) + c = 2T(n-1) \quad (n>0)$$

Recursion Tree



Algorithm RodCutMemoized(m, v, n)

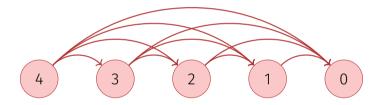
Input: $n \ge 0$, Prices v, Memoization Table m**Output:** best value

 $\begin{array}{c} q \leftarrow 0 \\ \text{if } n > 0 \text{ then} \\ & \quad \text{if } \exists m[n] \text{ then} \\ & \quad q \leftarrow m[n] \\ \text{else} \\ & \quad \left[\begin{array}{c} \text{for } i \leftarrow 1, \dots, n \text{ do} \\ & \quad q \leftarrow \max\{q, v_i + \text{RodCutMemoized}(m, v, n - i)\}; \\ & \quad m[n] \leftarrow q \end{array} \right] \end{array}$

return q

Running time $\sum_{i=1}^{n} i = \Theta(n^2)$

Describes the mutual dependencies of the subproblems



and must not contain cycles

Construction of the Optimal Cut

- During the (recursive) computation of the optimal solution for each $k \le n$ the recursive algorithm determines the optimal length of the first rod
- Store the lenght of the first rod in a separate table of length n

Dimension of the table? Semantics of the entries?

1.

Dimension of the table? Semantics of the entries?

1.

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

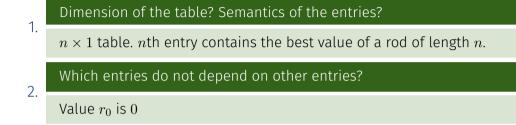
Dimension of the table? Semantics of the entries?

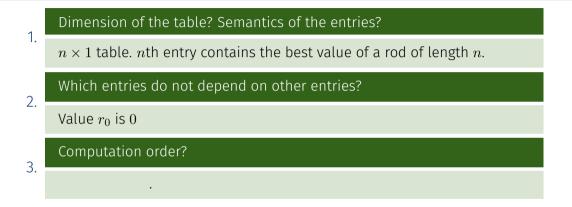
 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

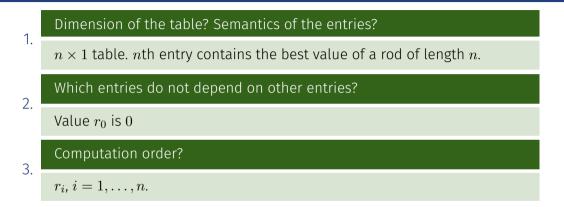
Which entries do not depend on other entries?

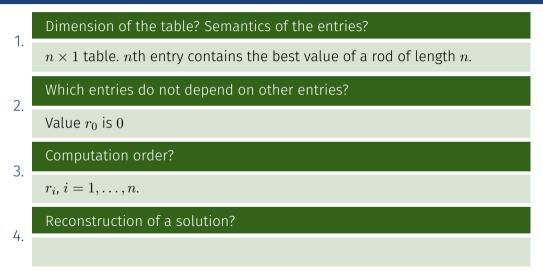
2.

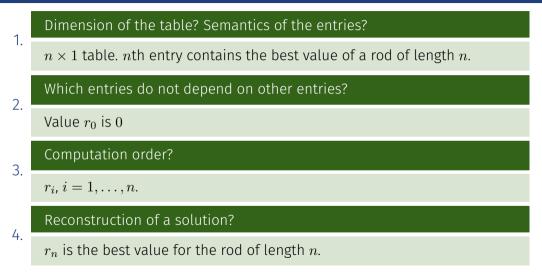
1.





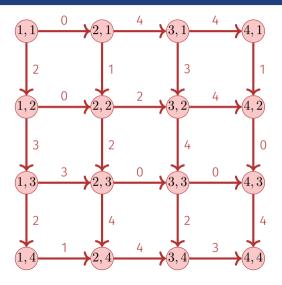






Rabbit!

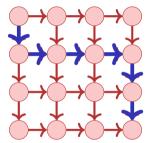
A rabbit sits on cite (1, 1) of an $n \times n$ grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?



Number of possible paths?

• Choice of n-1 ways to south out of 2n-2 ways overal.

 \Rightarrow No chance for a naive algorithm

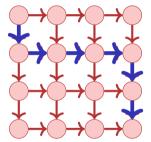


The path 100011 (1:to south, 0: to east) Number of possible paths?

Choice of n-1 ways to south out of 2n-2 ways overal.

$$\binom{2n-2}{n-1} \in \Omega(2^n)$$

 \Rightarrow No chance for a naive algorithm

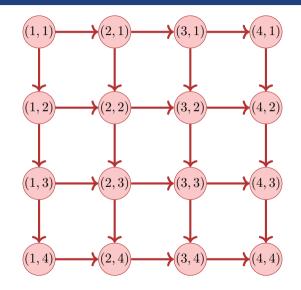


The path 100011 (1:to south, 0: to east)

Wanted: $T_{0,0}$ = maximal number carrots from (0,0) to (n,n). Let $w_{(i,j)-(i',j')}$ number of carrots on egde from (i,j) to (i',j'). Recursion (maximal number of carrots from (i,j) to (n,n)

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Graph of Subproblem Dependencies



Dimension of the table? Semantics of the entries?

Dimension of the table? Semantics of the entries?

^{1.} Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

2.

Value $T_{n,n}$ is 0

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

2.

```
Value T_{n,n} is 0
```

Computation order?

3.

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

2.

```
Value T_{n,n} is 0
```

Computation order?

3.

 $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

2.

Value $T_{n,n}$ is 0

Computation order?

3.

 $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

Reconstruction of a solution?

4.

Dimension of the table? Semantics of the entries?

1. Table T with size $n \times n$. Entry at i, j provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

2.

Value $T_{n,n}$ is 0

Computation order?

3.

 $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

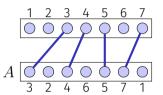
Reconstruction of a solution?

4.

 $T_{1,1}$ provides the maximal number of carrots.

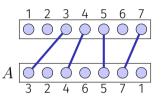
Formally

- Consider Sequence $A_n = (a_1, \ldots, a_n)$.
- Search for a longest increasing subsequence of A_n .
- Examples of increasing subsequences: (3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).



Formally

- Consider Sequence $A_n = (a_1, \ldots, a_n)$.
- Search for a longest increasing subsequence of A_n .
- Examples of increasing subsequences: (3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).



Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: (2,3,3,3,5,1) with increasing subsequence (2,3,5).

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: LAS L_k of A_k known for Now want to compute L_{k+1} for A_{k+1} .

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: LAS L_k of A_k known for Now want to compute L_{k+1} for A_{k+1} . If a_{k+1} fits to L_k , then $L_{k+1} = L_k \oplus a_{k+1}$?

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: LAS L_k of A_k known for Now want to compute L_{k+1} for A_{k+1} . If a_{k+1} fits to L_k , then $L_{k+1} = L_k \oplus a_{k+1}$? Counterexample $A_5 = (1, 2, 5, 3, 4)$. Let $A_3 = (1, 2, 5)$ with $L_3 = A_3$ and $L_4 = A_3$. Determine L_5 from L_4 ? Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: LAS L_k of A_k known for Now want to compute L_{k+1} for A_{k+1} . If a_{k+1} fits to L_k , then $L_{k+1} = L_k \oplus a_{k+1}$? Counterexample $A_5 = (1, 2, 5, 3, 4)$. Let $A_3 = (1, 2, 5)$ with $L_3 = A_3$ and $L_4 = A_3$. Determine L_5 from L_4 ?

It does not work this way, we cannot infer L_{k+1} from L_k .

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: a LAS L_j is known for each $j \le k$. Now compute LAS L_{k+1} for k+1.

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: a LAS L_j is known for each $j \le k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ and choose a longest sequence.

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: a LAS L_j is known for each $j \leq k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ and choose a longest sequence. Counterexample: $A_5 = (1, 2, 5, 3, 4)$. Let $A_4 = (1, 2, 5, 3)$ with $L_1 = (1)$, $L_2 = (1, 2)$, $L_3 = (1, 2, 5)$, $L_4 = (1, 2, 5)$. Determine L_5 from L_1, \ldots, L_4 ?

Let L_i = longest ascending subsequence of A_i $(1 \le i \le n)$

Assumption: a LAS L_j is known for each $j \leq k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ and choose a longest sequence. Counterexample: $A_5 = (1, 2, 5, 3, 4)$. Let $A_4 = (1, 2, 5, 3)$ with $L_1 = (1)$, $L_2 = (1, 2)$, $L_3 = (1, 2, 5)$, $L_4 = (1, 2, 5)$. Determine L_5 from L_1, \ldots, L_4 ? That does not work either: cannot infer L_{k+1} from only **an arbitrary solution** L_j . We need to consider all LAS. Too many.

Let $M_{n,i}$ = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: the LAS M_j for A_k , that end with smallest element are known for each of the lengths $1 \le j \le k$.

Let $M_{n,i}$ = longest ascending subsequence of A_i $(1 \le i \le n)$ Assumption: the LAS M_j for A_k , that end with smallest element are known for each of the lengths $1 \le j \le k$. Consider all fitting $M_{k,j} \oplus a_{k+1}$ $(j \le k)$ and update the table of the LAS,that end with smallest possible element.

	Example: $A = (1, 1000, 1001, 4, 5, 2, 6, 7)$
A	LAT $M_{k,.}$
1	(1)

Example: $A = (1$	1,1000,1001,4,5,2,6,7
-------------------	-----------------------

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+ 4	(1), (1, 4), (1, 1000, 1001)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+ 4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1, 4), (1, 4, 5)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+ 4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1, 4), (1, 4, 5)
+2	(1), (1, 2), (1, 4, 5)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1, 4), (1, 4, 5)
+2	(1), (1, 2), (1, 4, 5)
+ 6	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6)

A	LAT $M_{k,.}$
1	(1)
+ 1000	(1), (1, 1000)
+ 1001	(1), (1, 1000), (1, 1000, 1001)
+ 4	(1), (1, 4), (1, 1000, 1001)
+5	(1), (1, 4), (1, 4, 5)
+2	(1), (1, 2), (1, 4, 5)
+ 6	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+7	(1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

• Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.

- Idea: save the last element of the increasing sequence M_{k,j} at slot j.
- Example: 3 2 5 1 6 4

Index	1	2	3	4	5	6
Wert	3	2	5	1	6	4

Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j. ■ Example: 3 2 5 1 6 4

Index		1	2	3	4	5	6
Wert		3	2	5	1	6	4
Index	0	1	2	3	4		
$(L_j)_j$	$-\infty$	∞	∞	∞	∞		

- Idea: save the last element of the increasing sequence M_{k,j} at slot j.
 Example: 3 2 5 1 6 4
 - 164

Index

Wert

Index	0	1	2	3	4	
$(L_j)_j$	$-\infty$	3	∞	∞	∞	

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4

Inde	Х		1	2	3	4	5	6
Wert			3	2	5	1	6	4
Inde	x	0	1 2	3	4			
$(L_j$	$)_j$ -	∞	2∞	∞	∞			

Idea: save the last element of the increasing sequence M_{k,j} at slot j.
 Example: 3 2 5 1 6 4

Index		1		2	3	4	5	6
Wert		3		2	5	1	6	4
			-					
Index	0	1	2	3	4			
$(L_i)_i$	$-\infty$	2	5	∞	∞			
× J/J								

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4

Index		1		2	3	4	5	6
Wert		3		2	5	1	6	4
Index	0	1	2	3	4			
$(L_j)_j$	$-\infty$	1	5	∞	∞			

Idea: save the last element of the increasing sequence M_{k,j} at slot j.
 Example: 3 2 5 1 6 4

Index Wert		$\frac{1}{3}$		2 2	$\frac{3}{5}$	4 1	$5 \\ 6$	6 4
Index	0	1	2	3	4			
$(L_j)_j$	$-\infty$	1	5	6	∞			

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4
- Problem: Table does not contain the subsequence, only the last value.

Index		1	2	2	3	4	5	6
Wert		3	3 2		5	1	6	4
Index	0	1	2	3	4			
$(L_j)_j$	$-\infty$	1	4	6	∞		5	

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4
- Problem: Table does not contain the subsequence, only the last value.
- Solution: second table with the predecessors.

Index Wert		$\frac{1}{3}$	$\frac{2}{2}$		$\frac{3}{5}$	$\frac{4}{1}$	$5 \\ 6$	6 4
Index	0	1	2	3	4			
$(L_j)_j$	$-\infty$	1	4	6	∞			

- Idea: save the last element of the increasing sequence $M_{k,j}$ at slot j.
- Example: 3 2 5 1 6 4
- Problem: Table does not contain the subsequence, only the last value.
- Solution: second table with the predecessors.

Index Wert		$rac{1}{3}$	2 2	2	$\frac{3}{5}$	$4 \\ 1$	$5 \\ 6$	$\frac{6}{4}$
Predecess	or –	$-\infty$	-0	∞	2	$-\infty$	5	1
Index	0	1	2	3	4			
$(L_j)_j$	$-\infty$	1	4	6	∞			

Table dimension? Semantics?

1.

Table dimension? Semantics?

1.

Two tables $T[0, \ldots, n]$ and $V[1, \ldots, n]$. T[j]: last Element of the increasing subequence $M_{n,j}$ V[j]: Value of the predecessor of a_j . Start with $T[0] \leftarrow -\infty$, $T[i] \leftarrow \infty \forall i > 1$

Table dimension? Semantics?

1.

Two tables $T[0, \ldots, n]$ and $V[1, \ldots, n]$.

T[j]: last Element of the increasing subequence $M_{n,j}$ V[j]: Value of the predecessor of a_j . Start with $T[0] \leftarrow -\infty, T[i] \leftarrow \infty \forall i > 1$

Computation of an entry

2.

Table dimension? Semantics?

1.

Two tables $T[0, \ldots, n]$ and $V[1, \ldots, n]$.

T[j]: last Element of the increasing subequence $M_{n,j}$ V[j]: Value of the predecessor of a_j . Start with $T[0] \leftarrow -\infty$, $T[i] \leftarrow \infty \forall i > 1$

Computation of an entry

2.

Entries in T sorted in ascending order. For each new entry a_k binary search for l, such that $T[l] < a_k < T[l+1]$. Set $T[l+1] \leftarrow a_k$. Set V[k] = T[l].

Computation order

Computation order

3.

Traverse the list anc compute T[k] and V[k] with ascending k



Traverse the list anc compute T[k] and V[k] with ascending k

Reconstruction of a solution?

3.



3.

Traverse the list anc compute T[k] and V[k] with ascending k

Reconstruction of a solution?

4. Search the largest l with $T[l] < \infty$. l is the last index of the LAS. Starting at l search for the index i < l such that $V[l] = a_i$, i is the predecessor of l. Repeat with $l \leftarrow i$ until $T[l] = -\infty$

Analysis

Computation of the table:

- Initialization: $\Theta(n)$ Operations
- Computation of the kth entry: binary search on positions {1,...,k} plus constant number of assignments.

$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

Reconstruction: traverse A from right to left: $\mathcal{O}(n)$.

Overal runtime:

 $\Theta(n\log n).$

Editing distance of two sequences $A_n = (a_1, \ldots, a_n)$, $B_m = (b_1, \ldots, b_m)$. Editing operations:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string *A* into string *B*. TIGER ZIGER ZIEGER ZIEGE Wanted: cheapest character-wise transformation $A_n \rightarrow B_m$ with costs

	operation				Le	Levenshtein LCS ³⁵					general						
		_	Insert c				1					1			ins(c)		
	Delete c				1 1						del(c)						
			Rep	lace	$c \to c$?'	$\mathbb{1}(c \neq c')$			∞ ·	$\infty \cdot \mathbb{1}(c \neq c')$			l(c,c')			
Bei	spi	el															
Т	Ι	G	Е	R		Т	Ι	_	G	Е	R		$T \rightarrow Z$	+E	-R		
Ζ	Ι	Е	G	Е		Ζ	Ι	Е	G	Е	_		$Z {\rightarrow} T$	-E	+R		

³⁵Longest common subsequence – A special case of an editing problem

DP

- 0. E(n,m) = minimum number edit operations (ED cost) $a_{1...n} \rightarrow b_{1...m}$
- 1. Subproblems E(i, j) = ED von $a_{1...i}$. $b_{1...j}$.

2. Guess

 $#\mathsf{SP} = n \cdot m$ $\mathsf{Costs}\Theta(1)$

 $\begin{array}{l} \bullet \quad a_{1..i} \rightarrow a_{1...i-1} \text{ (delete)} \\ \bullet \quad a_{1..i} \rightarrow a_{1...i} b_j \text{ (insert)} \\ \bullet \quad a_{1..i} \rightarrow a_{1...i-1} b_j \text{ (replace)} \end{array}$

3. Rekursion

$$E(i,j) = \min \begin{cases} \mathsf{del}(a_i) + E(i-1,j), \\ \mathsf{ins}(b_j) + E(i,j-1), \\ \mathsf{repl}(a_i,b_j) + E(i-1,j-1) \end{cases}$$

DP

4. Dependencies

 \Rightarrow Computation from left top to bottom right. Row- or column-wise. 5. Solution in E(n,m)

$$E[i,j] \leftarrow \min\left\{E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+\mathbb{1}(a_i \neq b_j)\right\}$$

	Ø	Ζ	Ι	Е	G 4 3 2 3 3	Е
Ø	0	1	2	3	4	5
Т	1	1	2	3	4	5
Ι	2	2	1	2	3	4
G	3	3	2	2	2	3
Е	4	4	3	2	3	2
R	5	5	4	3	3	3

Editing steps: from bottom right to top left, following the recursion. Bottom-Up description of the algorithm: exercise

1.

Dimension of the table? Semantics?

583

Dimension of the table? Semantics?

^{1.} Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Dimension of the table? Semantics?

^{1.} Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

2.

Dimension of the table? Semantics?

1. Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

2. $E[0,i] \leftarrow i \ \forall 0 \le i \le m, E[j,0] \leftarrow i \ \forall 0 \le j \le n$. Computation of E[i,j] otherwise via $E[i,j] = \min\{del(a_i) + E(i-1,j), ins(b_j) + E(i,j-1), repl(a_i,b_j) + E(i-1,j-1)\}$

Computation order

Computation order

Rows increasing and within columns increasing (or the other way round).

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruction of a solution?

Computation order

3.

Rows increasing and within columns increasing (or the other way round).

Reconstruction of a solution?

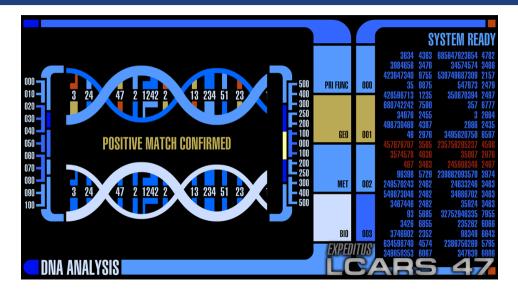
4.

Start with
$$j = m$$
, $i = n$. If $E[i, j] = \operatorname{repl}(a_i, b_j) + E(i - 1, j - 1)$ then output $a_i \to b_j$ and continue with $(j, i) \leftarrow (j - 1, i - 1)$; otherwise, if $E[i, j] = \operatorname{del}(a_i) + E(i - 1, j)$ output $\operatorname{del}(a_i)$ and continue with $j \leftarrow j - 1$ otherwise, if $E[i, j] = \operatorname{ins}(b_j) + E(i, j - 1)$, continue with $i \leftarrow i - 1$. Terminate for $i = 0$ and $j = 0$.

- Number table entries: $(m + 1) \cdot (n + 1)$.
- \blacksquare Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(mn)$
- Determination of solition: decrease i or j. Maximally O(n + m) steps. Runtime overal:

 $\mathcal{O}(mn).$

DNA - Comparison (Star Trek)



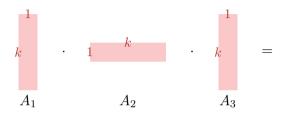
- DNA consists of sequences of four different nucleotides Adenine Guanine Thymine Cytosine
- DNA sequences (genes) thus can be described with strings of A, G, T and C.
- Possible comparison of two genes: determine the longest common subsequence

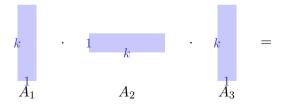
The longest common subsequence problem is a special case of the minimal edit distance problem.

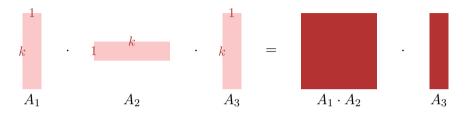
Task: Computation of the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ of matrices A_1, \ldots, A_n . Matrix multiplication is associative, i.e. the order of evalution can be chosen arbitrarily

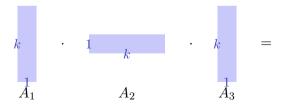
Goal: efficient computation of the product.

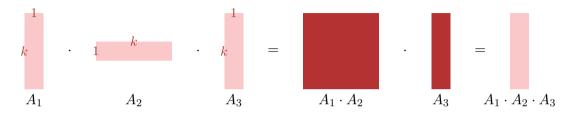
Assumption: multiplication of an $(r \times s)$ -matrix with an $(s \times u)$ -matrix provides costs $r \cdot s \cdot u$.

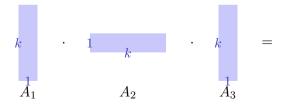


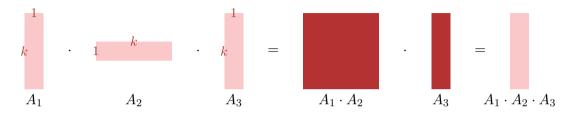


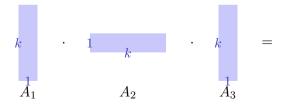


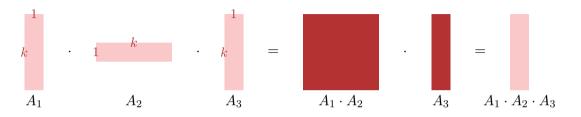


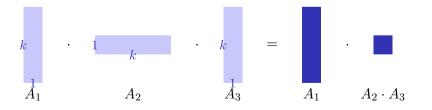


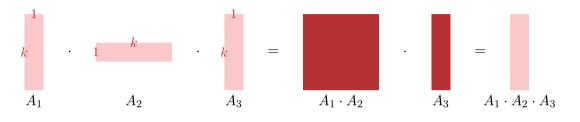


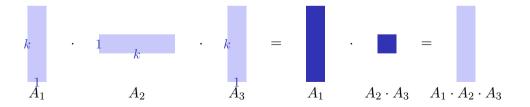


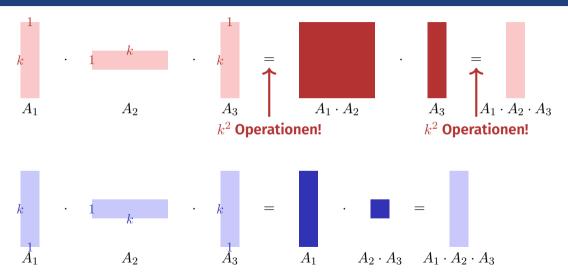


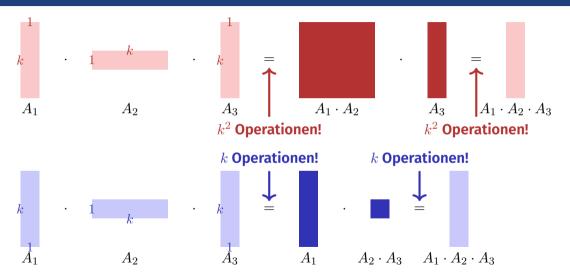












- Assume that the best possible computation of $(A_1 \cdot A_2 \cdots A_i)$ and $(A_{i+1} \cdot A_{i+2} \cdots A_n)$ is known for each *i*.
- Compute best *i*, done.

 $n \times n$ -table M. entry M[p,q] provides costs of the best possible bracketing $(A_p \cdot A_{p+1} \cdots A_q)$.

 $M[p,q] \leftarrow \min_{p \leq i < q} (M[p,i] + M[i+1,q] + \text{costs of the last multiplication})$

- Base cases $M[p, p] \leftarrow 0$ for all 1 .
- Computation of M[p,q] depends on M[i, j] with p < i < j < q. $(i, j) \neq (p, q).$ In particular M[p,q] depends at most from entries M[i, j] with i-i < q-p.

Consequence: fill the table from the diagonal.

DP-table has n^2 entries. Computation of an entry requires considering up to n-1 other entries. Overal runtime $O(n^3)$.

Readout the order from M: exercise!

Digression: matrix multiplication

Consider the mulliplication of two $n\times n$ matrices. Let

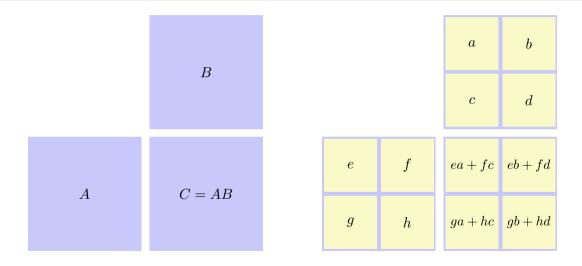
$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n}, C = A \cdot B$$

then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naive algorithm requires $\Theta(n^3)$ elementary multiplications.

Divide and Conquer



Divide and Conquer

- Assumption $n = 2^k$.
- Number of elementary multiplications: M(n) = 8M(n/2), M(1) = 1.
- yields $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. No advantage

a	b
c	d

e	f	ea + fc $eb + fd$
g	h	ga + hc $gb + hd$

Strassen's Matrix Multiplication

Nontrivial observation by Strassen (1969): It suffices to compute the seven products

A = (e + h) · (a + d), B = (g + h) · a, C = e · (b - d),
D = h · (c - a), E = (e + f) · d, F = (g - e) · (a + b),
G = (f - h) · (c + d). Denn:
ea + fc = A + D - E + G, eb + fd = C + E,
ga + hc = B + D, gb + hd = A - B + C + F.

This yields M'(n) = 7M(n/2), M'(1) = 1.

- This yields M'(n) = 7M(n/2), M'(1) = 1.Thus $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}.$
- Fastest currently known algorithm: $\mathcal{O}(n^{2.37})$

a	b
c	d

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd