
20. Dynamic Programming I

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting,
Longest Ascending Subsequence, Longest Common Subsequence, Edit
Distance, Matrix Chain Multiplication (Strassen)
[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

537



Fibonacci Numbers

(again)

Fn :=

n if n < 2
Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

538



Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

539



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

540



Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

541



Memoization

Memoization (sic) saving intermediate results.
Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved accordingly.

542



Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

543



Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

544



Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been computed.
A di�erent argument: f(n) is computed exactly once recursively for each n.
Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n). The recursion
vanishes from the running time computation.
Algorithm requires Θ(n) memory.33

33But the naive recursive algorithm also requires Θ(n) memory implicitly.
545



Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the top-down
approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic
programming.

546



Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]
return F [n]

547



Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

548



Dynamic Programming Consequence

Identical problems will be computed only once
⇒ Results are saved

We trade spee against

memory consumption

549



Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

550



Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

551



Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

552



Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑

i=1
li = n.

553



Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9 ⇒ Best cut: 3 + 1 with value 10.

554



Wie findet man den DP Algorithms

0. Exact formulation of the wanted solution
1. Define sub-problems (and compute the cardinality)
2. Guess / Enumerate (and determine the running time for guessing)
3. Recursion: relate sub-problems
4. Memoize / Tabularize. Determine the dependencies of the

sub-problems
5. Solve the problem

Running time = #sub-problems × time/sub-problem

555



Structure of the problem

0. Wanted: rn = maximal value of rod (cut or as a whole) with length n.
1. sub-problems: maximal value rk for each 0 ≤ k < n

2. Guess the length of the first piece
3. Recursion

rk = max{vi + rk−i : 0 < i ≤ k}, k > 0
r0 = 0

4. Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5. Solution in rn

556



Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒34 T (n) ∈ Θ(2n)

34T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
557



Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1

558



Algorithm RodCutMemoized(m, v, n)

Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time ∑n
i=1 i = Θ(n2)

559



Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles

560



Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the first
rod
Store the lenght of the first rod in a separate table of length n

561



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

562



Rabbit!

A rabbit sits on cite (1, 1) of an
n× n grid. It can only move to
east or south. On each path-
way there is a number of car-
rots. How many carrots does
the rabbit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

0

0

1

1

3

0

2

2

3

4

2

1

1

3

2

1

3

3

1

4

4

1

0

4

563



Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

564



Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).
Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).
Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n

565



Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

566



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots. 567



Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible fitting ports without lines crossing.

568



Formally

Consider Sequence An = (a1, . . . , an).
Search for a longest increasing subsequence
of An.
Examples of increasing subsequences: (3, 4, 5),
(2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates (still only strictly
increasing subsequences permitted). Example: (2, 3, 3, 3, 5, 1) with
increasing subsequence (2, 3, 5).

569



First idea

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)
Assumption: LAS Lk of Ak known for Now want to compute Lk+1 for Ak+1 .
If ak+1 fits to Lk, then Lk+1 = Lk ⊕ ak+1?
Counterexample A5 = (1, 2, 5, 3, 4). Let A3 = (1, 2, 5) with L3 = A3 and
L4 = A3. Determine L5 from L4?
It does not work this way, we cannot infer Lk+1 from Lk.

570



Second idea.

Let Li = longest ascending subsequence of Ai (1 ≤ i ≤ n)
Assumption: a LAS Lj is known for each j ≤ k. Now compute LAS Lk+1 for
k + 1.
Look at all fitting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest sequence.
Counterexample: A5 = (1, 2, 5, 3, 4). Let A4 = (1, 2, 5, 3) with L1 = (1),
L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 5). Determine L5 from L1, . . . , L4?
That does not work either: cannot infer Lk+1 from only an arbitrary
solution Lj . We need to consider all LAS. Too many.

571



Third approach

Let Mn,i = longest ascending subsequence of Ai (1 ≤ i ≤ n)
Assumption: the LAS Mj for Ak, that end with smallest element are known
for each of the lengths 1 ≤ j ≤ k.
Consider all fitting Mk,j ⊕ ak+1 (j ≤ k) and update the table of the LAS,that
end with smallest possible element.

572



Third approach Example

Example: A = (1, 1000, 1001, 4, 5, 2, 6, 7)
A LAT Mk,·

1 (1)
+ 1000 (1), (1, 1000)
+ 1001 (1), (1, 1000), (1, 1000, 1001)
+ 4 (1), (1, 4), (1, 1000, 1001)
+ 5 (1), (1, 4), (1, 4, 5)
+ 2 (1), (1, 2), (1, 4, 5)
+ 6 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6)
+ 7 (1), (1, 2), (1, 4, 5), (1, 4, 5, 6), (1, 4, 5, 6, 7)

573



DP Table

Idea: save the last element of the
increasing sequence Mk,j at slot j.
Example: 3 2 5 1 6 4
Problem: Table does not contain
the subsequence, only the last
value.
Solution: second table with the
predecessors.

Index 1 2 3 4 5 6
Wert 3 2 5 1 6 4
Predecessor −∞ −∞ 2 −∞ 5 1

Index 0 1 2 3 4 ...
(Lj)j -∞ 1 4 6 ∞

574



Dynamic Programming Algorithm LAS

1.

Table dimension? Semantics?

Two tables T [0, . . . , n] and V [1, . . . , n].
T [j]: last Element of the increasing subequence Mn,j

V [j]: Value of the predecessor of aj .
Start with T [0]← −∞, T [i]←∞ ∀i > 1

2.
Computation of an entry

Entries in T sorted in ascending order. For each new entry ak binary search
for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak . Set V [k] = T [l].

575



Dynamic Programming algorithm LAS

3.
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4.

Reconstruction of a solution?

Search the largest l with T [l] < ∞. l is the last index of the LAS. Starting
at l search for the index i < l such that V [l] = ai, i is the predecessor of l.
Repeat with l← i until T [l] = −∞

576



Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑
k=1

(log k +O(1)) = O(n) +
n∑

k=1
log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).
Overal runtime:

Θ(n log n).

577



Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , an), Bm = (b1, . . . , bm).
Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

578



Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with costs

operation Levenshtein LCS35 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

35Longest common subsequence – A special case of an editing problem
579



DP

0. E(n,m) = mimimum number edit operations (ED cost) a1...n → b1...m

1. Subproblems E(i, j) = ED von a1...i. b1...j . #SP = n ·m
2. Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i−1bj (replace)

3. Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),
ins(bj) + E(i, j − 1),
repl(ai, bj) + E(i− 1, j − 1)

580



DP

4. Dependencies

⇒ Computation from left top to bottom right. Row- or column-wise.
5. Solution in E(n,m)

581



Example (Levenshtein Distance)

E[i, j]← min
{
E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + 1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
Bottom-Up description of the algorithm: exercise

582



Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

583



Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) +E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) +E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

584



Analysis ED

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number steps:
O(mn)
Determination of solition: decrease i or j. Maximally O(n+m) steps.

Runtime overal:
O(mn).

585



DNA - Comparison (Star Trek)

586



DNA - Comparison

DNA consists of sequences of four di�erent nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A, G, T and
C.
Possible comparison of two genes: determine the longest common
subsequence

The longest common subsequence problem is a special case of the
minimal edit distance problem.

587



Longest common subsequence

Subsequences of a string:
Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:
Input: two strings A = (a1, . . . , am), B = (b1, . . . , bn) with lengths m > 0
and n > 0.
Wanted: Longest common subsequecnes (LCS) of A and B.

588



Longest Common Subsequence

Examples:
LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

T I G E R
Z I E G E

589



Recursive Procedure

Assumption: solutions L(i, j) known for A[1, . . . , i] and B[1, . . . , j] for all
1 ≤ i ≤ m and 1 ≤ j ≤ n, but not for i = m and j = n.

T I G E R
Z I E G E

Consider characters am, bn. Three possibilities:
1. A is enlarged by one whitespace. L(m,n) = L(m,n− 1)
2. B is enlarged by one whitespace. L(m,n) = L(m− 1, n)
3. L(m,n) = L(m− 1, n− 1) + δmn with δmn = 1 if am = bn and δmn = 0

otherwise

590



Recursion

L(m,n)← max{L(m− 1, n− 1) + δmn, L(m,n− 1), L(m− 1, n)}

for m,n > 0 and base cases L(·, 0) = 0, L(0, ·) = 0.

∅ Z I E G E
∅ 0 0 0 0 0 0
T 0 0 0 0 0 0
I 0 0 1 1 1 1
G 0 0 1 1 2 2
E 0 0 1 2 2 3
R 0 0 1 2 2 3

591



Dynamic Programming algorithm LCS

1.
Dimension of the table? Semantics?

Table L[0, . . . ,m][0, . . . , n]. L[i, j]: length of a LCS of the strings (a1, . . . , ai)
and (b1, . . . , bj)

2.
Computation of an entry

L[0, i] ← 0 ∀0 ≤ i ≤ m, L[j, 0] ← 0 ∀0 ≤ j ≤ n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i− 1, j − 1] + δij , L[i, j − 1], L[i− 1, j]).

592



Dynamic Programming algorithm LCS

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If ai = bj then output ai and continue with
(j, i)← (j−1, i−1); otherwise, if L[i, j] = L[i, j−1] continue with j ← j−1
otherwise, if L[i, j] = L[i − 1, j] continue with i ← i − 1 . Terminate for
i = 0 or j = 0.

593



Analysis LCS

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number steps:
O(mn)
Determination of solition: decrease i or j. Maximally O(n+m) steps.

Runtime overal:
O(mn).

594



Matrix-Chain-Multiplication

Task: Computation of the product A1 · A2 · ... · An of matrices A1, . . . , An.
Matrix multiplication is associative, i.e. the order of evalution can be
chosen arbitrarily
Goal: e�cient computation of the product.
Assumption: multiplicaiton of an (r × s)-matrix with an (s× u)-matrix
provides costs r · s · u.

595



Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 ·A2

·

A3

=

A1 ·A2 ·A3

k2 Operationen! k2 Operationen!

·

1

k

A1

k
1 ·

A2
1

k

A3

=

A1

·

A2 ·A3

=

A1 ·A2 ·A3

k Operationen!k Operationen!

596



Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible bracketing
(Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<q

(M [p, i] +M [i+ 1, q] + costs of the last multiplication)

597



Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: fill the table from the diagonal.

598



Analysis

DP-table has n2 entries. Computation of an entry requires considering up
to n− 1 other entries.
Overal runtime O(n3).

Readout the order from M : exercise!

599



Digression: matrix multiplication

Consider the mutliplicaiton of two n× n matrices.
Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑

k=1
aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.

600



Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

601



Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

602



Strassen’s Matrix Multiplication

Nontrivial observation by Strassen (1969): It
su�ces to compute the seven products
A = (e+ h) · (a+ d), B = (g + h) · a, C = e · (b− d),
D = h · (c− a), E = (e+ f) · d, F = (g − e) · (a+ b),
G = (f − h) · (c+ d). Denn:
ea+ fc = A+D − E +G, eb+ fd = C + E,
ga+ hc = B +D, gb+ hd = A−B + C + F .
This yields M ′(n) = 7M(n/2),M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm: O(n2.37)

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

603


	Dynamic Programming I
	Fibonacci Numbers
	Memoization
	General Procedure
	Rod Cutting
	Rabbit (Longest Path)
	Longest Ascending Sequence
	Editing Distance
	Longest Common Subsequence
	Matrix-Chain-Multiplication
	Strassen's Matrix Multiplication


