16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 121 - 12.3]

441

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing:

442

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

442

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

442

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order

m next smallest key to given key

m Key k in given interval k € [I,7]

442

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

443

Trees

Use

m Decision trees: hierarchic representation of
decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g. morse
alphabet, huffman code

m Search trees: allow efficient searching for an
element by value

44ty

sho long

(—“E/start\T—)
N, N

/ N\ / N\ / N\ / N\
S v R W D K G 0
I\ N N SN N N SN T

H 'V F U 'L AP I (B X (C'Y zZ Q 06 CH

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Morsealphabet

3/5+7.0
+
/ / \7.0
/\
3 5

Expression tree

446

Nomenclature

Wurzel

{

e Nl N

ll\/l;\\ll\ ll\/l\ll\ & &(b///l\/l\

leaves_)

m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root - leaf (here: 4)

447

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right subtree) as
left and right successor.

In each inner node v we store key

m a key v.key and left right
m two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

448

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

m Every node v stores a key
m Keys in left subtree v.1left are smaller than v.key
m Keys in right subtree v.right are greater than v.key

/ \18
VANVAN
/ /\ \

2 99

449

Input: Binary search tree with root r, key k

Output: Node v with v.key = k or null 8
VT / \
while v # null do
. 4 13
if £ = v.key then
return v / \
else if k < v.key then 10 19
| v 4= v.left /
else 9
| v < v.right

return null

450

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v 4= v.left /
else 9
7 L v vright Search (12)

return null

450

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v v.left / \
else 9
i | v < v.right Search (12)

return null

450

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null

8
VT / \
while v # null do i -

if k = v.key then
return v / \
else if k < v.key then 10 19
| v v.left / \
else 9
u L v vright Search (12) — null

return null

450

Height of a tree

The height h(T') of a binary tree T' with root r is given by

hr) {0 if r = null

1 + max{h(rleft), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T"))

451

Insertion of a key

8
Insertion of the key &
4/ \1
\ /
5 10

3

\

19

m Search for k
m |f successful search: e.g. output
error
/

m Of no success: insert the key at the

leaf reached 2

Insert (5)

452

Remove node

Three cases possible: ¢
3 / \1
\ /
5 10
/
4

m Node has no children
m Node has one child
m Node has two children

\19
/

[Leaves do not count here] 9

453

Remove node

Node has no children
Simple case: replace node by leaf.

3/8\13 3
\5 10/
4/

\

19

\ re%(ll)

19

/ /

9 9

3 / 8 \1
\5 10/

454

Remove node

Node has one child
Also simple: replace node by single child.

3 / 8 \13 5 / 8 \13
\5 10/ \19 m%(?’) 4/ 10/ \19

/] /

4 9 9

455

Remove node

Node v has two children

The following observation helps: the smallest

key in the right subtree v.right (the symmet-

ric successor of v) 3 13

m is smaller than all keys in v.right \ / \
m is greater than all keys in v.left /5 o ©
m and cannot have a left child. 4 é

Solution: replace v by its symmetric succes-
Sor.

456

By symmetry...
, (8)
Node v has two children

3 13

Also possible: replace v by its symmetric pre- \ / \

decessor. 10 19

/

4 9

457

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w <— v.right
T < w.left
while z # null do
w4 x
T < x.left

return w

458

Deletion of an element v from a tree T requires O(h(T')) fundamental
steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes O(1) steps

m Finding the symmetric successor n of v takes O(h(T)) steps. Removal
and insertion of n takes O(1) steps.

459

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
3 / \13
\ /N
5 10
/
4

19

/

9

460

Traversal possibilities

m preorder: v, then Tie (v), then Ty (v). 8
8,3,5, 413,10, 9,19 ’ / \
3 13
5 10
/
4

19

/

9

460

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
8,3,5,4, 13,10, 9,19 / \
3 13
m postorder: Tieq (v), then Tiigne (v), then v. \ /
5 10
4

\

19

/

9

460

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
8,3,5,4, 13,10, 9,19 / \
m postorder: Tieq (v), then Tiigne (v), then v. 3\ /13
4,5, 3,9 10,19 13, 8 . i
4

\

19

/

9

460

Traversal possibilities

m preorder: v, then T (v), then T (v). 8
g, 3,5,4,13,10, 9, 15&() ot / \
m postorder: Tieq (v), then Tiigne (v), then v. 3\ /13
4,5, 3,9 10,19 13, 8 . i
m inorder: Tier (v), then v, then Tign: (v). /
4

\

19

/

9

460

Traversal possibilities

m preorder: v, then Tieg (v), then g (v). 8
8,3,5,4, 13,10, 9,19 / \
m postorder: Tieq (v), then Tiigne (v), then v. 3\ /13
4,5, 3,9 10,19 13, 8 . i
4

m inorder: Tier (v), then v, then Tign: (v).
3,4,5,8,910, 13,19

\

19

/

9

460

Further supported operations

m Min(T): Read-out minimal value in O(h) 8
m ExtractMin(T): Read-out and remove . / \13
minimal value in O(h) \ /
5 10
4

m List(7): Output the sorted list of elements

m Join(Ty, T,): Merge two trees with
max(7}) < min(73) in O(n).

\

19

/

9

461

Degenerated search trees

5 / | \13
4/ \8 10/ \19

Insert 9,5,13,4,810,19
ideally balanced

Insert 4,5,8,910,13,19
linear list

Insert 1913,10,9,8,54
linear list

462

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(logn) Worst-case guarantee.

463

1/7. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

464

Binary tree with the following proper- r(ift
ties ps

e
20 18 «—parent
/ \ /" \

16 12 15 17 <—-child
/N /N
3 2 8 11 14 \ /\
leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

465

Binary tree with the following proper- r(ift
ties ps
1. complete up to the lowest level
20/ 18 <—parent
/" \ /" \

16 12 15 17 <—child

/\ /N

32 8 1M 14 \ / \

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

465

Binary tree with the following proper- r(ift
ties -
1. complete up to the lowest level /
2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right / \l / \
16 12 15 17 +—child
[\ /N
32 8 1M 14 \ / \
leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

465

Binary tree with the following proper- root
ties 2‘2
1. complete up to the lowest level /
2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right / \ / \
3. Heap-Condition: 16 12 15 17 <—child

Max-(Min-)Heap: key of a child /\ /\ /\ /\
smaller (greater) that that of the '3 2 8 11 14

parent node
leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

465

Heap as Array

Tree — Array:

m children(i) = {2i,2i + 1} /[212]
m parent(i) = |i/2] 20 18
parent / [2]\ / [3}\
16 12 15

£ N
[22]20]18]16[12[5[17] 3 [2 [8 [11]14] 3/H\2 /M\ }\ /17}\

12 N&5AhT 8 9 0M 12

Children
Depends on the starting index??

8] [9] [10}[H

22For array that start at 0: {2i,2i + 1} — {2i + 1,2i + 2}, [i/2] — [(i —1)/2]

466

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2¢ nodes. Up to the last level of a heap all
levels are filled with values.

h—1

H(n) =min{h e N: > 2" >n}

=0

with Sl 2i = 20 — 1.
H(n) =min{h € N:2" >n+1},

thus
H(n) = [logy(n + 1)].

467

Insert

20/ \18
/ \ / \

281114/\ /\

468

Insert

22
m Insert new element at the first free
position. Potentially violates the heap 20/ \18
property. / \ / \
16 12 15 17
/N /N N\
DO 6 O @ @ / \

468

Insert

22
m Insert new element at the first free
position. Potentially violates the heap 20/ \18
property. / \ / \
m Reestablish heap property: climb 16 12 @ 17

successively /\ /N [\ /\
3 2 8 M

14 15

468

Insert

m Insert new element at the first free
position. Potentially violates the heap / \
property. / \ / \

m Reestablish heap property: climb
successively / \
: / \

2 14

468

Insert

m Insert new element at the first free / \

position. Potentially violates the heap

property. / \ / \

m Reestablish heap property: climb
successively / \ / \

m Worst case number of operations: O(logn) 3 2 14

468

Algorithm Sift-Up(A, m)

Input: Array A with at least m elements and Max-Heap-Structure on
All,...,m—1]
Output: Array A with Max-Heap-Structure on A[l,...,m].
v < Alm] // value
¢ <~ m // current position (child)
p < |c/2]| // parent node
while ¢ > 1 and v > A[p] do
Alc] + Alp] // Value parent node — current node
¢+ p // parent node — current node
- Le/2]

Alc] v // value — root of the (sub)tree

469

Remove the maximum

281114/\ /\

470

Remove the maximum

m Replace the maximum by the lower right

o
element / \
20 18
/ N\ / N\
16 12 15 17

2000 '\

470

Remove the maximum

m Replace the maximum by the lower right
element / \
m Reestablish heap property: sink / \ / \

successively (in the direction of the

greater child)
/ \ / \

470

Remove the maximum

m Replace the maximum by the lower right 20
element / \
m Reestablish heap property: sink 1o
successively (in the direction of the @/ \ / \

greater child)
/ \ / \

470

Remove the maximum

m Replace the maximum by the lower right 20
element / \
m Reestablish heap property: sink 1o
successively (in the direction of the @/ \ / \

greater child)
m Worst case number of operations: O(logn) 3 /\ / \

470

Why this Is correct: Recursive heap structure

A heap consists of two heaps:

20/ \18
/ \ / \

NANA

47

Why this Is correct: Recursive heap structure

A heap consists of two heaps:

20

/N /\

16 12

NANA

47

Algorithm SiftDown(A4, 7, m)

Input: Array A with heap structure for the children of 7. Last element m.
Output: Array A with heap structure for i with last element m.
while 2: < m do

J < 2i; // j left child
if j <m and A[j] < A[j + 1] then
L j < j+1;,// jright child with greater key
if Afi] < A[j] then
swap(Ali], A[5])
i < ji // keep sinking down
else
| i« m; // sift down finished

472

7 6 4 5 1 2

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n))

m SiftDown(A,1,n — 1);
En+<n-—1

473

Sort heap
7 6 4 5 1 2
swap . 26 +«5 11
A[l,...,n] is a Heap.
Whilen > 1
m swap(A[l], A[n])
m Siftbown(A, 1,n — 1);
Bn+n-—1

473

:
swap 1
:

6
= 6
siftbown = 5

7 4 5
2 4 5
6 4 2

SR

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n))

m SiftDown(A,1,n — 1);
En+<n-—1

473

1T1111

swap . 26 +«5 11

. siftbown = 6 2 4 2 1
Al,...,n] is a Heap. swap - 15« 2808

While n > 1

m swap(A[l], A[n))

m SiftDown(A,1,n — 1);
En+<n-—1

473

7 6 4 5 1 2

swap - 26 45 1 H

, sitbown = 6 5 4 2 1 |l
it swap = 1542 M
m swap(A[L], A[n]) siftbown = 3 4 2 1 E
m SiftDown(4,1,n — 1); swap = 142 HEH
Bn<n—1 siftbown = 4 1 2 n
swap - 21 AEEanRA

sitbown = 2 1 B EHH

swap = KIEBDBEE

473

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

474

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

474

Algorithm HeapSort(A, n)

Input: Array A with length n.

Output: A sorted.

// Build the heap.

for i < n/2 downto 1 do

. SiftDown(A4,i,n);

// Now A is a heap.

for i < n downto 2 do
swap(A[1], Ai])
SiftDown(A4, 1,7 — 1)

// Now A is sorted.

475

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
= sorting a heap costs in the worst case 2logn comparisons.

Number of memory movements of sorting a heap also O(nlogn).

476

Analysis: creating a heap

Calls to siftDown: n/2.

Thus number of comparisons and movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

We use that h(n) = [loggn + 1] = [logan| + 1 furn >0

[logy 1] llog, 7]
v(n)= Y 2! (logan| +1—1 —1)= 3 allesni=k_j
—
=0 number heaps on level | height heaps on level | k=0
I | [logy 1] k 00 k
=92 Ogo M| | — < . < .92¢ On
kz:% ok = n kz:% o = n (n)

with s(z) = Y2 ka* = 75 (0 <z <1)and s(}) =2

477

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

478

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

O) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

478

Disadvantages

Heapsort: O(nlogn) Comparisons and movements.

Disadvantages of heapsort?

O) Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.

478

18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.21, Cormen et al, Kap.
Problem 13-3]

479

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log, n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).
Adelson-Venskii and Landis (1962): AVL-Trees

480

Balance of a node

The height balance of a node v is defined -
as the height difference of its sub-trees

T,(v) and T,.(v) hy
bal(v) := h(T,(v)) — h(T;(v)) Ti(v)

481

AVL Condition

h+2

h h+1

AVL Condition: for eacn node v of a tree
bal(v) € {—1,0,1}

482

(Counter-)Examples

/' \ /' \

/' \
O \ /N [\ [
/\ /\

AVL tree with height 2
AVL tree with height 3 No AVL tree

Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly n + 1
leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two new
leafs(m > m —14+2=m+ 1).

m 2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

484

Lower bound of the leaves

/N /\
an /\ /\

AVL tree with height 1 has / \

N(1) := 2 leaves. /\ /\

AVL tree with height 2 has at
least N(2) := 3 leaves.

485

Lower bound of the leaves for A > 2

h
v -

m Height of one subtree > h — 1. h—2 h—1
m Height of the other subtree > h — 2.
Minimal number of leaves N(h) is

N(h)=N(h—1)+ N(h—2) Ti(v)

Overal we have N(h) = Fj,» with Fibonacci-numbers F;, := 0, F := 1,
Fn = anl —+ Fn72 forn > 1.

486

Fibonacci Numbers, closed Form

It holds that®

F; = ﬁ(qb’ —¢')

with the roots ¢, ¢ of the golden ratio equation z2 — z — 1 = 0:

1 +2\/5 ~ 1.618

1 —
V5 ~ —0.618

©
I

-
Il

ZDerivation using generating functions (power series) in the appendix.
487

Fibonacci Numbers, Inductive Proof
=L —¢) ¥ (¢ =155,6=155).

1. Immediate fori=0,7 = 1.

2. Leti > 2 and claim [«] true for all Fj, j < i.

F dif Fz 1+ Fz 2 - ((# ! (Zgiil) ((Z)Z 2 (;31?2)

%\

\[
= ﬁ(@bl_l +¢') — %(W_l +¢'7?)

i— 1 24=2(7
\/5¢ 2(¢>+1>—ﬁ¢> *(+1)

(¢, fulfil z + 1 = 22

IR ST VST N S VAT P :L i i
—\/5¢ (¢7) 5¢ (9%) (¢" — o).

ot

488

Tree Height

Because |¢| < 1, overal we have

h
N(h) € © ((1 +2*/5>) C 0(1.618")

and thus

N(h) > c-1.618"
= h<144logyn+c.

An AVL tree Is asymptotically not more than 44% higher than a perfectly
balanced tree.?

%4The perfectly balanced tree has a height of [log, n + 1]

489

Insertion

Balance

m Keep the balance stored in each node

m Re-balance the tree in each update-operation
New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

490

Balance at Insertion Point

VANEVAN /NN
ANVANA ANEERVAR A
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

491

Balance at Insertion Point

/N /N ANEVAN
- A

case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

492

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

493

upin(p)

Assumption: p is left son of pp?®
AR AR
ANEAN ANEAN

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

BIf p is a right son: symmetric cases with exchange of +1 and —1
494

upin(p)

Assumption: p is left son of pp

pp -1

o/ N\
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

495

case 11 bal(p) = —1. 2°

h/j:Q
pp Yy -2
pxz -1

7N\

to

- right

}L:Fl h,j:l
ppx 0

7 N
rota:ti>on / \

26 right son: = bal(pp) = bal(p) = +1, left rotation

496

case 11 bal(p) = —1. %

h42
pp z -2

e

px +1

N
N

t {3

h—1 h—2

2 S 1

ty

=
double
rotation

h-1 left-right

fr—2 r—1
27y right son = bal(pp) = +1, bal(p) = —1, double rotation right left

7N\

t
h—1

pp Yy 0
z 0/—-1 z +1/0
t; t;
ty
h—1 h—2 h—1
h—2 h—1

497

m Tree height: O(logn).
m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path lenght
O(logn).
Insertion in an AVL-tree provides run time costs of O(logn).

498

Case 1: Children of node n are both leaves Let p be parent node of n. =
Other subtree has height A’ =0, 1 or 2.

m i/ = 1. Adapt bal(p).
m 2/ = 0: Adapt bal(p). Call upout (p).
m 1/ = 2: Rebalanciere des Teilbaumes. Call upout (p).

N N
SN L L

h=0,1,2 h=0,1,2

499

Case 2: one child k£ of node n is an inner node
m Replace n by k. upout (k)

N\ N
20 A
/\

500

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

501

upout (p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = =1 = bal(pp) < 0. upout (pp)
2. bal(pp) =0 = bal(pp) + +1.
3. bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

502

upout (p)

Case (a).3: bal(pp) = +1. Let ¢ be brother of p
(a).31: bal(q) = 0.2

p x?ygz 0 /?/4 \
/N /N _ a
)) Left Rotate(y) / \

h—1 h-1 1 9 4
3 4 h—1 h-1 h+1

h+1 h+1

28(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation 503

upout (p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.2°

Yy o+l riz 0
VRN 7/ \
px 0 q z +1 Yy o
/N /N B N\
1 2 Left Rotate(y) N
/ N\
’ 1 2 3 E
g 4 h—1 h-1 h h+1
h+1 plus upout (r).

2(b).3.2: bal(pp) = —1, bal(gq) = +1, Right rotation+upout

504

upout (p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1.3°

N LN\
/N SN L /\{ NN
Rotate right (2)
1 \ /\ left (y)
h—1 h—1 5 1 9 3 4 5
h h—1 h—1 h

plus upout (r).
30(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout

505

Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for searching,
insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for really
small problems.

506

18.5 Appendix

Derivation of some mathemmatical formulas

507

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1. Power series approach

flx) = iFZﬂ

=0

508

[Fibonacci Numbers: closed form]

2. For Fibonacci Numbers it holds that F, =0, F} =1,
F,=F,_+ F,_oVi>1. Therefore:

f@)=ax+) F-a'=z+> F1-2'+) F o'

=2 =2 =2

(o) o0
i—1 2 —2
:ZE-f-:L‘E Fi -2+ E F_5-2t
1=2 =2

:x+xZE-xi+x2ZE~xi
i=0 i=0
=z +ax-f(z)+2° f(a).

509

[Fibonacci Numbers: closed form]

3. Thus:

flz)-(1—z—2°%) ==

& flz)= =

T 1l—z—22 224+ 1-1

with the roots —¢ and —¢ of 22 + z — 1,

¢:1+\/5z1.6, é:l_‘/gz—o.(s.
2 2
it holds that ¢ - ¢ = —1 and thus
X X
f(z)=— =

(@+¢)-(@+9) (1—¢z)-(1- o)

510

[Fibonacci Numbers: closed form]

4. It holds that:

Damit:

51

[Fibonacci Numbers: closed form]

5. Power series of g,(z) = —— (a € R):

l—ax

E.g. Taylor series of g,(z) at z = 0 or like this: Let >9°, G; - % a power series
of g. By the identity g,(2)(1 — a -) = 1 it holds that for all z (within the
radius of convergence)

o0

1:ZGi‘xi—a-ZGi-x Go—i-z i—a-Gi_1)-
i=0 i=0

For z = 0 it follows Gy = 1 and for « # 0 it follows then that G; = a - G;_1 =
Gi = ai.

512

[Fibonacci Numbers: closed form]

6. Fill in the power series:

fla) = \}5<1 —1gz5x 1 —1q3x> - 15<§: o §:¢x>
=) (6 =

Comparison of the coefficients with f(z) = 2, F; - x* yields

513

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps
	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert
	Appendix

