
16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]
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Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
Key k in given interval k ∈ [l, r]
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Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.
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Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g. morse
alphabet, hu�man code
Search trees: allow e�cient searching for an
element by value
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Examples
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Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)
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Binary Trees

A binary tree is
either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right subtree) as
left and right successor.

In each inner node v we store
a key v.key and
two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

key

left right
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Binary search tree
A binary search tree is a binary tree that fulfils the search tree property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key
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Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null
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Search (12)→ null
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Height of a tree

The height h(T ) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T ))
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Insertion of a key

Insertion of the key k
Search for k
If successful search: e.g. output
error
Of no success: insert the key at the
leaf reached
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Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]
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Remove node

Node has no children
Simple case: replace node by leaf.
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Remove node

Node has one child
Also simple: replace node by single child.
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Remove node

Node v has two children

The following observation helps: the smallest
key in the right subtree v.right (the symmet-
ric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric succes-
sor.
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By symmetry...

Node v has two children

Also possible: replace v by its symmetric pre-
decessor.
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Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w
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Analysis

Deletion of an element v from a tree T requires O(h(T )) fundamental
steps:

Finding v has costs O(h(T ))
If v has maximal one child unequal to nullthen removal takes O(1) steps
Finding the symmetric successor n of v takes O(h(T )) steps. Removal
and insertion of n takes O(1) steps.
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Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19
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Further supported operations

Min(T ): Read-out minimal value in O(h)
ExtractMin(T ): Read-out and remove
minimal value in O(h)
List(T ): Output the sorted list of elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).
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Degenerated search trees
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Insert 9,5,13,4,8,10,19
ideally balanced
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Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(log n).
Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(log n) Worst-case guarantee.
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17. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]
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[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root
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child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)
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Heap as Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c
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[1]
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[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index22

22For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
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Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2i nodes. Up to the last level of a heap all
levels are filled with values.

H(n) = min{h ∈ N :
h−1∑
i=0

2i ≥ n}

with ∑h−1
i=0 2i = 2h − 1:

H(n) = min{h ∈ N : 2h ≥ n+ 1},

thus
H(n) = dlog2(n+ 1)e.
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Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations: O(log n)
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Algorithm Sift-Up(A,m)

Input: Array A with at least m elements and Max-Heap-Structure on
A[1, . . . ,m− 1]

Output: Array A with Max-Heap-Structure on A[1, . . . ,m].
v ← A[m] // value
c← m // current position (child)
p← bc/2c // parent node
while c > 1 and v > A[p] do

A[c]← A[p] // Value parent node → current node
c← p // parent node → current node
p← bc/2c

A[c]← v // value → root of the (sub)tree
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Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)
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Why this is correct: Recursive heap structure

A heap consists of two heaps:
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Algorithm SiftDown(A, i,m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished
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Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!
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Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.
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Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
⇒ sorting a heap costs in the worst case 2 log n comparisons.
Number of memory movements of sorting a heap also O(n log n).
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Analysis: creating a heap
Calls to siftDown: n/2.
Thus number of comparisons and movements: v(n) ∈ O(n logn).
But mean length of the sift-down paths is much smaller:
We use that h(n) = dlog2 n+ 1e = blog2 nc+ 1 für n > 0

v(n) =
blog2 nc∑

l=0
2l︸︷︷︸

number heaps on level l

·( blog2 nc+ 1− l︸ ︷︷ ︸
height heaps on level l

−1) =
blog2 nc∑

k=0
2blog2 nc−k · k

= 2blog2 nc ·
blog2 nc∑

k=0

k

2k
≤ n ·

∞∑
k=0

k

2k
≤ n · 2 ∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1) and s(1
2) = 2

477



Disadvantages

Heapsort: O(n log n) Comparisons and movements.

Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache e�ect).

! Two comparisons required before each necessary memory
movement.
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18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]
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Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log2 n).
But worst case Θ(n) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).
Adelson-Venskii and Landis (1962): AVL-Trees
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Balance of a node

The height balance of a node v is defined
as the height di�erence of its sub-trees
Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl

hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height 2
AVL tree with height 3 No AVL tree
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Number of Leaves

1. observation: a binary search tree with n keys provides exactly n+ 1
leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.
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Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.
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Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.
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Fibonacci Numbers, closed Form

It holds that23

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618

23Derivation using generating functions (power series) in the appendix.
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Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).
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Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a perfectly
balanced tree.24

24The perfectly balanced tree has a height of dlog2 n+ 1e
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Insertion

Balance
Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:
Insert the node as for a search tree.
Check the balance condition increasing from n to the root.
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Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)
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upin(p) - invariant

When upin(p) is called it holds that
the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp25

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

25If p is a right son: symmetric cases with exchange of +1 and −1
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upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1
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Rotations
case 1.1 bal(p) = −1. 26

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

26p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
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Rotations
case 1.1 bal(p) = −1. 27

z

x

y

t1
t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

27p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
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Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path lenght
O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).
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Deletion
Case 1: Children of node n are both leaves Let p be parent node of n. ⇒
Other subtree has height h′ = 0, 1 or 2.
h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2
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Deletion

Case 2: one child k of node n is an inner node
Replace n by k. upout(k)

p

n

k
−→

p

k
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Deletion

Case 3: both children of node n are inner nodes
Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.
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upout(p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2. bal(pp) = 0 ⇒ bal(pp)← +1.
3. bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.
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upout(p)

Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.28

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

28(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 503



upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.29

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).
29(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
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upout(p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.30

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right (z)

left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
30(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

505



Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for really
small problems.
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18.5 Appendix

Derivation of some mathemmatical formulas
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[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1. Power series approach

f(x) :=
∞∑

i=0
Fi · xi
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[Fibonacci Numbers: closed form]

2. For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀ i > 1. Therefore:

f(x) = x+
∞∑

i=2
Fi · xi = x+

∞∑
i=2

Fi−1 · xi +
∞∑

i=2
Fi−2 · xi

= x+ x
∞∑

i=2
Fi−1 · xi−1 + x2

∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑

i=0
Fi · xi + x2

∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).
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[Fibonacci Numbers: closed form]

3. Thus:
f(x) · (1− x− x2) = x.

⇔ f(x) = x

1− x− x2 = − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ = 1 +
√

5
2 ≈ 1.6, φ̂ = 1−

√
5

2 ≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
= x

(1− φx) · (1− φ̂x)
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[Fibonacci Numbers: closed form]

4. It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) = 1√
5

(1− φ̂x)− (1− φx)
(1− φx) · (1− φ̂x)

= 1√
5

(
1

1− φx −
1

1− φ̂x

)
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[Fibonacci Numbers: closed form]

5. Power series of ga(x) = 1
1−a·x (a ∈ R):

1
1− a · x =

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power series
of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within the
radius of convergence)

1 =
∞∑

i=0
Gi · xi − a ·

∞∑
i=0

Gi · xi+1 = G0 +
∞∑

i=1
(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.
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[Fibonacci Numbers: closed form]

6. Fill in the power series:

f(x) = 1√
5

(
1

1− φx −
1

1− φ̂x

)
= 1√

5

( ∞∑
i=0

φixi −
∞∑

i=0
φ̂ixi

)

=
∞∑

i=0

1√
5

(φi − φ̂i)xi

Comparison of the coe�cients with f(x) = ∑∞
i=0 Fi · xi yields

Fi = 1√
5

(φi − φ̂i).
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