
16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

441

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast access
times.
Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
Key k in given interval k ∈ [l, r]

442

Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

443

Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g. morse
alphabet, hu�man code
Search trees: allow e�cient searching for an
element by value

444

Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

445

Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree

446

Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

447

Binary Trees

A binary tree is
either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right subtree) as
left and right successor.

In each inner node v we store
a key v.key and
two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

key

left right

448

Binary search tree
A binary search tree is a binary tree that fulfils the search tree property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99

449

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

450

Height of a tree

The height h(T) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

451

Insertion of a key

Insertion of the key k
Search for k
If successful search: e.g. output
error
Of no success: insert the key at the
leaf reached

8

4

5

13

10

9

19

Insert (5)

452

Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

453

Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

454

Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

455

Remove node

Node v has two children

The following observation helps: the smallest
key in the right subtree v.right (the symmet-
ric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric succes-
sor.

8

3

5

4

13

10

9

19

456

By symmetry...

Node v has two children

Also possible: replace v by its symmetric pre-
decessor.

8

3

5

4

13

10

9

19

457

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

458

Analysis

Deletion of an element v from a tree T requires O(h(T)) fundamental
steps:

Finding v has costs O(h(T))
If v has maximal one child unequal to nullthen removal takes O(1) steps
Finding the symmetric successor n of v takes O(h(T)) steps. Removal
and insertion of n takes O(1) steps.

459

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

460

Further supported operations

Min(T): Read-out minimal value in O(h)
ExtractMin(T): Read-out and remove
minimal value in O(h)
List(T): Output the sorted list of elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).

8

3

5

4

13

10

9

19

461

Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

462

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(log n).
Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(log n) Worst-case guarantee.

463

17. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

464

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

465

Heap as Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c

22
1

20
2

18
3

16
4

12
5

15
6

17
7

3
8

2
9

8
10

11
11

14
12

parent

Children

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index22

22For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
466

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2i nodes. Up to the last level of a heap all
levels are filled with values.

H(n) = min{h ∈ N :
h−1∑
i=0

2i ≥ n}

with ∑h−1
i=0 2i = 2h − 1:

H(n) = min{h ∈ N : 2h ≥ n+ 1},

thus
H(n) = dlog2(n+ 1)e.

467

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

22

20

16

3 2

12

8 11

21

18

14 15

17

468

Algorithm Sift-Up(A,m)

Input: Array A with at least m elements and Max-Heap-Structure on
A[1, . . . ,m− 1]

Output: Array A with Max-Heap-Structure on A[1, . . . ,m].
v ← A[m] // value
c← m // current position (child)
p← bc/2c // parent node
while c > 1 and v > A[p] do

A[c]← A[p] // Value parent node → current node
c← p // parent node → current node
p← bc/2c

A[c]← v // value → root of the (sub)tree

469

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

20

16

14

3 2

12

8 11

18

15 17

470

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

471

Algorithm SiftDown(A, i,m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished

472

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

473

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

474

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

475

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
⇒ sorting a heap costs in the worst case 2 log n comparisons.
Number of memory movements of sorting a heap also O(n log n).

476

Analysis: creating a heap
Calls to siftDown: n/2.
Thus number of comparisons and movements: v(n) ∈ O(n logn).
But mean length of the sift-down paths is much smaller:
We use that h(n) = dlog2 n+ 1e = blog2 nc+ 1 für n > 0

v(n) =
blog2 nc∑

l=0
2l︸︷︷︸

number heaps on level l

·(blog2 nc+ 1− l︸ ︷︷ ︸
height heaps on level l

−1) =
blog2 nc∑

k=0
2blog2 nc−k · k

= 2blog2 nc ·
blog2 nc∑

k=0

k

2k
≤ n ·

∞∑
k=0

k

2k
≤ n · 2 ∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1) and s(1
2) = 2

477

Disadvantages

Heapsort: O(n log n) Comparisons and movements.

Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache e�ect).

! Two comparisons required before each necessary memory
movement.

478

18. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]

479

Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log2 n).
But worst case Θ(n) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).
Adelson-Venskii and Landis (1962): AVL-Trees

480

Balance of a node

The height balance of a node v is defined
as the height di�erence of its sub-trees
Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl

hr

bal(v)

481

AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

482

(Counter-)Examples

AVL tree with height 2
AVL tree with height 3 No AVL tree

483

Number of Leaves

1. observation: a binary search tree with n keys provides exactly n+ 1
leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

484

Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.

485

Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.

486

Fibonacci Numbers, closed Form

It holds that23

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618

23Derivation using generating functions (power series) in the appendix.
487

Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).

488

Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a perfectly
balanced tree.24

24The perfectly balanced tree has a height of dlog2 n+ 1e
489

Insertion

Balance
Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:
Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

490

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

491

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

492

upin(p) - invariant

When upin(p) is called it holds that
the subtree from p is grown and
bal(p) ∈ {−1,+1}

493

upin(p)

Assumption: p is left son of pp25

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

25If p is a right son: symmetric cases with exchange of +1 and −1
494

upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

495

Rotations
case 1.1 bal(p) = −1. 26

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

26p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
496

Rotations
case 1.1 bal(p) = −1. 27

z

x

y

t1
t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

27p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
497

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path lenght
O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

498

Deletion
Case 1: Children of node n are both leaves Let p be parent node of n. ⇒
Other subtree has height h′ = 0, 1 or 2.
h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

499

Deletion

Case 2: one child k of node n is an inner node
Replace n by k. upout(k)

p

n

k
−→

p

k

500

Deletion

Case 3: both children of node n are inner nodes
Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

501

upout(p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2. bal(pp) = 0 ⇒ bal(pp)← +1.
3. bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

502

upout(p)

Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.28

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

28(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 503

upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.29

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).
29(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout

504

upout(p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.30

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right (z)

left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
30(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

505

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for really
small problems.

506

18.5 Appendix

Derivation of some mathemmatical formulas

507

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1. Power series approach

f(x) :=
∞∑

i=0
Fi · xi

508

[Fibonacci Numbers: closed form]

2. For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀ i > 1. Therefore:

f(x) = x+
∞∑

i=2
Fi · xi = x+

∞∑
i=2

Fi−1 · xi +
∞∑

i=2
Fi−2 · xi

= x+ x
∞∑

i=2
Fi−1 · xi−1 + x2

∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑

i=0
Fi · xi + x2

∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).

509

[Fibonacci Numbers: closed form]

3. Thus:
f(x) · (1− x− x2) = x.

⇔ f(x) = x

1− x− x2 = − x

x2 + x− 1

with the roots −φ and −φ̂ of x2 + x− 1,

φ = 1 +
√

5
2 ≈ 1.6, φ̂ = 1−

√
5

2 ≈ −0.6.

it holds that φ · φ̂ = −1 and thus

f(x) = − x

(x+ φ) · (x+ φ̂)
= x

(1− φx) · (1− φ̂x)

510

[Fibonacci Numbers: closed form]

4. It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) = 1√
5

(1− φ̂x)− (1− φx)
(1− φx) · (1− φ̂x)

= 1√
5

(
1

1− φx −
1

1− φ̂x

)

511

[Fibonacci Numbers: closed form]

5. Power series of ga(x) = 1
1−a·x (a ∈ R):

1
1− a · x =

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power series
of g. By the identity ga(x)(1− a · x) = 1 it holds that for all x (within the
radius of convergence)

1 =
∞∑

i=0
Gi · xi − a ·

∞∑
i=0

Gi · xi+1 = G0 +
∞∑

i=1
(Gi − a ·Gi−1) · xi

For x = 0 it follows G0 = 1 and for x 6= 0 it follows then that Gi = a ·Gi−1 ⇒
Gi = ai.

512

[Fibonacci Numbers: closed form]

6. Fill in the power series:

f(x) = 1√
5

(
1

1− φx −
1

1− φ̂x

)
= 1√

5

(∞∑
i=0

φixi −
∞∑

i=0
φ̂ixi

)

=
∞∑

i=0

1√
5

(φi − φ̂i)xi

Comparison of the coe�cients with f(x) = ∑∞
i=0 Fi · xi yields

Fi = 1√
5

(φi − φ̂i).

513

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps
	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert
	Appendix

