ETH zürich

Felix Friedrich Data Structures and Algorithms Course at D-MATH (CSE) of ETH Zurich

Spring 2020

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

Goals of the course

- Understand the design and analysis of fundamental algorithms and data structures.
- An advanced insight into a modern programming model (with C++).
- Knowledge about chances, problems and limits of the parallel and concurrent computing.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation algorithms design, induction searching, selection and sorting amortized analysis dynamic programming van-Emde Boas Trees, Splay-Trees

prorgamming with C++

RAII, Move Konstruktion, Smart promises and futures Pointerstemplates and generic programming threads, mutex and monitors Exceptions functors and lambdas

parallel programming

parallelism vs. concurrency, speedup (Amdahl/Gustavson), races, memory reordering, atomir registers, RMW (CAS,TAS), deadlock/starvation

1.2 Algorithms

[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

Algorithm

Algorithm

Well-defined procedure to compute **output** data from **input** data

Example Problem: Sorting

Input: A sequence of *n* numbers (comparable objects) (a_1, a_2, \ldots, a_n) **Output**: Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Possible input

(1,7,3), (15,13,12,-0.5), $(999,998,997,996,\ldots,2,1)$, (1), () ...

Every example represents a **problem instance**

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Therefore we consider algorithms sometimes **"in the average"** and most often in the **"worst case"**.

Examples for algorithmic problems

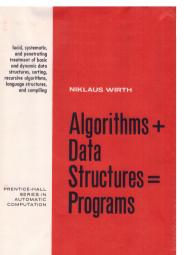
- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Fast Lookup : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

Characteristics

Extremely large number of potential solutionsPractical applicability

Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures.



Efficiency

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Reality: resources are bounded and not free:

- \blacksquare Computing time \rightarrow Efficiency
- Storage space \rightarrow Efficiency

Actually, this course is nearly only about efficiency.

Hard problems.

- NP-complete problems: no known efficient solution (the existence of such a solution is very improbable – but it has not yet been proven that there is none!)
- Example: travelling salesman problem

This course is *mostly* about problems that can be solved efficiently (in polynomial time).

2. Efficiency of algorithms

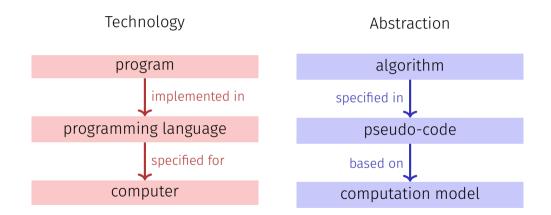
Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Efficiency of Algorithms

Goals

- Quantify the runtime behavior of an algorithm independent of the machine.
- Compare efficiency of algorithms.
- Understand dependece on the input size.

Programs and Algorithms



Technology Model

Random Access Machine (RAM) Model

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.
- Data types: fundamental types like size-limited integer or floating point number.

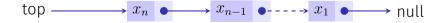
Size of the Input Data

- Typical: number of input objects (of fundamental type).
- Sometimes: number bits for a *reasonable / cost-effective* representation of the data.
- fundamental types fit into word of size : $w \ge \log(sizeof(mem))$ bits.

For Dynamic Data Strcutures

Pointer Machine Model

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.



Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete machine. Can be bounded from above and below.

Example 1

3GHz computer. Maximal number of operations per cycle (e.g. 8). \Rightarrow lower bound.

A single operations does never take longer than a day \Rightarrow upper bound.

From the perspective of the *asymptotic behavior* of the program, the bounds are unimportant.

2.2 Function growth

 \mathcal{O} , Θ , Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Superficially

Use the asymptotic notation to specify the execution time of algorithms. We write $\Theta(n^2)$ and mean that the algorithm behaves for large n like n^2 : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \to \mathbb{R}$. Definition:¹

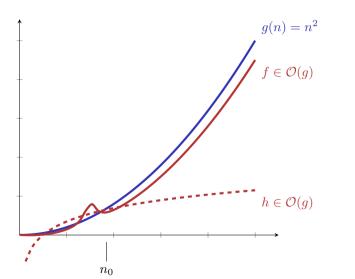
$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Notation:

$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

¹Ausgesprochen: Set of all functions $f : \mathbb{N} \to \mathbb{R}$ that satisfy: there is some (real valued) c > 0 and some $n_0 \in \mathbb{N}$ such that $0 \le f(n) \le n \cdot g(n)$ for all $n \ge n_0$.

Graphic

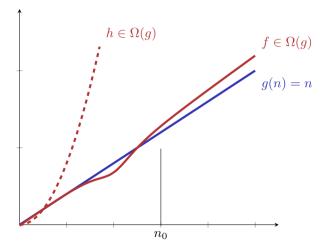


Converse: asymptotic lower bound

Given: a function $g : \mathbb{N} \to \mathbb{R}$. Definition:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

Example



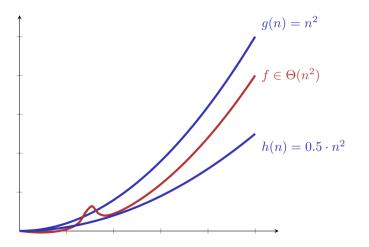
Asymptotic tight bound

Given: function $g: \mathbb{N} \to \mathbb{R}$. Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

Simple, closed form: exercise.

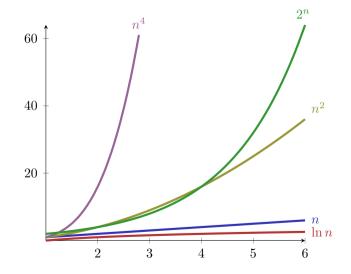
Example



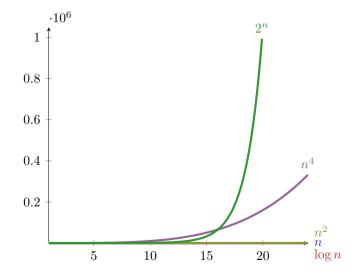
Notions of Growth

$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n\log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}(n^2)$	quadratic	simple sort algorithms
$\mathcal{O}(n^c)$	polynomial	matrix multiply
$\mathcal{O}(2^n)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

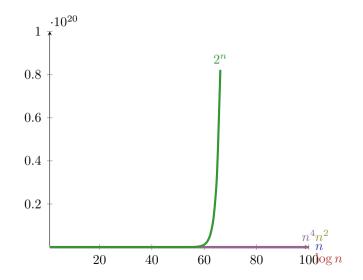
$\mathsf{Small}\; n$



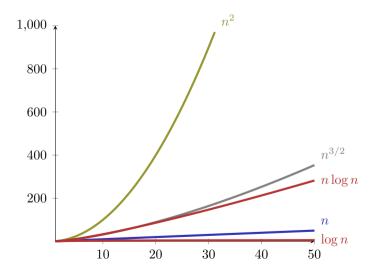
${\rm Larger}\;n$



"Large" n



Logarithms



Time Consumption

Assumption 1 Operation = $1\mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 hours
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$	10^{14} centuries	$pprox \infty$	$pprox \infty$	$pprox\infty$

Useful Tool

Theorem 2

Let $f, g: \mathbb{N} \to \mathbb{R}^+$ be two functions, then it holds that 1. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \ \mathcal{O}(f) \subsetneq \mathcal{O}(g).$ 2. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C > 0 \ (C \ \text{constant}) \Rightarrow f \in \Theta(g).$ 3. $\frac{f(n)}{g(n)} \xrightarrow[n\to\infty]{} \infty \Rightarrow g \in \mathcal{O}(f), \ \mathcal{O}(g) \subsetneq \mathcal{O}(f).$

About the Notation

Common casual notation

$$f = \mathcal{O}(g)$$

should be read as $f \in \mathcal{O}(g)$. Clearly it holds that

$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

 $n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$ but naturally $n \neq n^2$.

We avoid this notation where it could lead to ambiguities.

Reminder: Efficiency: Arrays vs. Linked Lists

- Memory: our avec requires roughly n ints (vector size n), our llvec roughly 3n ints (a pointer typically requires 8 byte)
- Runtime (with avec = std::vector, llvec = std::list):

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)

Data structure	Random	Insert	Next	Insert	Search
	Access			After	
				Element	
std::vector	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
std::list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
std::set	-	$\Theta(\log n)$	$\Theta(\log n)$	-	$\Theta(\log n)$
<pre>std::unordered_set</pre>	-	$\Theta(1) P$	—	—	$\Theta(1) P$

A = amortized, P=expected, otherwise worst case

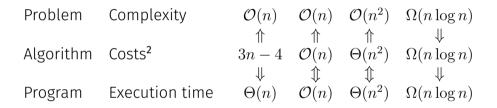
Complexity

Complexity of a problem P

minimal (asymptotic) costs over all algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}(n^{\log_3 2})$ (Karatsuba Ofman).

Complexity



²Number fundamental operations