

Exercises

■ Exercises availabe at lectures.Preliminary discussion in the following recitation session

- Solution of the exercise until the day before the next recitation session
- Dicussion of the exercise in the next recitation session.

Welcome!

Course homepage

http://lec.inf.ethz.ch/DA/2020
The team:

Assistants	Joshua Aurand Sebastian Balzer Roger Barton
	Thomas Baumann
Back-Office	Aritra Dhar
Lecturer	Felix Friedrich

Exercises

■ The solution of the weekly exercises is thus voluntary but stronly recommended.

It is so simple!

For the exercises we use an online development environment that requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly accessible at ETH.

Relevant for the exam

Material for the exam comprises

■ Course content (lectures, handout)
■ Exercises content (exercise sheets, recitation hours)
Written exam (120 min). Examination aids: four A4 pages (or two sheets of 2 A4 pages double sided) either hand written or with font size minimally 11 pt .

literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer, Spektrum-Verlag, 5. Auflage, 2011
Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R. Rivest, C. Stein, Oldenbourg, 2010
Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C. Stein , 3rd ed., MIT Press, 2009
The C++ Programming Language, B. Stroustrup, 4th ed., Addison-Wesley, 2013.
The Art of Multiprocessor Programming, M. Herlihy, N. Shavit, Elsevier, 2012.

Offer

- Doing the weekly exercise series \rightarrow bonus of maximally 0.25 of a grade points for the exam.
- The bonus is proportional to the achieved points of specially marked bonus-task. The full number of points corresponds to a bonus of 0.25 of a grade point.
- The admission to the specially marked bonus tasks can depend on the successul completion of other exercise tasks. The achieved grade bonus expires as soon as the course has been given again.

Offer (Concretely)

■ 4 bonus exercises in total; $3 / 4$ of the points suffice for the exam bonus of 0.25 marks
■ You can, e.g. fully solve 3 bonus exercises, or solve 4 bonus exercises to 75\% each, or ...

- Bonus exercises must be unlocked (\rightarrow experience points) by successfully completing the weekly exercises
■ It is again not necessary to solve all weekly exercises completely in order to unlock a bonus exerciseDetails: exercise sessions, online exercise system (Code Expert)

Should there be any Problems ...

- with the course content
- definitely attend all recitation sessions

■ ask questions there

- and/or contact the assistant
- further problems
- Email to lecturer (Felix Friedrich)

■ We are willing to help.

Academic integrity

Rule: You submit solutions that you have written yourself and that you have understood.
We check this (partially automatically) and reserve our rights to adopt disciplinary measures.

1. Introduction

Overview, Algorithms and Data Structures, Correctness, First Example

Goals of the course

■ Understand the design and analysis of fundamental algorithms and data structures.
■ An advanced insight into a modern programming model (with C++).
■ Knowledge about chances, problems and limits of the parallel and concurrent computing.

Contents

data structures / algorithms	
The notion invariant, cost model, Landau notation algorithms design, induction searching, selection and sorting Fundamen amortized analysis dictionaries: dynamic programming	imum Spanning Trees, Fibonacci Heaps t paths, Max-Flow tal algorithms on graphs, ashing and search trees -Emde Boas Trees, Splay-Trees
prorgamming with C++	
RAII, Move Konstruktion, Smart Pointerstemplates and generic programming Exceptions functors and lambdas	promises and futures threads, mutex and monitors
	parallel programming
	parallelism vs. concurrency, speedup (Amdahl/Gustavson), races, memory reordering, atomir registers, RMW (CAS,TAS), deadlock/starvation

Algorithm

[^0]
Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ of the sequence $\left(a_{i}\right)_{1 \leq i \leq n}$, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

Possible input

$(1,7,3),(15,13,12,-0.5),(999,998,997,996, \ldots, 2,1),(1),() \ldots$
Every example represents a problem instance
The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Therefore we consider algorithms sometimes "in the average" and most often in the "worst case".

Characteristics

- Extremely large number of potential solutions
- Practical applicability

Examples for algorithmic problems

■ Tables and statistis: sorting, selection and searching
■ routing: shortest path algorithm, heap data structure
■ DNA matching: Dynamic Programming

- evaluation order: Topological Sorting

■ autocomletion and spell-checking: Dictionaries / Trees

- Fast Lookup : Hash-Tables

■ The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures

Efficiency

■ If computers were infinitely fast and had an infinite amount of memory ...
■ ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).
Reality: resources are bounded and not free:

- Computing time \rightarrow Efficiency
- Storage space \rightarrow Efficiency

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Hard problems.

■ NP-complete problems: no known efficient solution (the existence of such a solution is very improbable - but it has not yet been proven that there is none!)
■ Example: travelling salesman problem

This course is mostly about problems that can be solved efficiently (in polynomial time).

Efficiency of Algorithms

Goals

■ Quantify the runtime behavior of an algorithm independent of the machine.

- Compare efficiency of algorithms

■ Understand dependece on the input size.

Programs and Algorithms

Technology
Abstraction

Size of the Input Data

■ Typical: number of input objects (of fundamental type).

- Sometimes: number bits for a reasonable / cost-effective representation of the data.
- fundamental types fit into word of size : $w \geq \log ($ sizeof(mem)) bits.

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on one processor core)
Memory model: constant access time (big array)
Fundamental operations: computations (+,-,.,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

U Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating point number.

For Dynamic Data Strcutures

Pointer Machine Model

Objects bounded in size can be dynamically allocated in constant time
Fields (with word-size) of the objects can be accessed in constant time 1.

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with gradient 1.

Superficially

Use the asymptotic notation to specify the execution time of algorithms. We write $\Theta\left(n^{2}\right)$ and mean that the algorithm behaves for large n like n^{2} : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition: ${ }^{1}$

$$
\begin{aligned}
\mathcal{O}(g)=\{ & f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq f(n) \leq c \cdot g(n)\right\}
\end{aligned}
$$

Notation:

$$
\mathcal{O}(g(n)):=\mathcal{O}(g(\cdot))=\mathcal{O}(g)
$$

${ }^{1}$ Ausgesprochen: Set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that satisfy: there is some (real valued) $c>0$ and some $n_{0} \in \mathbb{N}$ such that $0 \leq f(n) \leq n \cdot g(n)$ for all $n \geq n_{0}$.

Converse: asymptotic lower bound

Given: a function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\begin{aligned}
\Omega(g)= & \{f: \mathbb{N} \rightarrow \mathbb{R} \mid \\
& \exists c>0, \exists n_{0} \in \mathbb{N}: \\
& \left.\forall n \geq n_{0}: 0 \leq c \cdot g(n) \leq f(n)\right\}
\end{aligned}
$$

Graphic

Example

Asymptotic tight bound

Given: function $g: \mathbb{N} \rightarrow \mathbb{R}$.
Definition:

$$
\Theta(g):=\Omega(g) \cap \mathcal{O}(g) .
$$

Simple, closed form: exercise.

Notions of Growth

$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n \log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}\left(n^{2}\right)$	quadratic	simple sort algorithms
$\mathcal{O}\left(n^{c}\right)$	polynomial	matrix multiply
$\mathcal{O}\left(2^{n}\right)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

Example

Small n

Larger n

Logarithms

"Large" n

Time Consumption

Assumption 1 Operation $=1 \mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log _{2} n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	$1 / 100 s$	$1 s$	17 minutes
$n \log _{2} n$	$1 \mu s$	$700 \mu s$	$13 / 100 \mu s$	$20 s$	8.5 hours
n^{2}	$1 \mu s$	$1 / 100 s$	1.7 minutes	11.5 days	317 centuries
2^{n}	$1 \mu s$	10^{14} centuries	$\approx \infty$	$\approx \infty$	$\approx \infty$

Useful Tool

Theorem 2

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be two functions, then it holds that
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \Rightarrow f \in \mathcal{O}(g), \mathcal{O}(f) \subsetneq \mathcal{O}(g)$.
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C>0$ (C constant) $\Rightarrow f \in \Theta(g)$.
$\frac{f(n)}{g(n)} \underset{n \rightarrow \infty}{\rightarrow} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f)$.

Reminder: Efficiency: Arrays vs. Linked Lists

■ Memory: our avec requires roughly n ints (vector size n), our llvec roughly $3 n$ ints (a pointer typically requires 8 byte)

■ Runtime (with avec = std: :vector, llvec = std: :list):

About the Notation

Common casual notation

$$
f=\mathcal{O}(g)
$$

should be read as $f \in \mathcal{O}(g)$.
Clearly it holds that

$$
f_{1}=\mathcal{O}(g), f_{2}=\mathcal{O}(g) \nRightarrow f_{1}=f_{2}!
$$

$n=\mathcal{O}\left(n^{2}\right), n^{2}=\mathcal{O}\left(n^{2}\right)$ but naturally $n \neq n^{2}$.
We avoid this notation where it could lead to ambiguities.

Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Typical asymptotic running times (Anticipation!)
Data structure Random Access Insert Next Insert After Element Search std: : vector $\Theta(1)$ $\Theta(1) A$ $\Theta(1)$ $\Theta(n)$ $\Theta(n)$ std: $:$ list $\Theta(n)$ $\Theta(1)$ $\Theta(1)$ $\Theta(1)$ $\Theta(n)$ std: set - $\Theta(\log n)$ $\Theta(\log n)$ - $\Theta(\log n)$ std: :unordered_set - $\Theta(1) P$ - - $\Theta(1) P$
= amortized, $P=$ expected, otherwise worst case

Complexity

Complexity of a problem P

minimal (asymptotic) costs over all algorithms A that solve P.
Complexity of the single-digit multiplication of two numbers with n digits is $\Omega(n)$ and $\mathcal{O}\left(n^{\log _{3} 2}\right)$ (Karatsuba Ofman).

3. Examples

Show Correctness, Recursion and Recurrences
[References to literatur at the examples]

Complexity

Problem	Complexity	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\Omega(n \log n)$
		\Uparrow	\Uparrow	\Uparrow	\Downarrow
Algorithm	Costs 2	$3 n-4$	$\mathcal{O}(n)$	$\Theta\left(n^{2}\right)$	$\Omega(n \log n)$
		\Downarrow	$\hat{\Downarrow}$	$\mathbb{\Downarrow}$	\Downarrow
Program	Execution time	$\Theta(n)$	$\mathcal{O}(n)$	$\Theta\left(n^{2}\right)$	$\Omega(n \log n)$

[^1]
3.1 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication- Example on how to show correctness of algorithms.

Ancient Egyptian Multiplication

3
Compute 11 . 9

9	11
18	5
26	2
72	1
99	

1. Double left, integer division by 2 on the right
2. Even number on the right \Rightarrow eliminate row.
3. Add remaining rows on the left.
${ }^{3}$ Also known as russian multiplication

Questions

■ For which kind of inputs does the algorithm deliver a correct result (in finite time)?

- How do you prove its correctness?
- What is a good measure for Efficiency?

Advantages

- Short description, easy to grasp

■ Efficient to implement on a computer: double = left shift, divide by 2 = right shift

$$
\begin{array}{ll}
\text { left shift } & 9=01001_{2} \rightarrow 10010_{2}=18 \\
\text { right shift } & 9=01001_{2} \rightarrow 00100_{2}=4
\end{array}
$$

The Essentials

If $b>1, a \in \mathbb{Z}$, then:

$$
a \cdot b= \begin{cases}2 a \cdot \frac{b}{2} & \text { falls } b \text { gerade } \\ a+2 a \cdot \frac{b-1}{2} & \text { falls } b \text { ungerade } .\end{cases}
$$

Termination

$$
a \cdot b= \begin{cases}a & \text { falls } b=1, \\ 2 a \cdot \frac{b}{2} & \text { falls } b \text { gerade }, \\ a+2 a \cdot \frac{b-1}{2} & \text { falls } b \text { ungerade. }\end{cases}
$$

Implemented as a function

```
// pre: b>0
// post: return a*b
int f(int a, int b){
    if(b==1)
        return a;
    else if (b%2 == 0)
        return f(2*a, b/2);
    else
    return a + f(2*a, (b-1)/2);
}
```

Recursively, Functional

$$
f(a, b)= \begin{cases}a & \text { falls } b=1 \\ f\left(2 a, \frac{b}{2}\right) & \text { falls } b \text { gerade } \\ a+f\left(2 a, \frac{b-1}{2}\right) & \text { falls } b \text { ungerade } .\end{cases}
$$

Correctnes: Mathematical Proof

$$
f(a, b)= \begin{cases}a & \text { if } b=1 \\ f\left(2 a, \frac{b}{2}\right) & \text { if } b \text { even } \\ a+f\left(2 a \cdot \frac{b-1}{2}\right) & \text { if } b \text { odd }\end{cases}
$$

Remaining to show: $f(a, b)=a \cdot b$ for $a \in \mathbb{Z}, b \in \mathbb{N}^{+}$.

Correctnes: Mathematical Proof by Induction

Let $a \in \mathbb{Z}$, to show $f(a, b)=a \cdot b \quad \forall b \in \mathbb{N}^{+}$.
Base clause: $f(a, 1)=a=a \cdot 1$
Hypothesis: $f\left(a, b^{\prime}\right)=a \cdot b^{\prime} \quad \forall 0<b^{\prime} \leq b$
Step: $f\left(a, b^{\prime}\right)=a \cdot b^{\prime} \quad \forall 0<b^{\prime} \leq b \stackrel{!}{\Rightarrow} f(a, b+1)=a \cdot(b+1)$

$$
f(a, b+1)= \begin{cases}f(2 a, \overbrace{\frac{b+1}{2}}^{0<\leq b} & \stackrel{i \cdot H .}{=} a \cdot(b+1) \\ \text { if } b>0 \text { odd } \\ a+f(2 a, \underbrace{\frac{b}{2}}_{0<\cdot<b})^{i \cdot H}= & \\ =a+a \cdot b & \text { if } b>0 \text { even. }\end{cases}
$$

[Code-Transformation: End-Recursion \Rightarrow Iteration]

```
// pre: b>0
```

// pre: b>0
// post: return a*b
// post: return a*b
int f(int a, int b){
int f(int a, int b){
if (b==1)
if (b==1)
return a;
return a;
int z=0;
int z=0;
if (b%2 != 0){
if (b%2 != 0){
--b;
--b;
z=a;
z=a;
}
}
return z + f(2*a, b/2);
return z + f(2*a, b/2);
}
}
int f(int a, int b) {
int res = 0;
while (b != 1) {
int z = 0;
if (b % 2 != 0){
--b;
z=a;
res += z
a *= 2; // neues a
b /= 2; // neues b
res += a; // Basisfall b=1
return res;
}

```

\section*{[Code Transformations: End Recursion]}

The recursion can be writen as end recursion
```

```
// post: return a*b
```

```
// post: return a*b
int f(int a, int b){
int f(int a, int b){
    if(b==1)
    if(b==1)
        return a;
        return a;
    else if (b%2 == 0)
    else if (b%2 == 0)
        return f(2*a, b/2);
        return f(2*a, b/2);
    else
    else
        return a + f(2*a, (b-1)/2);
        return a + f(2*a, (b-1)/2);
}
```

}

```
// pre: b>0
// post: return \(a * b\)
int \(f(\) int \(a\), int \(b)\{\) if ( \(b==1\) )
return a;
int \(z=0\);
if (b\%2 ! = 0) \{
--b;
\(\mathrm{z}=\mathrm{a}\);
\}
return \(z+f(2 * a, b / 2) ;\)
\}
```

// pre: b>0 // post: return a*b

```
// pre: b>0 // post: return a*b
    a, int b){
    a, int b){
    a, int b){
        (b==1)
        (b==1)
        (b==1)
            z=0;
            z=0;
            z=0;
            (b%2 != 0){
            (b%2 != 0){
            (b%2 != 0){
            -b;
            -b;
            -b;
    return z + f(2*a, b/2);
    return z + f(2*a, b/2);
    return z + f(2*a, b/2);
}
```

}

```
}
```


[Code-Transformation: Simplify]

```
int f(int a, int b) {
    int res = 0;
    while (b != 1) {
        int z = 0;
        if (b % 2 != 0){
            --b; }\longrightarrow\mathrm{ Teil der Division
            z=a;\longrightarrow
        }
        res += z;
        a *= 2;
        b /= 2;
    }
    res += a; \longrightarrow}\mathrm{ in den Loop
    return res;
```

```
// pre: b>0
```

// pre: b>0
// post: return a*b
// post: return a*b
// post: return a*b
// post: return a*b
int f(int a, int b) {
int f(int a, int b) {
int res = 0;
int res = 0;
while (b > 0) {
while (b > 0) {
if (b % 2 != 0)
if (b % 2 != 0)
res += a;
res += a;
a *= 2;
a *= 2;
b /= 2;
b /= 2;
}
}
return res;
return res;
}

```
}
```

\}

Correctness: Reasoning using Invariants!

// pre: b>0
// post: return a*b

int f (int a, int b) \{	Sei $x:=a \cdot b$.
int res $=0$;	here: $x=a \cdot b+$ res
$\begin{aligned} & \text { while (b > 0) \{ } \\ & \text { if (b \% } 2 \text { != 0)\{ } \end{aligned}$	here. $x=a-b+r$ a
$\begin{aligned} & \text { res += a; } \\ & \text {--b; } \end{aligned}$	
$\}$	
$\begin{aligned} & \mathrm{a} *=2 ; \\ & \mathrm{b} /=2 ; \end{aligned}$	
\}	here: $x=a \cdot b+$ res und $b=0$
return res;	Also res $=x$.

[Further simplification]

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
    int res = 0;
    while (b > 0) {
        if (b % 2 != 0){
            res += a;
            --b;
        }
        a *= 2;
        b /= 2;
    }
    return res;
```

$\}$

Conclusion

The expression $a \cdot b+r e s$ is an invariant

■ Values of a, b, res change but the invariant remains basically unchanged: The invariant is only temporarily discarded by some statement but then re-established. If such short statement sequences are considered atomiv, the value remains indeed invariant
■ In particular the loop contains an invariant, called loop invariant and it operates there like the induction step in induction proofs.
■ Invariants are obviously powerful tools for proofs!

[Analysis]

```
// pre: b>0
// post: return a*b
int f(int a, int b) {
    int res = 0;
    while (b > 0) {
        res += a * (b%2);
        a *= 2;
        b /= 2;
    }
    return res;
}
```

Ancient Egyptian Multiplication corresponds to the school method with radix 2.

1	0	0	1	\times	1	0	1	1	
					1	0	0	1	(9)
				1	0	0	1		(18)
			1	1	0	1	1		
	1	0	0	1				(72)	
	1	1	0	0	0	1	1	(99)	

Efficiency

Question: how long does a multiplication of a and b take?
■ Measure for efficiency
■ Total number of fundamental operations: double, divide by 2, shift, test for "even", addition
■ In the recursive and recursive code: maximally 6 operations per call or iteration, respectively

- Essential criterion:
- Number of recursion calls or
- Number iterations (in the iterative case)
- $\frac{b}{2^{n}} \leq 1$ holds for $n \geq \log _{2} b$. Consequently not more than $6\left\lceil\log _{2} b\right\rceil$ fundamental operations.

Example 2: Multiplication of large Numbers

Primary school:
$2 \cdot 2=4$ single-digit multiplications. \Rightarrow Multiplication of two n-digit numbers: n^{2} single-digit multiplications

3.2 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

Observation

$$
\begin{aligned}
a b \cdot c d= & (10 \cdot a+b) \cdot(10 \cdot c+d) \\
= & 100 \cdot a \cdot c+10 \cdot a \cdot c \\
& +10 \cdot b \cdot d+b \cdot d \\
& +10 \cdot(a-b) \cdot(d-c)
\end{aligned}
$$

Improvement?

$\rightarrow 3$ single-digit multiplications.

Generalization

Assumption: two numbers with n digits each, $n=2^{k}$ for some k.

$$
\begin{aligned}
\left(10^{n / 2} a+b\right) \cdot\left(10^{n / 2} c+d\right) & =10^{n} \cdot a \cdot c+10^{n / 2} \cdot a \cdot c \\
& +10^{n / 2} \cdot b \cdot d+b \cdot d \\
& +10^{n / 2} \cdot(a-b) \cdot(d-c)
\end{aligned}
$$

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

Large Numbers

$$
6237 \cdot 5898=\underbrace{62}_{a^{\prime}} \underbrace{37}_{b^{\prime}} \cdot \underbrace{58}_{c^{\prime}} \underbrace{98}_{d^{\prime}}
$$

Recursive / inductive application: compute $a^{\prime} \cdot c^{\prime}, a^{\prime} \cdot d^{\prime}, b^{\prime} \cdot c^{\prime}$ and $c^{\prime} \cdot d^{\prime}$ as shown above.
$\rightarrow 3 \cdot 3=9$ instead of 16 single-digit multiplications.

Algorithm Karatsuba Ofman

Input: Two positive integers x and y with n decimal digits each: $\left(x_{i}\right)_{1 \leq i \leq n}$, $\left(y_{i}\right)_{1 \leq i \leq n}$
Output: Product $x \cdot y$
if $n=1$ then
return $x_{1} \cdot y_{1}$
else
Let $m:=\left\lfloor\frac{n}{2}\right\rfloor$
Divide $a:=\left(x_{1}, \ldots, x_{m}\right), b:=\left(x_{m+1}, \ldots, x_{n}\right), c:=\left(y_{1}, \ldots, y_{m}\right)$,
$d:=\left(y_{m+1}, \ldots, y_{n}\right)$
Compute recursively $A:=a \cdot c, B:=b \cdot d, C:=(a-b) \cdot(d-c)$
Compute $R:=10^{n} \cdot A+10^{m} \cdot A+10^{m} \cdot B+B+10^{m} \cdot C$
return R

Analysis

$M(n)$: Number of single-digit multiplications.
Recursive application of the algorithm from above \Rightarrow recursion equality:

$$
M\left(2^{k}\right)= \begin{cases}1 & \text { if } k=0, \tag{R}\\ 3 \cdot M\left(2^{k-1}\right) & \text { if } k>0 .\end{cases}
$$

Proof: induction

Hypothesis $H(k)$:

$$
M\left(2^{k}\right)=F(k):=3^{k} .
$$

Claim:

$$
H(k) \text { holds for all } k \in \mathbb{N}_{0} \text {. }
$$

Base clause $k=0$:

$$
M\left(2^{0}\right) \stackrel{R}{=} 1=F(0) .
$$

Induction step $H(k) \Rightarrow H(k+1)$:

$$
M\left(2^{k+1}\right) \stackrel{R}{=} 3 \cdot M\left(2^{k}\right) \stackrel{H(k)}{=} 3 \cdot F(k)=3^{k+1}=F(k+1) .
$$

Iterative Substition

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:

$$
\begin{aligned}
M\left(2^{k}\right) & =3 \cdot M\left(2^{k-1}\right)=3 \cdot 3 \cdot M\left(2^{k-2}\right)=3^{2} \cdot M\left(2^{k-2}\right) \\
& =\ldots \\
& =3^{k} \cdot M\left(2^{0}\right)=3^{k} .
\end{aligned}
$$

Comparison

Traditionally n^{2} single-digit multiplications. Karatsuba/Ofman:

$$
M(n)=3^{\log _{2} n}=\left(2^{\log _{2} 3}\right)^{\log _{2} n}=2^{\log _{2} 3 \log _{2} n}=n^{\log _{2} 3} \approx n^{1.58} .
$$

Example: number with 1000 digits: $1000^{2} / 1000^{1.58} \approx 18$.

Best possible algorithm?

We only know the upper bound $n^{\log _{2} 3}$
There are (for large n) practically relevant algorithms that are faster. Example: Schönhage-Strassen algorithm (1971) based on fast Fouriertransformation with running time $\mathcal{O}(n \log n \cdot \log \log n)$. The best upper bound is not known. ${ }^{4}$
Lower bound: n. Each digit has to be considered at least once.

[^2]
Appendix: Asymptotics with Addition and Shifts

Assumption: $n=2^{k}, k>0$

$$
\begin{aligned}
T\left(2^{k}\right) & =3 \cdot T\left(2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot T\left(2^{k-2}\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot\left(3 \cdot T\left(2^{k-3}\right)+c \cdot 2^{k-2}\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3 \cdot\left(3 \cdot\left(\ldots\left(3 \cdot T\left(2^{k-k}\right)+c \cdot 2^{1}\right) \ldots\right)+c \cdot 2^{k-1}\right)+c \cdot 2^{k} \\
& =3^{k} \cdot T(1)+c \cdot 3^{k-1} 2^{1}+c \cdot 3^{k-2} 2^{2}+\ldots+c \cdot 3^{0} 2^{k} \\
& \leq c \cdot 3^{k} \cdot\left(1+2 / 3+(2 / 3)^{2}+\ldots+(2 / 3)^{k}\right)
\end{aligned}
$$

Die geometrische Reihe $\sum_{i=0}^{k} \varrho^{i}$ mit $\varrho=2 / 3$ konvergiert für $k \rightarrow \infty$ gegen $\frac{1}{1-\varrho}=3$. Somit $T\left(2^{k}\right) \leq c \cdot 3^{k} \cdot 3 \in \Theta\left(3^{k}\right)=\Theta\left(3^{\log _{2} n}\right)=\Theta\left(n^{\log _{2} 3}\right)$.

Appendix: Asymptotics with Addition and Shifts

For each multiplication of two n-digit numbers we also should take into account a constant number of additions, subtractions and shifts Additions, subtractions and shifts of n-digit numbers cost $\mathcal{O}(n)$
Therefore the asymptotic running time is determined (with some $c>1$) by the following recurrence

$$
T(n)= \begin{cases}3 \cdot T\left(\frac{1}{2} n\right)+c \cdot n & \text { if } n>1 \\ 1 & \text { otherwise }\end{cases}
$$

3.3 Maximum Subarray Problem

Algorithm Design - Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3] Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et al, Kap. 4-4.1]

Algorithm Design

Inductive development of an algorithm: partition into subproblems, use solutions for the subproblems to find the overal solution.
Goal: development of the asymptotically most efficient (correct) algorithm. Efficiency towards run time costs (\# fundamental operations) or /and memory consumption.

Naive Maximum Subarray Algorithm

Input: A sequence of n numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: I, J such that $\sum_{k=I}^{J} a_{k}$ maximal.
$M \leftarrow 0 ; I \leftarrow 1 ; J \leftarrow 0$
for $i \in\{1, \ldots, n\}$ do
for $j \in\{i, \ldots, n\}$ do
$m=\sum_{k=i}^{j} a_{k}$
if $m>M$ then
$M \leftarrow m ; I \leftarrow i ; J \leftarrow j$
return I, J

Maximum Subarray Problem

Given: an array of n real numbers $\left(a_{1}, \ldots, a_{n}\right)$.
Wanted: interval $[i, j], 1 \leq i \leq j \leq n$ with maximal positive sum $\sum_{k=i}^{j} a_{k}$.

$$
a=(7,-11,15,110,-23,-3,127,-12,1)
$$

Analysis

Theorem 3

The naive algorithm for the Maximum Subarray problem executes $\Theta\left(n^{3}\right)$ additions.

Proof:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i+1) & =\sum_{i=1}^{n} \sum_{j=0}^{n-i}(j+1)=\sum_{i=1}^{n} \sum_{j=1}^{n-i+1} j=\sum_{i=1}^{n} \frac{(n-i+1)(n-i+2)}{2} \\
& =\sum_{i=0}^{n} \frac{i \cdot(i+1)}{2}=\frac{1}{2}\left(\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right) \\
& =\frac{1}{2}\left(\frac{n(2 n+1)(n+1)}{6}+\frac{n(n+1)}{2}\right)=\frac{n^{3}+3 n^{2}+2 n}{6}=\Theta\left(n^{3}\right)
\end{aligned}
$$

Observation

$$
\sum_{k=i}^{j} a_{k}=\underbrace{\left(\sum_{k=1}^{j} a_{k}\right)}_{S_{j}}-\underbrace{\left(\sum_{k=1}^{i-1} a_{k}\right)}_{S_{i-1}}
$$

Prefix sums

$$
S_{i}:=\sum_{k=1}^{i} a_{k} .
$$

Analysis

Theorem 4

The prefix sum algorithm for the Maximum Subarray problem conducts $\Theta\left(n^{2}\right)$ additions and subtractions.

Proof:

$$
\sum_{i=1}^{n} 1+\sum_{i=1}^{n} \sum_{j=i}^{n} 1=n+\sum_{i=1}^{n}(n-i+1)=n+\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)
$$

Maximum Subarray Algorithm with Prefix Sums

```
Input: \(\quad\) A sequence of \(n\) numbers \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
Output: \(I, J\) such that \(\sum_{k=J}^{J} a_{k}\) maximal.
\(\mathcal{S}_{0} \leftarrow 0\)
for \(i \in\{1, \ldots, n\}\) do // prefix sum
    \(\mathcal{S}_{i} \leftarrow \mathcal{S}_{i-1}+a_{i}\)
\(M \leftarrow 0 ; I \leftarrow 1 ; J \leftarrow 0\)
for \(i \in\{1, \ldots, n\}\) do
    for \(j \in\{i, \ldots, n\}\) do
        \(m=\mathcal{S}_{j}-\mathcal{S}_{i-1}\)
        if \(m>M\) then
            \(M \leftarrow m ; I \leftarrow i ; J \leftarrow j\)
```


divide et impera

Divide and Conquer

Divide the problem into subproblems that contribute to the simplified computation of the overal problem.

Maximum Subarray - Divide

■ Divide: Divide the problem into two (roughly) equally sized halves: $\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{\lfloor n / 2\rfloor}, \quad a_{\lfloor n / 2\rfloor+1}, \ldots, a_{1}\right)$

- Simplifying assumption: $n=2^{k}$ for some $k \in \mathbb{N}$.

Maximum Subarray - Observation

Assumption: solution in the middle $1 \leq i \leq n / 2<j \leq n$

$$
\begin{aligned}
S_{\max } & =\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}} \sum_{k=i}^{j} a_{k}=\max _{\substack{1 \leq i \leq n / 2 \\
n / 2<j \leq n}}\left(\sum_{k=i}^{n / 2} a_{k}+\sum_{k=n / 2+1}^{j} a_{k}\right) \\
& =\max _{1 \leq i \leq n / 2} \sum_{k=i}^{n / 2} a_{k}+\max _{n / 2<j \leq n} \sum_{k=n / 2+1}^{j} a_{k} \\
& =\max _{1 \leq i \leq n / 2} \underbrace{S_{n / 2}-S_{i-1}}_{\text {suffix sum }}+\max _{n / 2<j \leq n} \underbrace{S_{j}-S_{n / 2}}_{\text {prefix sum }}
\end{aligned}
$$

Maximum Subarray - Conquer

If i and j are indices of a solution \Rightarrow case by case analysis:

1. Solution in left half $1 \leq i \leq j \leq n / 2 \Rightarrow$ Recursion (left half)
2. Solution in right half $n / 2<i \leq j \leq n \Rightarrow$ Recursion (right half)
3. Solution in the middle $1 \leq i \leq n / 2<j \leq n \Rightarrow$ Subsequent observation

Maximum Subarray Divide and Conquer Algorithm

Input: A sequence of n numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Maximal $\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}$.
if $n=1$ then

return $\max \left\{a_{1}, 0\right\}$

else
Divide $a=\left(a_{1}, \ldots, a_{n}\right)$ in $A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)$ und $A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)$
Recursively compute best solution W_{1} in A_{1}
Recursively compute best solution W_{2} in A_{2}
Compute greatest suffix sum S in A_{1}
Compute greatest prefix sum P in A_{2}
Let $W_{3} \leftarrow S+P$
return $\max \left\{W_{1}, W_{2}, W_{3}\right\}$

Analysis

Theorem 5

The divide and conquer algorithm for the maximum subarray sum problem conducts a number of $\Theta(n \log n)$ additions and comparisons.

Analysis

Recursion equation

$$
T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T\left(\frac{n}{2}\right)+a \cdot n & \text { if } n>1\end{cases}
$$

Analysis

Input: \quad A sequence of n numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Output: Maximal $\sum_{k=i^{\prime}}^{j^{\prime}} a_{k}$.

if $n=1$ then

$\Theta(\mathbb{1})$ return $\max \left\{a_{1}, 0\right\}$
else
$\Theta(1)$ Divide $a=\left(a_{1}, \ldots, a_{n}\right)$ in $A_{1}=\left(a_{1}, \ldots, a_{n / 2}\right)$ und $A_{2}=\left(a_{n / 2+1}, \ldots, a_{n}\right)$
$T(n / 2)$ Recursively compute best solution W_{1} in A_{1}
$T(n / 2)$ Recursively compute best solution W_{2} in A_{2}
$\Theta(n)$ Compute greatest suffix sum S in A_{1}
$\Theta(n)$ Compute greatest prefix sum P in A_{2}
Θ (1) Let $W_{3} \leftarrow S+P$
$\Theta(1)$ return $\max \left\{W_{1}, W_{2}, W_{3}\right\}$

Analysis

Mit $n=2^{k}$.

$$
\bar{T}(k):=T\left(2^{k}\right)= \begin{cases}c & \text { if } k=0 \\ 2 \bar{T}(k-1)+a \cdot 2^{k} & \text { if } k>0\end{cases}
$$

Solution:

$$
\bar{T}(k)=2^{k} \cdot c+\sum_{i=0}^{k-1} 2^{i} \cdot a \cdot 2^{k-i}=c \cdot 2^{k}+a \cdot k \cdot 2^{k}=\Theta\left(k \cdot 2^{k}\right)
$$

also

$$
T(n)=\Theta(n \log n)
$$

Maximum Subarray Sum Problem - Inductively

Assumption: maximal value M_{i-1} of the subarray sum is known for $\left(a_{1}, \ldots, a_{i-1}\right)(1<i \leq n)$.

a_{i} : generates at most a better interval at the right bound (prefix sum),
$R_{i-1} \Rightarrow R_{i}=\max \left\{R_{i-1}+a_{i}, 0\right\}$

Analysis

Theorem 6

The inductive algorithm for the Maximum Subarray problem conducts a number of $\Theta(n)$ additions and comparisons.

Inductive Maximum Subarray Algorithm

Input: A sequence of n numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
Output: $\max \left\{0, \max _{i, j} \sum_{k=i}^{j} a_{k}\right\}$.
$M \leftarrow 0$
$R \leftarrow 0$
for $i=1 \ldots n$ do
$R \leftarrow R+a_{i}$
if $R<0$ then
$R \leftarrow 0$
if $R>M$ then
$M \leftarrow R$
return M;

Complexity of the problem?

Can we improve over $\Theta(n)$?
Every correct algorithm for the Maximum Subarray Sum problem must consider each element in the algorithm.
Assumption: the algorithm does not consider a_{i}.

1. The algorithm provides a solution including a_{i}. Repeat the algorithm with a_{i} so small that the solution must not have contained the point in the first place.
2. The algorithm provides a solution not including a_{i}. Repeat the algorithm with a_{i} so large that the solution must have contained the point in the first place.

Complexity of the maximum Subarray Sum Problem

Theorem 7

The Maximum Subarray Sum Problem has Complexity $\Theta(n)$.
Proof: Inductive algorithm with asymptotic execution time $\mathcal{O}(n)$.
Every algorithm has execution time $\Omega(n)$.
Thus the complexity of the problem is $\Omega(n) \cap \mathcal{O}(n)=\Theta(n)$.

Logarithms

$$
\begin{array}{rlrl}
\log _{a} y=x \Leftrightarrow a^{x}=y & (a>0, y>0) \\
\log _{a}(x \cdot y) & =\log _{a} x+\log _{a} y & a^{x} \cdot a^{y} & =a^{x+y} \\
\log _{a} \frac{x}{y} & =\log _{a} x-\log _{a} y & \frac{a^{x}}{a^{y}} & =a^{x-y} \\
\log _{a} x^{y} & =y \log _{a} x & a^{x \cdot y} & =\left(a^{x}\right)^{y} \\
\log _{a} n! & =\sum_{i=1}^{n} \log i &
\end{array}
$$

$$
\log _{b} x=\log _{b} a \cdot \log _{a} x
$$

$$
a^{\log _{b} x}=x^{\log _{b} a}
$$

To see the last line, replace $x \rightarrow a^{\log _{a} x}$

3.4 Appendix

Derivation and repetition of some mathematical formulas

Sums

$$
\sum_{i=0}^{n} i=\frac{n \cdot(n+1)}{2} \in \Theta\left(n^{2}\right)
$$

Trick

$$
\begin{aligned}
\sum_{i=0}^{n} i & =\frac{1}{2}\left(\sum_{i=0}^{n} i+\sum_{i=0}^{n} n-i\right)=\frac{1}{2} \sum_{i=0}^{n} i+n-i \\
& =\frac{1}{2} \sum_{i=0}^{n} n=\frac{1}{2}(n+1) \cdot n
\end{aligned}
$$

Sums

$$
\sum_{i=0}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 n+1)}{6}
$$

Trick:

$$
\begin{aligned}
& \sum_{i=1}^{n} i^{3}-(i-1)^{3}
\end{aligned}=\sum_{i=0}^{n} i^{3}-\sum_{i=0}^{n-1} i^{3}=n^{3} .
$$

Can easily be generalized: $\sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right)$.

4. Searching

Linear Search, Binary Search, (Interpolation Search,) Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

Geometric Series

$$
\sum_{i=0}^{n} \rho^{i} \stackrel{!}{=} \frac{1-\rho^{n+1}}{1-\rho}
$$

$$
\begin{aligned}
\sum_{i=0}^{n} \rho^{i} \cdot(1-\varrho) & =\sum_{i=0}^{n} \rho^{i}-\sum_{i=0}^{n} \rho^{i+1}=\sum_{i=0}^{n} \rho^{i}-\sum_{i=1}^{n+1} \rho^{i} \\
& =\rho^{0}-\rho^{n+1}=1-\rho^{n+1}
\end{aligned}
$$

For $0 \leq \rho<1$:

$$
\sum_{i=0}^{\infty} \rho^{i}=\frac{1}{1-\rho}
$$

The Search Problem

Provided

- A set of data sets
telephone book, dictionary, symbol table
■ Each dataset has a key k.
- Keys are comparable: unique answer to the question $k_{1} \leq k_{2}$ for keys k_{1}, k_{2}.
Task: find data set by key k.

Search in Array

Provided

■ Array A with n elements $(A[1], \ldots, A[n])$.

- Key b

Wanted: index $k, 1 \leq k \leq n$ with $A[k]=b$ or "not found".

Search in a Sorted Array

Provided

■ Sorted array A with n elements $(A[1], \ldots, A[n])$ with $A[1] \leq A[2] \leq \cdots \leq A[n]$.
■ Key b
Wanted: index $k, 1 \leq k \leq n$ with $A[k]=b$ or "not found".

Linear Search

Traverse the array from $A[1]$ to $A[n]$.
■ Best case: 1 comparison.
■ Worst case: n comparisons.
■ Assumption: each permutation of the n keys with same probability. Expected number of comparisons for the successful search:

$$
\frac{1}{n} \sum_{i=1}^{n} i=\frac{n+1}{2} .
$$

Divide and Conquer!

Search $b=23$.

10	20	22	24	28	32	35	38	41	42	$b<28$
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	$b>20$
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	$b>22$
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	$b<24$
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	erfolglos
1	2		4	5	6	7	8	9	10	

Binary Search Algorithm BSearch (A, l, r, b)

Input: Sorted array A of n keys. Key b. Bounds $1 \leq l, r \leq n$ mit $l \leq r$ or $l=r+1$.
Output: Index $m \in[l, \ldots, r+1]$, such that $A[i] \leq b$ for all $l \leq i<m$ and $A[i] \geq b$ for all $m<i \leq r$.
$m \leftarrow\lfloor(l+r) / 2\rfloor$
if $l>r$ then // Unsuccessful search return I
else if $b=A[m]$ then $/ /$ found
return m
else if $b<A[m]$ then// element to the left return $\operatorname{BSearch}(A, l, m-1, b)$
else //b>A[m]: element to the right
return $\operatorname{BSearch}(A, m+1, r, b)$

Analysis (worst case)

$$
T(n)= \begin{cases}d & \text { if } n=1 \\ T(n / 2)+c & \text { if } n>1\end{cases}
$$

Guess: $T(n)=d+c \cdot \log _{2} n$

Proof by induction:

■ Base clause: $T(1)=d$.

- Hypothesis: $T(n / 2)=d+c \cdot \log _{2} n / 2$
- Step: $(n / 2 \rightarrow n)$

$$
T(n)=T(n / 2)+c=d+c \cdot\left(\log _{2} n-1\right)+c=d+c \log _{2} n
$$

Analysis (worst case)

Recurrence ($n=2^{k}$)

$$
T(n)= \begin{cases}d & \text { falls } n=1 \\ T(n / 2)+c & \text { falls } n>1\end{cases}
$$

Compute:

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+c=T\left(\frac{n}{4}\right)+2 c=\ldots \\
& =T\left(\frac{n}{2^{i}}\right)+i \cdot c \\
& =T\left(\frac{n}{n}\right)+\log _{2} n \cdot c=d+c \cdot \log _{2} n \in \Theta(\log n)
\end{aligned}
$$

Result

Theorem 8

The binary sorted search algorithm requires $\Theta(\log n)$ fundamental operations.

Iterative Binary Search Algorithm

Input: Sorted array A of n keys. Key b.
Output: Index of the found element. 0 , if unsuccessful.
$l \leftarrow 1 ; r \leftarrow n$
while $l \leq r$ do

$$
m \leftarrow\lfloor(l+r) / 2\rfloor
$$

if $A[m]=b$ then
return m
else if $A[m]<b$ then
$l \leftarrow m+1$
else
$r \leftarrow m-1$
return NotFound;

[Can this be improved?]

Assumption: values of the array are uniformly distributed.

Example

Search for "Becker" at the very beginning of a telephone book while search for "Wawrinka" rather close to the end.
Binary search always starts in the middle.
Binary search always takes $m=\left\lfloor l+\frac{r-l}{2}\right\rfloor$.

Correctness

Algorithm terminates only if A is empty or b is found.
Invariant: If b is in A then b is in domain $A[l . . r]$

Proof by induction

■ Base clause $b \in A[1 . . n]$ (oder nicht)
■ Hypothesis: invariant holds after i steps.

- Step:
$b<A[m] \Rightarrow b \in A[l . . m-1]$
$b>A[m] \Rightarrow b \in A[m+1 . . r]$

[Interpolation search]

Expected relative position of b in the search interval $[l, r]$

$$
\rho=\frac{b-A[l]}{A[r]-A[l]} \in[0,1] .
$$

New 'middle': $l+\rho \cdot(r-l)$
Expected number of comparisons $\mathcal{O}(\log \log n)$ (without proof).

[^3]
Lower Bounds

Binary Search (worst case): $\Theta(\log n)$ comparisons.
Does for any search algorithm in a sorted array (worst case) hold that number comparisons $=\Omega(\log n)$?

Decision Tree

Binary tree with height h has at most $2^{0}+2^{1}+\cdots+2^{h-1}=2^{h}-1<2^{h}$ nodes.

$$
2^{h}>n \Rightarrow h>\log _{2} n
$$

Decision tree with n node has at least height $\log _{2} n$. Number decisions $=\Omega(\log n)$.

Theorem 9

Any comparison-based search algorithm on sorted data with length n requires in the worst case $\Omega(\log n)$ comparisons.

Decision tree

- For any input $b=A[i]$ the algorithm must succeed \Rightarrow decision tree comprises at least n nodes.
- Number comparisons in worst case $=$ height of the tree $=$ maximum number nodes from root to leaf.

Theorem 10

Any comparison-based search algorithm with unsorted data of length n requires in the worst case $\Omega(n)$ comparisons.

Attempt

Correct?

"Proof": to find b in A, b must be compared with each of the n elements $A[i](1 \leq i \leq n)$.
Wrong argument! It is still possible to compare elements within A.

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

Better Argument

■ Different comparisons: Number comparisons with b : e Number comparisons without b : i
■ Comparisons induce g groups. Initially $g=n$.
■ To connect two groups at least one comparison is needed: $n-g \leq i$.

- At least one element per group must be compared with b.

■ Number comparisons $i+e \geq n-g+g=n$.

The Problem of Selection

Input

- unsorted array $A=\left(A_{1}, \ldots, A_{n}\right)$ with pairwise different values

■ Number $1 \leq k \leq n$.
Output $A[i]$ with $|\{j: A[j]<A[i]\}|=k-1$

[^4]
Naive Algorithm

Repeatedly find and remove the minimum $\Theta(k \cdot n)$. \rightarrow Median in $\Theta\left(n^{2}\right)$

Min and Max
? To separately find minimum an maximum in $(A[1], \ldots, A[n]), 2 n$ comparisons are required. (How) can an algorithm with less than $2 n$ comparisons for both values at a time can be found?
(7) Possible with $\frac{3}{2} n$ comparisons: compare 2 elements each and then the smaller one with min and the greater one with max. ${ }^{5}$
${ }^{5} \mathrm{An}$ indication that the naive algorithm can be improved.

Use a pivot

1. Choose a (an arbitrary) pivot p
2. Partition A in two parts, and determine the rank of p by counting the indices i with $A[i] \leq p$.
3. Recursion on the relevant part. If $k=r$ then found.

Algorithm Partition (A, l, r, p)

Input: Array A, that contains the pivot p in $A[l, \ldots, r]$ at least once.
Output: Array A partitioned in $[l, \ldots, r]$ around p. Returns position of p.
while $l \leq r$ do
while $A[l]<p$ do
$l \leftarrow l+1$
while $A[r]>p$ do $L r \leftarrow r-1$
$\operatorname{swap}(A[l], A[r])$
if $A[l]=A[r]$ then
$\llcorner l \leftarrow l+1$

return l -1

Correctness: Invariant

```
Invariant \(I: A_{i} \leq p \forall i \in[0, l), A_{i} \geq p \forall i \in(r, n], \exists k \in[l, r]: A_{k}=p\).
while \(l \leq r\) do
    while \(A[l]<p\) do
    \(\begin{array}{lr}\frac{L \leftarrow l+1}{\text { while } A[r]>p \text { do }} I \text { und } A[l] \geq p \\ \begin{array}{l}r \leftarrow r-1\end{array} & I \text { und } A[r]<p\end{array}\)
    \(\frac{L r \leftarrow r-1}{\operatorname{swap}(A[l], A[r])} I\) und \(A[r] \leq p\)
    \(\operatorname{swap}(A[l], A[r])\)
    if \(A[l]=A[r]\) then
        \(l \leftarrow l+1\)
return l-1
```


Choice of the pivot.

The minimum is a bad pivot: worst case $\Theta\left(n^{2}\right)$

A good pivot has a linear number of elements on both sides.

Analysis

Partitioning with factor $q(0<q<1)$: two groups with $q \cdot n$ and $(1-q) \cdot n$ elements (without loss of generality $g \geq 1-q$).

$$
\begin{aligned}
T(n) & \leq T(q \cdot n)+c \cdot n \\
& \leq c \cdot n+q \cdot c \cdot n+T\left(q^{2} \cdot n\right) \leq \ldots=c \cdot n \sum_{i=0}^{\log _{q}(n)-1} q^{i}+T(1) \\
& \leq c \cdot n \underbrace{\sum_{i=0}^{\infty} q^{i}}_{\text {geom. Reihe }}+d=c \cdot n \cdot \frac{1}{1-q}+d=\mathcal{O}(n)
\end{aligned}
$$

Algorithm Quickselect (A, l, r, k)

Input: Array A with length n. Indices $1 \leq l \leq k \leq r \leq n$, such that for all

$$
x \in A[l . . r]:|\{j \mid A[j] \leq x\}| \geq l \text { and }|\{j \mid A[j] \leq x\}| \leq r
$$

Output: Value $x \in A[l . . r]$ with $|\{j \mid A[j] \leq x\}| \geq k$ and $|\{j \mid x \leq A[j]\}| \geq n-k+1$

if $\mathrm{I}=\mathrm{r}$ then

return $A[l]$;
$x \leftarrow \operatorname{RandomPivot}(A, l, r)$
$m \leftarrow \operatorname{Partition}(A, l, r, x)$

if $k<m$ then

return QuickSelect $(A, l, m-1, k)$
else if $k>m$ then
return QuickSelect $(A, m+1, r, k)$
else
return $A[k]$

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a random pivot.

Probability for a good pivot in one trial: $\frac{1}{2}=: \rho$.
Probability for a good pivot after k trials: $(1-\rho)^{k-1} \cdot \rho$.
Expected number of trials: $1 / \rho=2$ (Expected value of the geometric distribution:)

Algorithm RandomPivot (A, l, r)

Input: Array A with length n. Indices $1 \leq l \leq r \leq n$
Output: Random "good" pivot $x \in A[l, \ldots, r]$
repeat
choose a random pivot $x \in A[l . . r]$
$p \leftarrow l$
for $j=l$ to r do
if $A[j] \leq x$ then $p \leftarrow p+1$
until $\left\lfloor\frac{3 l+r}{4}\right\rfloor \leq p \leq\left\lceil\frac{l+3 r}{4}\right\rceil$
return x
This algorithm is only of theoretical interest and delivers a good pivot in 2 expected iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot can be chosen or a deterministic one such as the median of three elements.

Median of medians

Goal: find an algorithm that even in worst case requires only linearly many steps.
Algorithm Select (k-smallest)
■ Consider groups of five elements.
■ Compute the median of each group (straighforward)

- Apply Select recursively on the group medians.

■ Partition the array around the found median of medians. Result: i
■ If $i=k$ then result. Otherwise: select recursively on the proper side.

Algorithmus MMSelect (A, l, r, k)

Input: Array A with length n with pair-wise different entries. $1 \leq l \leq k \leq r \leq n$, $A[i]<A[k] \forall 1 \leq i<l, A[i]>A[k] \forall r<i \leq n$
Output: Value $x \in A$ with $|\{j \mid A[j] \leq x\}|=k$
$m \leftarrow \operatorname{MMChoose}(A, l, r)$
$i \leftarrow \operatorname{Partition}(A, l, r, m)$
if $k<i$ then
return MMSelect $(A, l, i-1, k)$
else if $k>i$ then
return MMSelect $(A, i+1, r, k)$
else
return $A[i]$

Median of medians

Algorithmus MMChoose (A, l, r)

Input: Array A with length n with pair-wise different entries. $1 \leq l \leq r \leq n$.
Output: Median m of medians

```
if }r-l\leq5\mathrm{ then
    return MedianOf5(A[l,\ldots,r])
else
    A'}\leftarrow\operatorname{MedianOf5Array(A[l,\ldots,r])
```


How good is this?

- Number groups of five: $\left\lceil\frac{n}{5}\right\rceil$, without median group: $\left\lceil\frac{n}{5}\right\rceil-1$

■ Minimal number groups left / right of Mediangroup $\left\lfloor\frac{1}{2}\left(\left[\frac{n}{5}\right\rceil-1\right)\right\rfloor$

- Minimal number of points less than / greater than m

$$
3\left\lfloor\frac{1}{2}\left(\left\lceil\frac{n}{5}\right\rceil-1\right)\right\rfloor \geq 3\left\lfloor\frac{1}{2}\left(\frac{n}{5}-1\right)\right\rfloor \geq 3\left(\frac{n}{10}-\frac{1}{2}-1\right)>\frac{3 n}{10}-6
$$

(Fill rest group with points from the median group)
\Rightarrow Recursive call with maximally $\left\lceil\frac{7 n}{10}+6\right\rceil$ elements.

Proof

Base clause: ${ }^{6}$ choose c large enough such that

$$
T(n) \leq c \cdot n \text { für alle } n \leq n_{0} \text {. }
$$

Induction hypothesis: $H(n)$

$$
T(i) \leq c \cdot i \text { für alle } i<n \text {. }
$$

Induction step: $H(k)_{k<n} \rightarrow H(n)$

$$
\begin{aligned}
T(n) & \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\left\lceil\frac{7 n}{10}+6\right\rceil\right)+d \cdot n \\
& \leq c \cdot\left\lceil\frac{n}{5}\right\rceil+c \cdot\left\lceil\frac{7 n}{10}+6\right\rceil+d \cdot n \quad(\text { for } n>20)
\end{aligned}
$$

[^5]
Analysis

Recursion inequality:

$$
T(n) \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\left\lceil\frac{7 n}{10}+6\right\rceil\right)+d \cdot n
$$

with some constant d.
Claim:

$$
T(n)=\mathcal{O}(n)
$$

Proof

Induction step:

$$
\begin{aligned}
T(n) & \stackrel{n>20}{\leq} c \cdot\left\lceil\frac{n}{5}\right\rceil+c \cdot\left\lceil\frac{7 n}{10}+6\right\rceil+d \cdot n \\
& \leq c \cdot \frac{n}{5}+c+c \cdot \frac{7 n}{10}+6 c+c+d \cdot n=\frac{9}{10} \cdot c \cdot n+8 c+d \cdot n
\end{aligned}
$$

To show

$$
\exists n_{0}, \exists c \quad \left\lvert\, \quad \frac{9}{10} \cdot c \cdot n+8 c+d \cdot n \leq c n \quad \forall n \geq n_{0}\right.
$$

thus

$$
8 c+d \cdot n \leq \frac{1}{10} c n \quad \Leftrightarrow \quad n \geq \frac{80 c}{c-10 d}
$$

Set, for example $c=90 d, n_{0}=91 \quad \Rightarrow T(n) \leq c n \forall n \geq n_{0}$

Result

Theorem 11

The k-th element of a sequence of n elements can, in the worst case, be found in $\Theta(n)$ steps.

Overview

1.	Repeatedly find minimum	$\mathcal{O}\left(n^{2}\right)$
2.	Sorting and choosing $A[i]$	$\mathcal{O}(n \log n)$
3.	Quickselect with random pivot	$\mathcal{O}(n)$ expected
4.	Median of Medians (Blum)	$\mathcal{O}(n)$ worst case

[Expected value of the Geometric Distribution]

Random variable $X \in \mathbb{N}^{+}$with $\mathbb{P}(X=k)=(1-p)^{k-1} \cdot p$.
Expected value

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p=\sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot(1-q) \\
& =\sum_{k=1}^{\infty} k \cdot q^{k-1}-k \cdot q^{k}=\sum_{k=0}^{\infty}(k+1) \cdot q^{k}-k \cdot q^{k} \\
& =\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}=\frac{1}{p} .
\end{aligned}
$$

What do we learn today?

6. C++ advanced (I)

Repetition: Vectors, Pointers and Iterators,
Range for, Keyword auto, a Class for Vectors, Subscript-operator, Move-construction, Iterators

■ Keyword auto

- Ranged for
- Short recap of the Rule of Three

■ Subscript operator

- Move Semantics, X-Values and the Rule of Five

■ Custom Iterators

6.1 Useful Tools

On our way to elegant, less complicated code.
// Vector of length 10
std: :vector<int> $\mathrm{v}(10) ;$ We want to understand this in depth!
// Input
for (int $i=0 ; i<v . \operatorname{size}() ;++i)$
std: :cin >> v[i];
// Output
for (iterator it = v.begin(); it != v.end(); ++it) std::cout << *it << " ";
\}
Not as good as it could be!

auto

The keyword auto (from C ++11):
The type of a variable is inferred from the initializer.

```
int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);
auto i = v[3]; // double
```


Range for (C++11)

for (range-declaration : range-expression)

 statement;■ range-declaration: named variable of element type specified via the sequence in range-expression

- range-expression: Expression that represents a sequence of elements via iterator pair begin(), end(), or in the form of an intializer list.

```
std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double& x: v) x=5;
```


Slightly better...

```
#include <iostream>
#include <vector>
int main(){
    std::vector<int> v(10); // Vector of length 10
    for (int i = 0; i < v.size(); ++i)
        std::cin >> v[i];
    for (auto it = v.begin(); it != v.end(); ++it) {
        std::cout << *it << " ";
    }
}
```


Cool!

\#include <iostream>
\#include <vector>
int main()\{
std::vector<int> v(10); // Vector of length 10
for (auto\& $x: ~ v$)
std::cin >> x;
for (const auto $x: ~ v$) std::cout << x << " ";
\}

For our detailed understanding

We build a vector class with the same capabilities ourselves!

6.2 Memory Allocation

Construction of a vector class
On the way we learn about
■ RAII (Resource Acquisition is Initialization) and move construction

- Subscript operators and other utilities
- Templates

■ Exception Handling

- Functors and lambda expressions

Element access

```
```

class Vector{

```
```

class Vector{
// getter. pre: 0 <= i < sz;
// getter. pre: 0 <= i < sz;
double get(std::size_t i) const{
double get(std::size_t i) const{
return elem[i];
return elem[i];
}
}
// setter. pre: 0 <= i < sz;
// setter. pre: 0 <= i < sz;
void set(std::size_t i, double d){
void set(std::size_t i, double d){
elem[i] = d;
elem[i] = d;
}
}
// size property
// size property
std::size_t size() const {
std::size_t size() const {
return sz;
return sz;
}

```
```

 }
    ```
```

$\}$

```
class Vector{
public:
    Vector();
    Vector();
    Vector(std:
    ~Vector();
    double set(std::size_t i, double d);
    std::size_t size() const;
}
```


A class for (double) vectors

```
class Vector{
```

class Vector{
public:
public:
// constructors
// constructors
Vector(): sz{0}, elem{nullptr} {};
Vector(): sz{0}, elem{nullptr} {};
Vector(std::size_t s): sz{s}, elem{new double[s]} {}
Vector(std::size_t s): sz{s}, elem{new double[s]} {}
// destructor
// destructor
~Vector(){
~Vector(){
delete[] elem;
delete[] elem;
}
}
// (something is missing here)
// (something is missing here)
private:
private:
std::size_t sz;
std::size_t sz;
double* elem;
double* elem;
}

```
}
```


What's the problem here?

```
int main(){
    Vector v(32);
    for (std::size_t i = 0; i!=v.size(); ++i)
        v.set(i, i);
    Vector w = v;
    for (std::size_t i = 0; i!=w.size(); ++i)
        w.set(i, i*i);
    return 0;
}
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    Vector();
    double get(std::size_t i) const;
    void set(std::size_t i, double d)
    std::size_t size() const;
}
*** Error in 'vector1': double free or corruption
(!prev): 0x0000000000d23c20 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5) [0x7fe5a5ac97e5]
(Vector Interface)
```

... 170
class Vector\{
public
public:
Vector();
Vector(std::size t s);
Vector(std
Vector(const Vector \&V);
Vector operator=(const Vector\&v);
double get(std::size ti) const;
double get(std::size_t i) const,
std::size_t size() const;
\}

Rule of Three!

```
```

class Vector{

```
```

class Vector{
...
...
// assignment operator
// assignment operator
Vector\& operator=(const Vector\& v){
Vector\& operator=(const Vector\& v){
if (v.elem == elem) return *this;
if (v.elem == elem) return *this;
if (elem != nullptr) delete[] elem;
if (elem != nullptr) delete[] elem;
sz = v.sz;
sz = v.sz;
elem = new double[sz];
elem = new double[sz];
std::copy(v.elem, v.elem+v.sz, elem);
std::copy(v.elem, v.elem+v.sz, elem);
return *this;
return *this;
}
}
}

```
```

}

```
```


Rule of Three!
 Rule of Three!

}
class Vector{
...
public:
// copy constructor
Vector(const Vector \&v)

```
```

```
class Vector{
```

```
class Vector{
```

```
class Vector{
public:
public:
public:
    \mathrm{ Vector();}
    \mathrm{ Vector();}
    \mathrm{ Vector();}
    Vector(std::size_t s);
    Vector(std::size_t s);
    Vector(std::size_t s);
    -Vector();
    -Vector();
    -Vector();
    VVector();
    VVector();
    VVector();
    double get(std::size_t i) const;
    std::size_t size() const;
```

 std::size_t size() const;
    ```
}
}
: sz\{v.sz\}, elem\{new double[v.sz]\} \{ std::copy(v.elem, v.elem + v.sz, elem);
```


Constructor Delegation

}

```
```

```
public:
```

```
public:
// copy constructor
// copy constructor
// (with constructor delegation)
// (with constructor delegation)
Vector(const Vector &v): Vector(v.sz)
Vector(const Vector &v): Vector(v.sz)
{
{
std::copy(v.elem, v.elem + v.sz, elem);
```

std::copy(v.elem, v.elem + v.sz, elem);

```

\section*{Copy-\&-Swap Idiom}
```

class Vector{
.
// Assignment operator
Vector\& operator= (const Vector\&v){
Vector cpy(v);
swap(cpy);
return *this;
}
private:
// helper function
void swap(Vector\& v){
std::swap(sz, v.sz);
std::swap(elem, v.elem);
}
}

```
copy-and-swap idiom: all members of *this are exchanged with members of cpy. When leaving operator \(=\), cpy is cleaned up (deconstructed), while the copy of the data of \(v\) stay in \(*\) this.

\section*{Reference types!}
```

class Vector{
// for non-const objects
double\& operator[] (std::size_t pos){
return elem[pos]; // return by reference!
}
// for const objects
const double\& operator[] (std::size_t pos) const{
return elem[pos];
}
}

```

\section*{Syntactic sugar.}

Getters and setters are poor. We want a subscript (index) operator.
Overloading! So?
class Vector\{
double operator[] (std::size_t pos) const\{ return elem[pos];


\section*{So far so good.}
```

int main(){
Vector v(32); // constructor
for (int i = 0; i<v.size(); ++i)
v[i] = i; // subscript operator
Vector w = v; // copy constructor
for (int i = 0; i<w.size(); ++i)
w[i] = i*i;
const auto u = w;
for (int i = 0; i<u.size(); ++i)
std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4 ...
return 0;
}

```

\section*{Range for}

\subsection*{6.3 Iterators}

How to support the range for

We wanted this:
```

```
Vector v = ...;
```

```
Vector v = ...;
for (auto x: v)
for (auto x: v)
    std::cout << x << " ";
```

```
    std::cout << x << " ";
```

```

In order to support this, an iterator must be provided via begin and end

\section*{Const Iterator for the vector}
```

```
class Vector{
```

```
class Vector{
    ...
    ...
    // Const-Iterator
    // Const-Iterator
        const double* begin() const{
        const double* begin() const{
        return elem;
        return elem;
    }
    }
    const double* end() const{
    const double* end() const{
        return elem+sz;
        return elem+sz;
    }
    }
}
```

```
}
```

```
(Pointers support iteration)

\section*{Iterator for the vector}
```

class Vector{
*. // Iterator
double* begin(){
return elem;
}
double* end(){
return elem+sz
}

```
\(\}\)

Const iteratorforthe vector

\section*{Intermediate result}
```

Vector Natural(int from, int to){
Vector v(to-from+1);
for (auto\& x: v) x = from++;
return v;
}
int main(){
auto v = Natural(5,12);
for (auto x: v)
std::cout << x << " "; // 5 6 7 8 9 10 11 12
std::cout << std::endl;
<< "sum = "
<< std::accumulate(v.begin(), v.end(),0); // sum = 68
return 0;
}

```

\subsection*{6.4 Efficient Memory-Management*}

How to avoid copies

\section*{Vector Interface}
```

class Vector
public:
Vector(); // Default Constructor
Vector(std::size_t s); // Constructor
~Vector(); // Destructor
Vector(const Vector \&v); // Copy Constructor
Vector\& operator=(const Vector\&v); // Assignment Operator
double\& operator[] (std::size_t pos); // Subscript operator (read/write)
const double\& operator[] (std::size_t pos) const; // Subscript operator
std::size_t size() const;
double* begin(); // iterator begin
double* end(); // iterator end
const double* begin() const; // const iterator begin
const double* end() const; // const iterator end
}

Number copies

How often is v being copied?

```
Vector operator+ (const Vector& l, double r){
    Vector result (l); // copy of l to result
    for (std::size_t i = 0; i < l.size(); ++i)
        result[i] = l[i] + r
    return result; // deconstruction of result after assignment
}
int main(){
    Vector v(16); // allocation of elems[16]
    v = v + 1; // copy when assigned!
    return 0; // deconstruction of v
}
v}\mathrm{ is copied (at least) twice
```


Move construction and move assignment

```
class Vector{
    // move constructor
    Vector (Vector&& v): Vector() {
        swap(v);
    };
    // move assignment
    Vector& operator=(Vector&& v){
        swap(v);
        return *this;
    };
}
```


Explanation

When the source object of an assignment will not continue existing after an assignment the compiler can use the move assignment instead of the assignment operator.? Expensive copy operations are then avoided.
Number of copies in the previous example goes down to 1 .

Vector Interface

```
class Vector{
public:
    Vector();
    Vector(std::size_t s);
    ~Vector();
    Vector(const Vector &v);
    Vector& operator=(const Vector&v);
    Vector (Vector&& v);
    Vector& operator=(Vector&& v);
    const double& operator[] (std::size_t pos) const;
    double& operator[] (std::size_t pos);
    std::size_t size() const;
}
```


Illustration of the Move-Semantics

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () {
        std::cout << "default constructor\n";}
    Vec (const Vec&) {
        std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
};
```

[^6]
How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f=f+f+f+f;
```

Output default constructor copy constructor copy constructor copy constructor copy assignment

4 copies of the vector
\}

How many Copy Operations?

```
Vec operator + (const Vec& a, const Vec& b){
    Vec tmp = a;
    // add b to tmp
    return tmp;
}
int main (){
    Vec f;
    f = f + f + f + f;
```

\}

Illustration of the Move-Semantics

```
// nonsense implementation of a "vector" for demonstration purposes
class Vec{
public:
    Vec () { std::cout << "default constructor\n";}
    Vec (const Vec&) { std::cout << "copy constructor\n";}
    Vec& operator = (const Vec&) {
        std::cout << "copy assignment\n"; return *this;}
    ~Vec() {}
    // new: move constructor and assignment
    Vec (Vec&&) {
        std::cout << "move constructor\n";}
    Vec& operator = (Vec&&) {
        std::cout << "move assignment\n"; return *this;}
};
```


How many Copy Operations?

```
Vec operator + (Vec a, const Vec& b){
    // add b to a
    return a;
}
int main (){
    Vec f;
    f = f + f + f + f;
}
```

```
Output
```

Output
default constructor
default constructor
copy constructor
copy constructor
move assignment
move assignment
1 copy of the vector

```

Explanation: move semantics are applied when an \(x\)-value (expired value) is assigned. \(R\)-value return values of a function are examples of \(x\)-values. http://en.cppreference.com/w/cpp/language/value_category

\section*{How many Copy Operations?}
```

void swap(Vec\& a, Vec\& b){
Vec tmp = a;
a=b;
b=tmp;
}
int main (){
Vec f;
Vec g;
swap(f,g);
}

```

\section*{Output}
```

default constructor default constructor copy constructor copy assignment copy assignment
3 copies of the vector

```

\section*{Forcing \(x\)-values}
```

void swap(Vec\& a, Vec\& b){
Vec tmp = std::move(a);
a=std::move(b);
b=std::move(tmp);
}
int main (){
Vec f;
Vec g;
swap(f,g);
}
Explanation: With std::move an l-value expression can be forced into an x-value.
Then move-semantics are applied
http://en.cppreference.com/w/cpp/utility/move

```

\section*{Today's Conclusion}

■ Use auto to infer a type from the initializer.
■ X-values are values where the compiler can determine that they go out of scope.
■ Use move constructors in order to move X-values instead of copying.
- When you know what you are doing then you can enforce the use of X-Values.
■ Subscript operators can be overloaded. In order to write, references are used.
- Behind a ranged for there is an iterator working.

■ Iteration is supported by implementing an iterator following the syntactic convention of the standard library.

\section*{7. Sorting I}

Simple Sorting

\section*{Problem}

Input: An array \(A=(A[1], \ldots, A[n])\) with length \(n\).
Output: a permutation \(A^{\prime}\) of \(A\), that is sorted: \(A^{\prime}[i] \leq A^{\prime}[j]\) for all \(1 \leq i \leq j \leq n\).

\subsection*{7.1 Simple Sorting}

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

\section*{Algorithm: IsSorted \((A)\)}

Input: Array \(A=(A[1], \ldots, A[n])\) with length \(n\).
Output: Boolean decision "sorted" or "not sorted"
for \(i \leftarrow 1\) to \(n-1\) do
if \(A[i]>A[i+1]\) then
return "not sorted"
return "sorted";

\section*{Observation}

IsSorted \((A)\) :"not sorted", if \(A[i]>A[i+1]\) for any \(i\).
\(\Rightarrow\) idea:
for \(j \leftarrow 1\) to \(n-1\) do
if \(A[j]>A[j+1]\) then
\(\operatorname{swap}(A[j], A[j+1])\)

Give it a try


■ Not sorted! \(\bigodot\)
- But the greatest element moves to the right
\(\Rightarrow\) new idea! \()\)

\section*{Try it out}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 6 & 2 & 8 & 4 & 1 & \((j=1, i=1)\) & \\
\hline 5 & 6 & 2 & 8 & 4 & 1 & ( \(j=2\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & ( \(j=3\) ) & \\
\hline 5 & 2 & 6 & 8 & 4 & 1 & ( \(j=4\) ) & \\
\hline 5 & 2 & 6 & 4 & 8 & 1 & ( \(j=5\) ) & ■ Apply the procedure \\
\hline 5 & 2 & 6 & 4 & 1 & 8 & \((j=1, i=2)\) & iteratively. \\
\hline 2 & 5 & 6 & 4 & 1 & 8 & \((j=2)\) & \\
\hline \(\frac{2}{2}\) & 5 & 6 & 4 & 1 & 8 & ( \(j=3\) ) & ■ For \(A[1, \ldots, n]\), \\
\hline \(\frac{2}{2}\) & 5 & 4 & 6 & 1 & 8 & \((j=4)\). & then \(A[1, \ldots, n-1]\), \\
\hline \(\frac{2}{2}\) & 5 & 4 & 1 & 6 & 8 & \((j=1, i=3)\) & then \(A[1, \ldots, n-2]\), \\
\hline 2 & 5 & 5 & 1 & 6 & 8 & \[
(j=2)
\] & then \(A[1, \ldots, n-2]\), \\
\hline \(\frac{2}{2}\) & 4 & 5 & \begin{tabular}{|l}
1 \\
\hline 5 \\
\hline
\end{tabular} & 6 & 8 & \((j=3)\)
\((j=1, i=4)\) & etc. \\
\hline 2 & 4 & 1 & 5 & 6 & 8 & ( \(j=2\) ) & \\
\hline 2 & 1 & 4 & 5 & 6 & 8 & \((i=1, j=5)\) & \\
\hline 1 & 2 & 4 & 5 & 6 & 8 & & \\
\hline
\end{tabular}

\section*{Algorithm: Bubblesort}

Input: \(\quad\) Array \(A=(A[1], \ldots, A[n]), n \geq 0\).
Output: Sorted Array \(A\)
for \(i \leftarrow 1\) to \(n-1\) do

\section*{for \(j \leftarrow 1\) to \(n-i\) do}
if \(A[j]>A[j+1]\) then
\(\operatorname{swap}(A[j], A[j+1])\);

\section*{Analysis}

Number key comparisons \(\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}=\Theta\left(n^{2}\right)\).
Number swaps in the worst case: \(\Theta\left(n^{2}\right)\)
```

What is the worst case?
If A is sorted in decreasing order.

```

\section*{Selection Sort}


\section*{Algorithm: Selection Sort}

Input: \(\quad\) Array \(A=(A[1], \ldots, A[n]), n \geq 0\).
Output: Sorted Array \(A\)
for \(i \leftarrow 1\) to \(n-1\) do
\(p \leftarrow i\)
for \(j \leftarrow i+1\) to \(n\) do
if \(A[j]<A[p]\) then
\(L p \leftarrow j ;\)
\(\operatorname{swap}(A[i], A[p])\)

\section*{Analysis}

Number comparisons in worst case: \(\Theta\left(n^{2}\right)\).
Number swaps in the worst case: \(n-1=\Theta(n)\)

\section*{Insertion Sort}


■ Iterative procedure: \(i=1 \ldots n\)
- Determine insertion position for element \(i\).
- Insert element \(i\) array block movement potentially required

\section*{Algorithm: Insertion Sort}

Input: \(\quad\) Array \(A=(A[1], \ldots, A[n]), n \geq 0\).
Output: Sorted Array \(A\)
for \(i \leftarrow 2\) to \(n\) do
\(x \leftarrow A[i]\)
\(p \leftarrow \operatorname{BinarySearch}(A, 1, i-1, x)\); // Smallest \(p \in[1, i]\) with \(A[p] \geq x\)
for \(j \leftarrow i-1\) downto \(p\) do
\(A[j+1] \leftarrow A[j]\)
\(A[p] \leftarrow x\)

\section*{Insertion Sort}

What is the disadvantage of this algorithm compared to sorting by selection?

Many element movements in the worst case.

What is the advantage of this algorithm compared to selection sort?
The search domain (insertion interval) is already sorted. Consequently: binary search possible.

\section*{Analysis}

Number comparisons in the worst case:
\(\sum_{k=1}^{n-1} a \cdot \log k=a \log ((n-1)!) \in \Theta(n \log n)\).
Number swaps in the worst case \(\sum_{k=2}^{n}(k-1) \in \Theta\left(n^{2}\right)\)

\section*{Different point of view}

\section*{Sorting node:}


\section*{Different point of view}


Different point of view


■ Like selection sort [and like Bubblesort]

\section*{Conclusion}

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort provide the same kind of sort strategy. Will be made more precise. \({ }^{8}\)
\({ }^{8}\) In the part about parallel sorting networks. For the sequential code of course the observations as described above still hold.

\section*{Shellsort (Donald Shell 1959)}

Intuition: moving elements far apart takes many steps in the naive methods from abobe
Insertion sort on subsequences of the form \(\left(A_{k \cdot i}\right)(i \in \mathbb{N})\) with decreasing distances \(k\). Last considered distance must be \(k=1\).
Worst-case performance critically depends on the chosen subsequences
- Original concept with sequence \(1,2,4,8, \ldots, 2^{k}\). Running time: \(\mathcal{O}\left(n^{2}\right)\)

■ Sequence \(1,3,7,15, \ldots, 2^{k-1}\) (Hibbard 1963). \(\mathcal{O}\left(n^{3 / 2}\right)\)
■ Sequence \(1,2,3,4,6,8, \ldots, 2^{p} 3^{q}\) (Pratt 1971). \(\mathcal{O}\left(n \log ^{2} n\right)\)

\section*{8. Sorting II}

Mergesort, Quicksort

\section*{Shellsort}
\begin{tabular}{lllllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
2 & 8 & 7 & 6 & 5 & 4 & 3 & 9 & 1 & 0 & insertion sort, \(k=7\) \\
2 & 1 & 7 & 6 & 5 & 4 & 3 & 9 & 8 & 0 & \\
2 & 1 & 0 & 6 & 5 & 4 & 3 & 9 & 8 & 7 & insertion sort, \(k=3\) \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & ins \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & \\
2 & 1 & 0 & 3 & 5 & 4 & 6 & 9 & 8 & 7 & insertion sort, \(k=1\)
\end{tabular}

\subsection*{8.1 Mergesort}
[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

\section*{Mergesort}

\section*{Divide and Conquer!}

■ Assumption: two halves of the array \(A\) are already sorted.
■ Minimum of \(A\) can be evaluated with two comparisons.
■ Iteratively: merge the two presorted halves of \(A\) in \(\mathcal{O}(n)\).

\section*{Algorithm Merge( \(A, l, m, r\) )}
```

Input: Array A with length n, indexes }1\leql\leqm\leqr\leqn
A[l,···,m],A[m+1,···,r] sorted
Output: A [l,···,r] sorted
B\leftarrownew Array (r-l+1)
i\leftarrowl;j\leftarrowm+1;k\leftarrow1
while}i\leqm\mathrm{ and jsr do
if A[i]\leqA[j] then B[k]\leftarrowA[i];i\leftarrowi+1
else }B[k]\leftarrowA[j];j\leftarrowj+
k\leftarrowk+1;
while }i\leqm\mathrm{ do }B[k]\leftarrowA[i];i\leftarrowi+1;k\leftarrowk+
while }j\leqr\mathrm{ do }B[k]\leftarrowA[j];j\leftarrowj+1;k\leftarrowk+
for }k\leftarrowl\mathrm{ to }r\mathrm{ do }A[k]\leftarrowB[k-l+1

```

\section*{\(A[l, \ldots, m], A[m+1, \ldots, r]\) sorted}

Output: \(A[l, \ldots, r]\) sorted
\(B \leftarrow\) new \(\operatorname{Array}(r-l+1)\)
while \(i \leq m\) and \(j \leq r\) do
if \(A[i] \leq A[j]\) then \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
else \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
\(k \leftarrow k+1\);
while \(i \leq m\) do \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ; k \leftarrow k+1\)
while \(j \leq r\) do \(B[k] \leftarrow A[j] ; j \leftarrow j+1 ; k \leftarrow k+1\)
for \(k \leftarrow l\) to \(r\) do \(A[k] \leftarrow B[k-l+1]\)

\section*{Merge}


\section*{Correctness}

Hypothesis: after \(k\) iterations of the loop in line \(3 B[1, \ldots, k]\) is sorted and \(B[k] \leq A[i]\), if \(i \leq m\) and \(B[k] \leq A[j]\) if \(j \leq r\).
Proof by induction:
Base case: the empty array \(B[1, \ldots, 0]\) is trivially sorted.
Induction step ( \(k \rightarrow k+1\) ):
■ \(\mathrm{w} \log A[i] \leq A[j], i \leq m, j \leq r\).
■ \(B[1, \ldots, k]\) is sorted by hypothesis and \(B[k] \leq A[i]\).
■ After \(B[k+1] \leftarrow A[i] \quad B[1, \ldots, k+1]\) is sorted.
■ \(B[k+1]=A[i] \leq A[i+1]\) (if \(i+1 \leq m\) ) and \(B[k+1] \leq A[j]\) if \(j \leq r\).
■ \(k \leftarrow k+1, i \leftarrow i+1\) : Statement holds again.

\section*{Analysis (Merge)}
```

Lemma }1
If: array A with length n, indexes 1\leql<r\leqn. m=\lfloor(l+r)/2\rfloor and
A[l,···,m],A[m+1,···,r] sorted.
Then: in the call of Merge(}A,l,m,r)\mathrm{ a number of }\Theta(r-l) key movement and comparisons are executed.

```

Proof: straightforward(Inspect the algorithm and count the operations.)

\section*{Algorithm (recursive 2-way) Mergesort ( \(A, l, r\) )}

Input: Array \(A\) with length \(n .1 \leq l \leq r \leq n\)
Output: \(A[l, \ldots, r]\) sorted.

\section*{if \(l<r\) then}
\(m \leftarrow\lfloor(l+r) / 2\rfloor \quad / /\) middle position
Mergesort \((A, l, m) \quad / /\) sort lower half
Mergesort \((A, m+1, r) / /\) sort higher half
\(\operatorname{Merge}(A, l, m, r) \quad / /\) Merge subsequences

\section*{Mergesort}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Split} \\
\hline 5 & 2 & 6 & 1 & 8 & 4 & 3 & 9 & \\
\hline & & & & & & & \(\downarrow\) & \multirow[t]{2}{*}{Merge} \\
\hline 2 & 5 & 1 & 6 & 4 & 8 & 3 & 9 & \\
\hline & 2 & & \(\downarrow\) & , & \(\stackrel{\rightharpoonup}{r}\) & , & \(\downarrow\) & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 5 & 6 & 3 & 4 & 8 & 9 & \\
\hline \(\downarrow\) & \(\downarrow\) & \(\checkmark\) & \(\stackrel{ }{2}\) & 2 & V & \(\downarrow\) & \(\downarrow\) & \multirow[t]{2}{*}{Merge} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 & \\
\hline
\end{tabular}

Recursion equation for the number of comparisons and key movements:
\[
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) \in \Theta(n \log n)
\]

\section*{Algorithm StraightMergesort( \(A\) )}

Avoid recursion: merge sequences of length \(1,2,4, \ldots\) directly
Input: Array \(A\) with length \(n\)
Output: Array \(A\) sorted
length \(\leftarrow 1\)
while length \(<n\) do
\(r \leftarrow 0\)
while \(r+\) length \(<n\) do
\(l \leftarrow r+1\)
\(m \leftarrow l+\) length -1
\(r \leftarrow \min (m+\) length,\(n)\)
\(\operatorname{Merge}(A, l, m, r)\)
length \(\leftarrow\) length \(\cdot 2\)

\section*{Natural 2-way mergesort}

Observation: the variants above do not make use of any presorting and always execute \(\Theta(n \log n)\) memory movements

\section*{How can partially presorted arrays be sorted better?}
(7) Recursive merging of previously sorted parts (runs) of \(A\).

\section*{Analysis}

Like the recursive variant, the straight 2-way mergesort always executes a number of \(\Theta(n \log n)\) key comparisons and key movements.

\section*{Natural 2-way mergesort}


\section*{Algorithm NaturalMergesort \((A)\)}

Input: Array \(A\) with length \(n>0\)
Output: Array \(A\) sorted
repeat
\(r \leftarrow 0\)
while \(r<n\) do
\(l \leftarrow r+1\)
\(m \leftarrow l ;\) while \(m<n\) and \(A[m+1] \geq A[m]\) do \(m \leftarrow m+1\)
if \(m<n\) then
\(r \leftarrow m+1\); while \(r<n\) and \(A[r+1] \geq A[r]\) do \(r \leftarrow r+1\) Merge \((A, l, m, r)\);
else
\(-r \leftarrow n\)
until \(l=1\)

\section*{Quicksort}

What is the disadvantage of Mergesort?
Requires additional \(\Theta(n)\) storage for merging.

How could we reduce the merge costs?
Make sure that the left part contains only smaller elements than the right part.

\section*{How?}

Pivot and Partition!

\section*{Use a pivot}
1. Choose a (an arbitrary) pivot \(p\)
2. Partition \(A\) in two parts, one part \(L\) with the elements with \(A[i] \leq p\) and another part \(R\) with \(A[i]>p\)
3. Quicksort: Recursion on parts \(L\) and \(R\)


\section*{Algorithm Quicksort \((A, l, r)\)}

Input: \(\quad\) Array \(A\) with length \(n .1 \leq l \leq r \leq n\).
Output: Array \(A\), sorted in \(A[l, \ldots, r]\).

\section*{if \(l<r\) then}

Choose pivot \(p \in A[l, \ldots, r]\)
\(k \leftarrow \operatorname{Partition}(A, l, r, p)\)
Quicksort \((A, l, k-1)\)
Quicksort \((A, k+1, r)\)

\section*{Algorithm Partition \((A, l, r, p)\)}

Input: Array \(A\), that contains the pivot \(p\) in \(A[l, \ldots, r]\) at least once.
Output: Array \(A\) partitioned in \([l, \ldots, r]\) around \(p\). Returns position of \(p\).
while \(l \leq r\) do
while \(A[l]<p\) do
\[
l \leftarrow l+1
\]
while \(A[r]>p\) do
\(-r \leftarrow r-1\)
swap \((A[l], A[r])\)
if \(A[l]=A[r]\) then
\(\llcorner l \leftarrow l+1\)
return l-1

\section*{Quicksort (arbitrary pivot)}
\begin{tabular}{llllll|l|l|l|l}
2 & 4 & 5 & 6 & 8 & 3 & 7 & 9 & 1
\end{tabular}
\begin{tabular}{|l|llll|l|l|l|l|}
\hline 2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4 \\
\hline
\end{tabular}
\begin{tabular}{lllllll|l|lll}
1 & 2 & 3 & 4 & 5 & 8 & 7 & 9 & 6
\end{tabular}
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 \\
\hline
\end{tabular}
\(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)
\(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)

\section*{Analysis: number comparisons}
\[
T(n)=T(n-1)+c \cdot n, T(1)=0 \quad \Rightarrow \quad T(n) \in \Theta\left(n^{2}\right)
\]

\section*{Analysis: number swaps}

\section*{Thought experiment}

■ Each key from the smaller part pays a coin when it is being swapped.
- After a key has paid a coin the domain containing the key decreases to half its previous size.
■ Every key needs to pay at most \(\log n\) coins. But there are only \(n\) keys.
Consequence: there are \(\mathcal{O}(n \log n)\) key swaps in the worst case.

\section*{Analysis: number swaps}

Result of a call to partition (pivot 3):

\section*{\begin{tabular}{lllllll|l|l|l}
2 & 1 & 3 & 6 & 8 & 5 & 7 & 9 & 4
\end{tabular}}
? How many swaps have taken place?
(1) 2. The maximum number of swaps is given by the number of keys in the smaller part.

\section*{Randomized Quicksort}

Despite the worst case running time of \(\Theta\left(n^{2}\right)\), quicksort is used practically very often.
Reason: quadratic running time unlikely provided that the choice of the pivot and the pre-sorting are not very disadvantageous.
Avoidance: randomly choose pivot. Draw uniformly from \([l, r]\).

\section*{Analysis (randomized quicksort)}

Expected number of compared keys with input length \(n\) :
\[
T(n)=(n-1)+\frac{1}{n} \sum_{k=1}^{n}(T(k-1)+T(n-k)), T(0)=T(1)=0
\]

Claim \(T(n) \leq 4 n \log n\).
Proof by induction:
Base case straightforward for \(n=0\) (with \(0 \log 0:=0\) ) and for \(n=1\).
Hypothesis: \(T(n) \leq 4 n \log n\) for some \(n\).
Induction step: \((n-1 \rightarrow n)\)

\section*{Analysis (randomized quicksort)}

\section*{Theorem 13}

On average randomized quicksort requires \(\mathcal{O}(n \cdot \log n)\) comparisons.

\section*{Analysis (randomized quicksort)}
\[
\begin{aligned}
T(n) & =n-1+\frac{2}{n} \sum_{k=0}^{n-1} T(k) \leq n-1+\frac{\mathrm{H}_{n}}{n} \sum_{k=0}^{n-1} 4 k \log k \\
& =n-1+\sum_{k=1}^{n / 2} 4 k \underbrace{\log k}_{\leq \log n-1}+\sum_{k=n / 2+1}^{n-1} 4 k \underbrace{\log k}_{\leq \log n} \\
& \leq n-1+\frac{8}{n}\left((\log n-1) \sum_{k=1}^{n / 2} k+\log n \sum_{k=n / 2+1}^{n-1} k\right) \\
& =n-1+\frac{8}{n}\left((\log n) \cdot \frac{n(n-1)}{2}-\frac{n}{4}\left(\frac{n}{2}+1\right)\right) \\
& =4 n \log n-4 \log n-3 \leq 4 n \log n
\end{aligned}
\]

\section*{Practical Considerations}

Worst case recursion depth \(n-1^{9}\). Then also a memory consumption of \(\mathcal{O}(n)\).
Can be avoided: recursion only on the smaller part. Then guaranteed \(\mathcal{O}(\log n)\) worst case recursion depth and memory consumption.

\section*{Quicksort with logarithmic memory consumption}

Input: \(\quad\) Array \(A\) with length \(n .1 \leq l \leq r \leq n\).
Output: Array \(A\), sorted between \(l\) and \(r\).

\section*{while \(l<r\) do}
\[
\begin{aligned}
& \text { Choose pivot } p \in A[l, \ldots, r] \\
& k \leftarrow \operatorname{Partition}(A, l, r, p) \\
& \text { if } k-l<r-k \text { then } \\
& \begin{array}{l}
\text { Quicksort }(A[l, \ldots, k-1]) \\
l \leftarrow k+1
\end{array} \\
& \text { else } \\
& \begin{array}{l}
\text { Quicksort }(A[k+1, \ldots, r]) \\
r \leftarrow k-1
\end{array}
\end{aligned}
\]

The call of Quicksort \((A[l, \ldots, r])\) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.
\(\qquad\)

\subsection*{8.3 Appendix}

Derivation of some mathematical formulas

\section*{Practical Considerations.}

■ Practically the pivot is often the median of three elements. For example: Median3 ( \(A[l], A[r], A[\lfloor l+r / 2\rfloor])\).
■ There is a variant of quicksort that requires only constant storage. Idea: store the old pivot at the position of the new pivot.
- Complex divide-and-conquer algorithms often use a trivial \(\left(\Theta\left(n^{2}\right)\right)\) algorithm as base case to deal with small problem sizes.
\[
\log n!\in \Theta(n \log n)
\]
\[
\begin{aligned}
\log n!=\sum_{i=1}^{n} \log i & \leq \sum_{i=1}^{n} \log n=n \log n \\
\sum_{i=1}^{n} \log i & =\sum_{i=1}^{\lfloor n / 2\rfloor} \log i+\sum_{\lfloor n / 2\rfloor+1}^{n} \log i \\
& \geq \sum_{i=2}^{\lfloor n / 2\rfloor} \log 2+\sum_{\lfloor n / 2\rfloor+1}^{n} \log \frac{n}{2} \\
& =(\underbrace{\lfloor n / 2\rfloor}_{>n / 2-1}-2+1)+\underbrace{(n-\lfloor n / 2\rfloor}_{\geq n / 2})(\log n-1) \\
& >\frac{n}{2} \log n-2 .
\end{aligned}
\]
\(\left[n!\in o\left(n^{n}\right)\right]\)
\[
\begin{aligned}
& n \log n \geq \sum_{i=1}^{\lfloor n / 2\rfloor} \log 2 i+\sum_{i=\lfloor n / 2\rfloor+1}^{n} \log i \\
& \quad=\sum_{i=1}^{n} \log i+\left\lfloor\frac{n}{2}\right\rfloor \log 2 \\
& \quad>\sum_{i=1}^{n} \log i+n / 2-1=\log n!+n / 2-1 \\
& \Rightarrow \frac{n!}{n^{n}} \leq 2^{-n / 2+1} \xrightarrow{n \rightarrow \log _{2} n} \geq 2^{\log _{2} n!} \cdot 2^{n / 2} \cdot 2^{-1}=n!\cdot 2^{n / 2-1}
\end{aligned}
\]

\section*{[ Ratio Test]}

Ratio test for a sequence \(\left(f_{n}\right)_{n \in \mathbb{N}}\) : If \(\frac{f_{n+1}}{f_{n}} \underset{n \rightarrow \infty}{\longrightarrow} \lambda\), then the sequence \(f_{n}\) and the series \(\sum_{i=1}^{n} f_{i}\)
- converge, if \(\lambda<1\) and

■ diverge, if \(\lambda>1\).
[Even \(n!\in o\left((n / c)^{n}\right) \forall 0<c<e\) ]

Konvergenz oder Divergenz von \(f_{n}=\frac{n!}{(n / c)^{n}}\).
Ratio Test
\[
\frac{f_{n+1}}{f_{n}}=\frac{(n+1)!}{\left(\frac{n+1}{c}\right)^{n+1}} \cdot \frac{\left(\frac{n}{c}\right)^{n}}{n!}=c \cdot\left(\frac{n}{n+1}\right)^{n} \longrightarrow c \cdot \frac{1}{e} \lessgtr 1 \text { if } c \lessgtr e
\]
because \(\left(1+\frac{1}{n}\right)^{n} \rightarrow e\). Even the series \(\sum_{i=1}^{n} f_{n}\) converges / diverges for \(c \lessgtr e\).
\(f_{n}\) diverges for \(c=e\), because (Stirling): \(n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\).

\section*{[ Ratio Test Derivation ]}

Ratio test is implied by Geometric Series
\[
S_{n}(r):=\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
\]
converges for \(n \rightarrow \infty\) if and only if \(-1<r<1\).
Let \(0 \leq \lambda<1\) :
\[
\begin{aligned}
& \forall \varepsilon>0 \exists n_{0}: f_{n+1} / f_{n}<\lambda+\varepsilon \forall n \geq n_{0} \\
& \Rightarrow \exists \varepsilon>0, \exists n_{0}: f_{n+1} / f_{n} \leq \mu<1 \forall n \geq n_{0}
\end{aligned}
\]

Thus
\[
\sum_{n=n_{0}}^{\infty} f_{n} \leq f_{n_{0}} \cdot \sum_{n=n_{0}}^{\infty} \cdot \mu^{n-n_{0}} \quad \text { konvergiert. }
\]
(Analogously for divergence)

\section*{9. Sorting III}

Lower bounds for the comparison based sorting, radix- and bucket-sort

\section*{Lower bound for sorting}

Up to here: worst case sorting takes \(\Omega(n \log n)\) steps.
Is there a better way? No:

\section*{Theorem 14}

Sorting procedures that are based on comparison require in the worst case and on average at least \(\Omega(n \log n)\) key comparisons.

\subsection*{9.1 Lower bounds for comparison based sorting}
[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

\section*{Comparison based sorting}

■ An algorithm must identify the correct one of \(n\) ! permutations of an array \(\left(A_{i}\right)_{i=1, \ldots, n}\).
■ At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree

■ Nodes contain the remaining possibilities.
■ Edges contain the decisions.

\section*{Decision tree}


\section*{Average lower bound}


■ Decision tree \(T_{n}\) with \(n\) leaves, average height of a leaf \(m\left(T_{n}\right)\)
- Assumption \(m\left(T_{n}\right) \geq \log n\) not for all \(n\).

■ Choose smalles \(b\) with \(m\left(T_{b}\right)<\log b \Rightarrow b \geq 2\)
- \(b_{l}+b_{r}=b\) with \(b_{l}>0\) und \(b_{r}>0 \Rightarrow\) \(b_{l}<b, b_{r}<b \Rightarrow m\left(T_{b_{l}}\right) \geq \log b_{l}\) und \(m\left(T_{b_{r}}\right) \geq \log b_{r}\)

A binary tree with \(L\) leaves provides \(K=L-1\) inner nodes. \({ }^{10}\)
The height of a binary tree with \(L\) leaves is at least \(\log _{2} L . \Rightarrow\) The heigh of the decision tree \(h \geq \log n!\in \Omega(n \log n)\).
Thus the length of the longest path in the decision tree \(\in \Omega(n \log n)\).
Remaining to show: mean length \(M(n)\) of a path \(M(n) \in \Omega(n \log n)\).
\({ }^{10}\) Proof: start with emtpy tree ( \(K=0, L=1\) ). Each added node replaces a leaf by two leaves, i.e.\} \(K \rightarrow K+1 \Rightarrow L \rightarrow L+1\).

\section*{Decision tree}

\section*{Average lower bound}

Average height of a leaf:
\[
\begin{aligned}
m\left(T_{b}\right) & =\frac{b_{l}}{b}\left(m\left(T_{b_{l}}\right)+1\right)+\frac{b_{r}}{b}\left(m\left(T_{b_{r}}\right)+1\right) \\
& \geq \frac{1}{b}\left(b_{l}\left(\log b_{l}+1\right)+b_{r}\left(\log b_{r}+1\right)\right)=\frac{1}{b}\left(b_{l} \log 2 b_{l}+b_{r} \log 2 b_{r}\right) \\
& \geq \frac{1}{b}(b \log b)=\log b .
\end{aligned}
\]

Contradiction.
The last inequality holds because \(f(x)=x \log x\) is convex \(\left(f^{\prime \prime}(x)=1 / x>0\right)\) and for a convex function it holds that \(f((x+y) / 2) \leq 1 / 2 f(x)+1 / 2 f(y)\left(x=2 b_{l}\right.\), \(\left.y=2 b_{r}\right) .{ }^{11}\) Enter \(x=2 b_{l}, y=2 b_{r}\), and \(b_{l}+b_{r}=b\).

\section*{Radix Sort}

\subsection*{9.2 Radixsort and Bucketsort}

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

\section*{Assumptions}

Assumption: keys representable as words from an alphabet containing \(m\) elements.
```

Examples
m=10 decimal numbers }183=18\mp@subsup{3}{10}{
m=2 dual numbers 1012
m=16 hexadecimal numbers }A\mp@subsup{0}{16}{
m=26 words "INFORMATIK"

```
\(m\) is called the radix of the representation.

Sorting based on comparison: comparable keys (<or >, often \(=\) ). No further assumptions.
Different idea: use more information about the keys.

\section*{Assumptions}

■ keys = \(m\)-adic numbers with same length
■ Procedure \(z\) for the extraction of digit \(k\) in \(\mathcal{O}(1)\) steps.
\[
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
z_{10}(0,85)=5 \\
z_{10}(1,85)=8 \\
z_{10}(2,85)=0
\end{array}
\end{aligned}
\]

\section*{Radix-Exchange-Sort}

Keys with radix 2.
Observation: if for some \(k \geq 0\) :
\[
z_{2}(i, x)=z_{2}(i, y) \text { for all } i>k
\]
and
\[
z_{2}(k, x)<z_{2}(k, y)
\]
then it holds that \(x<y\).

\section*{Radix-Exchange-Sort}


\section*{Radix-Exchange-Sort}

\section*{Idea:}
- Start with a maximal \(k\).

■ Binary partition the data sets with \(z_{2}(k, \cdot)=0\) vs. \(z_{2}(k, \cdot)=1\) like with quicksort.

■ \(k \leftarrow k-1\).

\section*{Algorithm RadixExchangeSort( \(A, l, r, b\) )}

Input: Array \(A\) with length \(n\), left and right bounds \(1 \leq l \leq r \leq n\), bit position \(b\)
Output: Array \(A\), sorted in the domain \([l, r]\) by bits \([0, \ldots, b]\).
if \(l<r\) and \(b \geq 0\) then
```

i\leftarrowl-1
j\leftarrowr+1
repeat
repeat }i\leftarrowi+1\mathrm{ until }\mp@subsup{z}{2}{}(b,A[i])=1 or i\geq
repeat }j\leftarrowj-1\mathrm{ until }\mp@subsup{z}{2}{}(b,A[j])=0\mathrm{ or }i\geq
if }i<j\mathrm{ then swap(A[i],A[j])
until }i\geq
RadixExchangeSort(}A,l,i-1,b-1
RadixExchangeSort(A,i,r,b-1)

```

\section*{Analysis}

RadixExchangeSort provides recursion with maximal recursion depth = maximal number of digits \(p\).
Worst case run time \(\mathcal{O}(p \cdot n)\).

\section*{Bucket Sort}
\(\begin{array}{llllllll}121 & 131 & 21 & 122 & 3 & 23 & 8 & 18 \\ 19 & 29\end{array}\)

\(\begin{array}{llllllllll}3 & 8 & 18 & 19 & 121 & 21 & 122 & 23 & 29\end{array}\)

\section*{Bucket Sort}


\section*{Bucket Sort}
\(\begin{array}{llllllll}3 & 8 & 18 & 19 & 121 & 21 & 122 & 23 \\ 29\end{array}\)

\(\begin{array}{lllllllllll}3 & 8 & 18 & 19 & 21 & 23 & 29 & 121 & 122 & 131\end{array}\)

\section*{implementation details}

\section*{Bucket size varies greatly. Possibilities}
- Linked list or dynamic array for each digit.

■ One array of length \(n\). compute offsets for each digit in the first iteration.
Assumptions: Input length \(n\), Number bits / integer: \(k\), Number Buckets: \(2^{b}\) Asymptotic running time \(\mathcal{O}\left(\frac{k}{b} \cdot\left(n+2^{b}\right)\right.\).
For Example: \(k=32,2^{b}=256: \frac{k}{b} \cdot\left(n+2^{b}\right)=4 n+1024\).

\section*{Bucket Sort - Different Assumption}

Hypothesis: uniformly distributed data e.g. from \([0,1)\)
Input: \(\quad\) Array \(A\) with length \(n, A_{i} \in[0,1)\), constant \(M \in \mathbb{N}^{+}\)
Output: Sorted array
\(k \leftarrow\lceil n / M\rceil\)
\(B \leftarrow\) new array of \(k\) empty lists
for \(i \leftarrow 1\) to \(n\) do
\(B\left[\left\lfloor A_{i} \cdot k\right\rfloor\right]\).append \((A[i])\)
for \(i \leftarrow 1\) to \(k\) do
sort \(B[i] / /\) e.g. insertion sort, running time \(\mathcal{O}\left(M^{2}\right)\)
return \(B[0] \circ B[1] \circ \cdots \circ B[k] / /\) concatenated

Expected asymptotic running time \(\mathcal{O}(n)\) (Proof in Cormen et al, Kap. 8.4)

\section*{What do we learn today?}
- templates of classes
- function templates
- Smart Pointers

\section*{Motivation}

Goal: generic vector class and functionality.
```

Vector<double> vd(10);
Vector<int> vi(10);
Vector<char> vi(20);
auto nd = vd * vd; // norm (vector of double)
auto ni = vi * vi; // norm (vector of int)

```

\section*{Types as Template Parameters}
template <typename ElementType>
class Vector\{
std::size_t size;
ElementType* elem;
public:
Vector (std: :size_t s): size\{s\},
elem\{new ElementType[s]\}\{\}
ElementType\& operator [] (std::size_t pos)\{ return elem[pos];
\}

\section*{Types as Template Parameters} should become generic (in our example: double) by a representative element, e.g. T.
Put in front of the class the construct template<typename \(T>\) Replace \(\mathbf{T}\) by the representative name).

The construct template<typename \(\mathrm{T}>\) can be understood as "for all types T"

\section*{Template Instances}

Vector<typeName> generates a type instance Vector with
ElementType=typeName.
Notation: Instantiation
```

Vector<double> x; // vector of double
Vector<int> y; // vector of int
Vector<Vector<double>> x; // vector of vector of double

```

\section*{Type-checking}

Templates are basically replacement rules at instantiation time and during compilation. The compiler always checks as little as necessary and as much as possible.

\section*{Example}
```

template <typename T>
class Pair{
T left; T right;
public:
Pair(T l, T r):left{l}, right{r}{}
T min(){
return left < right ? left : right;
}
};
Pair<int> a(10,20); // ok
auto m = a.min(); // ok
Pair<Pair<int>> b(a,Pair<int>(20,30)); // ok
auto n = b.min(); // no match for operator<!

```

\section*{Function Templates}

To make a concrete implementation generic, replace the specific type (e.g. int) with a name, e.g. T,
Put in front of the function the construct template<typename \(T\) > (Replace T by the chosen name)

\section*{Function Templates}
```

template <typename T>
void swap(T\& x, T\&y){
T temp = x;
x = y;
y = temp;
}

```

The actual parameters' types determine the version of the function that is (compiled) and used:
```

int x=5;
int y=6;
swap(x,y); // calls swap with T=int

```

\section*{. also with operators}
template <typename T>
```

lass Pair{
T left; T right;

```
Pair<int> a(10,20); // ok
std::cout << a; // ok
public:
    Pair (T l, T r): left \(\{1\}\), right \(\{r\}\}\)
    T min() \{ return left < right? left: right; \}
    std: ostream\& print (std::ostream\& os) const\{
        return os << " ("<< left << "," << right<< ")";
    \}
\};
template <typename T>
std::ostream\& operator<< (std::ostream\& os, const Pair<T>\& pair)\{
    return pair.print(os);
\}
```

template <typename T>
void swap(T\& x, T\&y){
T temp = x;
x = y;
y = temp;
}
An inadmissible version of the function is not generated:
int x=5
double y=6;

```
swap(x,y); // error: no matching function for ...
```

```
```

swap(x,y); // error: no matching function for ...

```
```


Useful!

```
// Output of an arbitrary container
template <typename T>
void output(const T& t){
    for (auto x: t)
        std::cout << x << " ";
    std::cout << "\n";
}
int main(){
    std::vector<int> v={1,2,3};
    output(v); // 1 2 3
}
,
```


Safety

Explicit Type

```
// input of an arbitrary pair
template <typename T>
Pair<T> read(){
    T left;
    T right;
    std::cin << left << right;
    return Pair<T>(left,right);
}
auto p = read<double>();
```

If the type of a template instantiation cannot be inferred, it has to be provided explicitly.

Specialization

template <>

class Pair<bool>\{ short both;
public:
Pair(bool 1, bool r) : $\operatorname{both}\{(1 ? 1: 0)+(r ? 2: 0)\}\} ;$
std::ostream\& print (std::ostream\& os) const\{
return os << " ("<< both \% $2 \ll ", " \ll$ both /2 << ")"; $\}$
\}.

```
Pair<int> i(10,20); // ok -- generic template
    std::cout << i << std::endl; // (10,20);
    Pair<bool> b(true, false); // ok -- special bool version
    std::cout << b << std::endl; // (1,0)
```


Powerful!

}

```
```

template <typename T> // square number

```
template <typename T> // square number
T sq(T x){
T sq(T x){
    return x*x;
    return x*x;
}
}
template <typename Container, typename F>
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c
void apply(Container& c, F f){ // x <- f(x) forall x in c
    for(auto& x: c)
    for(auto& x: c)
        x = f(x);
        x = f(x);
}
}
int main(){
int main(){
    std::vector<int> v={1,2,3};
    std::vector<int> v={1,2,3};
    apply(v,sq<int>);
    apply(v,sq<int>);
    output(v); // 149
```

 output(v); // 149
    ```

\section*{Template Parameterization with Values}
```

template <typename T, int size>
class CircularBuffer{
T buf[size] ;
int in; int out;
public:
CircularBuffer():in{0},out{0}{};
bool empty(){
return in == out;
}
bool full(){
return (in + 1) % size == out;
}
void put(T x); // declaration
T get(); // declaration
};

```

\section*{Template Parameterization with Values}
```

template <typename T, int size>
void CircularBuffer<T,size>::put(T x){
assert(!full());
buf[in] = x;
in = (in + 1) % size;
}
template <typename T, int size>
T CircularBuffer<T,size>::get(){
assert(!empty());
T x = buf[out];
out = (out + 1) % size; \longleftarrow Potential for optimization if size = 2
return x;
}

```


\section*{Memory Management Revisited}

\section*{Guideline "Dynamic Memory" \\ For each new there is a matching delete!}

\section*{Avoid:}

Memory leaks: old objects that occupy memory
Pointer to released objects: dangling pointers
- Releasing an object more than once using delete.

How?

\section*{Unique Pointer}
- The deconstructor of a std: :unique_ptr<T> deletes the pointer contained.

■ std: :unique_ptr<T> has exclusive ownership for the contained pointer on \(\mathbf{T}\).
- Copy constructor and assignment operator are deleted. A unique pointer cannot be copied by value. The move constructor is implemented: the pointer can be moved.
- No additional runtime overhead in comparison to a normal pointer
```

std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::unique_ptr<Node> node2 = std::move(nodeU); // ok
std::unique_ptr<Node> node3 = nodeU; // error

```
```

std::unique_ptr<Node> nodeU(new Node()); // unique pointer
std::shared_ptr<Node> nodeS(new Node()); // shared pointer

```

\footnotetext{
std::shared ptr<Node> nodeS(new Node()); // shared pointer
}

\section*{Smart Pointers}

■ Can make sure that an object is deleted if and only if it is not used any more
- Are based on the RAII (Resouce Acquisition is Initialization) paradigm.
- Can be used instead of a normal pointer: are implemented as class templates.
■ There are std: :unique_ptr<>, std: :shared_ptr<> (and std: :weak_ptr<>)

\section*{Shared Pointer}

■ std: : shared_ptr<T> Counts the numbers of owners of a pointer (reference count). When reference count goes to 0 , the pointer is deleted.
- Shared pointers can be copied.
- Shared pointers provide additional space- and runtime overhead: they manage the reference counter at runtime and contain a pointer to the reference.

\section*{Smart Pointers}

\section*{Some rules}

Never call delete on a pointer contained in a smart pointer.
Avoid new, instead:
std::unique_ptr<Node> nodeU = std::make_unique<Node>() std::shared_ptr<Node> nodeS = std::make_shared<Node>()

Where possible, use std: :unique_ptr
If using std: : shared_ptr make sure there are no cycles in the pointer graph.

\section*{Shared Pointer}
```

std::shared_ptr<Node> nodeS(new Node()); // shared pointer, rc = 1
std::shared_ptr<Node> node2 = std::move(nodeS); // ok, rc unchanged
std::shared_ptr<Node> node3 = node2; // ok, rc = 2

```

\section*{11. Fundamental Data Structures}

Abstract data types stack, queue, implementation variants for linked lists [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2]

\section*{Abstract Data Types}

We recall
A stack is an abstract data type (ADR) with operations
■ push \((x, S)\) : Puts element \(x\) on the stack \(S\).
■ \(\operatorname{pop}(S)\) : Removes and returns top most element of \(S\) or null
■ \(\operatorname{top}(S)\) : Returns top most element of \(S\) or null.
■ isEmpty \((S)\) : Returns true if stack is empty, false otherwise.
■ emptyStack(): Returns an empty stack.

\section*{Implementation Pop}

1. If top=null, then return null
2. otherwise memorize pointer \(p\) of top in \(r\).
3. Set top to \(p\).next and return \(r\)

\section*{Implementation Push}


\section*{Analysis}

Each of the operations push, pop, top and isEmpty on a stack can be executed in \(\mathcal{O}(1)\) steps.

\section*{Queue (fifo)}

A queue is an ADT with the following operations
- enqueue \((x, Q)\) : adds \(x\) to the tail (=end) of the queue.
- dequeue \((Q)\) : removes \(x\) from the head of the queue and returns \(x\) (null otherwise)
- head \((Q)\) : returns the object from the head of the queue (null otherwise)
- isEmpty \((Q)\) : return true if the queue is empty, otherwise false

■ emptyQueue(): returns empty queue.

\section*{Implementation Queue}

enqueue \((x, S)\) :
1. Create a new list element with \(x\) and pointer to null.
2. If tail \(\neq\) null, then set tail. next to the node with \(x\).
3. Set tail to the node with \(x\).
4. If head = null, then set head to tail.

\section*{Implementation Queue}

dequeue \((S)\) :
1. Store pointer to head in \(r\). If \(r=\) null, then return \(r\).
2. Set the pointer of head to head. next.
3. Is now head \(=\) null then set tail to null.
4. Return the value of \(r\).

\section*{Analysis}

Each of the operations enqueue, dequeue, head and isEmpty on the queue can be executed in \(\mathcal{O}(1)\) steps.

\section*{Implementation Variants of Linked Lists}

Doubly linked list


\section*{Implementation Variants of Linked Lists}

List with dummy elements (sentinels).


Advantage: less special cases
Variant: like this with pointer of an element stored singly indirect. (Example: pointer to \(x_{3}\) points to \(x_{2}\).)

\section*{Overview}
\begin{tabular}{lllll} 
& enqueue & delete & search & concat \\
\hline (A) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(n)\) & \(\Theta(n)\) \\
\hline (B) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline (C) & \(\Theta(1)\) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline (D) & \(\Theta(1)\) & \(\Theta(1)\) & \(\Theta(n)\) & \(\Theta(1)\) \\
\hline
\end{tabular}
(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked

\section*{Multistack}

\section*{12. Amortized Analyis}

Amortized Analysis: Aggregate Analysis, Account-Method, Potential-Method [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap. 17]

\section*{Academic Question}

If we execute on a stack with \(n\) elements a number of \(n\) times multipop \((\mathrm{k}, \mathrm{S})\) then this costs \(\mathcal{O}\left(n^{2}\right)\) ?
Certainly correct because each multipop may take \(\mathcal{O}(n)\) steps.
How to make a better estimation?

Multistack adds to the stack operations push und pop
multipop \((s, S)\) : remove the \(\min (\operatorname{size}(S), k)\) most recently inserted objects and return them.
Implementation as with the stack. Runtime of multipop is \(\mathcal{O}(k)\).

\section*{Amortized Analysis}
- Upper bound: average performance of each considered operation in the worst case.
\[
\frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}\left(\mathrm{op}_{i}\right)
\]
\(\square\) Makes use of the fact that a few expensive operations are opposed to many cheap operations.
■ In amortized analysis we search for a credit or a potential function that captures how the cheap operations can "compensate" for the expensive ones.

\section*{Aggregate Analysis}

Direct argument: compute a bound for the total number of elementary operations and divide by the total number of operations.

\section*{Accounting Method}

\section*{Model}

■ The computer is driven with coins: each elementary operation of the machine costs a coin.
■ For each operation \(o p_{k}\) of a data structure, a number of coins \(a_{k}\) has to be put on an account \(A\) : \(A_{k}=A_{k-1}+a_{k}\)
■ Use the coins from the account \(A\) to pay the true costs \(t_{k}\) of each operation.

■ The account \(A\) needs to provide enough coins in order to pay each of the ongoing operations op \(p_{k}\) : \(A_{k}-t_{k} \geq 0 \forall k\).
\(\Rightarrow a_{k}\) are the amortized costs of \(o p_{k}\)

\section*{Aggregate Analysis: (Stack)}
\[
\begin{gathered}
\sum_{i=1}^{n} \operatorname{cost}\left(\mathrm{op}_{i}\right) \leq 2 n \\
\text { amortized } \operatorname{cost}\left(\mathrm{op}_{i}\right) \leq 2 \in \mathcal{O}(1)
\end{gathered}
\]

\section*{Accounting Method (Stack)}
- Each call of push costs 1 CHF and additionally 1 CHF will be deposited on the account. ( \(a_{k}=2\) )
- Each call to pop costs 1 CHF and will be paid from the account. ( \(a_{k}=0\) ) Account will never have a negative balance. \(a_{k} \leq 2 \forall k\), thus: constant amortized costs.

\section*{Potential Method}

\section*{Slightly different model}
- Define a potential \(\Phi_{i}\) that is associated to the state of a data structure at time \(i\).

■ The potential shall be used to level out expensive operations und therefore needs to be chosen such that it is increased during the (frequent) cheap operations while it decreases for the (rare) expensive operations.

\section*{Example stack}

Potential function \(\Phi_{i}=\) number element on the stack.
\(\square\) push \((x, S)\) : real costs \(t_{i}=1\). \(\Phi_{i}-\Phi_{i-1}=1\). Amortized costs \(a_{i}=2\).
\(\square \operatorname{pop}(S)\) : real costs \(t_{i}=1\). \(\Phi_{i}-\Phi_{i-1}=-1\). Amortized costs \(a_{i}=0\)
\(\square\) multipop \((k, S)\) : real costs \(t_{i}=k\). \(\Phi_{i}-\Phi_{i-1}=-k\). amortized costs \(a_{i}=0\).
All operations have constant amortized cost! Therefore, on average Multipop requires a constant amount of time. \({ }^{12}\)

\footnotetext{
\({ }^{12}\) Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.
}

\section*{Potential Method (Formal)}

Let \(t_{i}\) denote the real costs of the operation \(o p_{i}\)
Potential function \(\Phi_{i} \geq 0\) to the data structure after \(i\) operations.
Requirement: \(\Phi_{i} \geq \Phi_{0} \forall i\).
of the \(i\) th operation:
\[
a_{i}:=t_{i}+\Phi_{i}-\Phi_{i-1}
\]

It holds
\[
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}\left(t_{i}+\Phi_{i}-\Phi_{i-1}\right)=\left(\sum_{i=1}^{n} t_{i}\right)+\Phi_{n}-\Phi_{0} \geq \sum_{i=1}^{n} t_{i} .
\]

\section*{Example Binary Counter}

Binary counter with \(k\) bits. In the worst case for each count operation maximally \(k\) bitflips. Thus \(\mathcal{O}(n \cdot k)\) bitflips for counting from 1 to \(n\). Better estimation?
Real costs \(t_{i}=\) number bit flips from 0 to 1 plus number of bit-flips from 1 to 0 .
\[
\begin{gathered}
\ldots \underbrace{1111111}_{l \text { Einsen }}+1=\ldots 1 \underbrace{0000000}_{l \text { Zeroes }} . \\
\Rightarrow t_{i}=l+1
\end{gathered}
\]

\section*{Binary Counter: Aggregate Analysis}

Count the number of bit flips when counting from 0 to \(n-1\). Observation

■ Bit 0 flips for each \(k-1 \rightarrow k\)
- Bit 1 flips for each \(2 k-1 \rightarrow 2 k\)

■ Bit 2 flips for each \(4 k-1 \rightarrow 4 k\)
Total number bit flips \(\sum_{i=0}^{n-1} \frac{n}{2^{i}} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 n\)
Amortized cost for each increase: \(\mathcal{O}(1)\) bit flips.

\section*{Binary Counter: Potential Method}
\[
\ldots 0 \underbrace{1111111}_{l \text { ones }}+1=\ldots 1 \underbrace{0000000}_{l \text { zeros }}
\]
potential function \(\Phi_{i}\) : number of 1-bits of \(x_{i}\).
\[
\begin{gathered}
\Rightarrow \Phi_{0}=0 \leq \Phi_{i} \forall i \\
\Rightarrow \Phi_{i}-\Phi_{i-1}=1-l \\
\Rightarrow a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}=l+1+(1-l)=2
\end{gathered}
\]

Amortized constant cost for each count operation.

\section*{Binary Counter: Account Method}

Observation: for each increment exactly one bit is incremented to 1 , while many bits may be reset to 0 . Only a bit that had previously been set to 1 can be reset to 0 .
\(a_{i}=2: 1\) CHF real cost for setting \(0 \rightarrow 1\) plus 1 CHF to deposit on the account. Every reset \(1 \rightarrow 0\) can be paid from the account.

\section*{13. Dictionaries}

Dictionary, Self-ordering List, Implementation of Dictionaries with Array / List / Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et al, Kap. Problem 17-5]

\section*{Dictionary}

ADT to manage keys from a set \(\mathcal{K}\) with operations
■ insert \((k, D)\) : Insert \(k \in \mathcal{K}\) to the dictionary \(D\). Already exists \(\Rightarrow\) error messsage.
■ delete \((k, D)\) : Delete \(k\) from the dictionary \(D\). Not existing \(\Rightarrow\) error message.
■ search \((k, D)\) : Returns true if \(k \in D\), otherwise false

\section*{Other idea}

Implement dictionary as a linked list
Worst case number of fundamental operations

Idea

Implement dictionary as sorted array Worst case number of fundamental operations


\subsection*{13.1 Self Ordering}

\footnotetext{
\({ }^{13}\) Provided that we do not have to check existence.
}

\section*{Self Ordered Lists}

Problematic with the adoption of a linked list: linear search time Idea: Try to order the list elements such that accesses over time are possible in a faster way
For example
■ Transpose: For each access to a key, the key is moved one position closer to the front.
■ Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

\section*{Move-to-Front}

Move-to-Front:


Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\). Runtime: \(\Theta(n)\) Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF..

\section*{Transpose}

\section*{Transpose:}


Worst case: Alternating sequence of \(n\) accesses to \(k_{n-1}\) and \(k_{n}\). Runtime: \(\Theta\left(n^{2}\right)\)

\section*{Analysis}

Compare MTF with the best-possible competitor (algorithm) A. How much better can A be?
Assumptions:
\(\square\) MTF and A may only move the accessed element.
■ MTF and A start with the same list.
Let \(M_{k}\) and \(A_{k}\) designate the lists after the \(k\) th step. \(M_{0}=A_{0}\).

\section*{Analysis}

\section*{Costs:}
- Access to \(x\) : position \(p\) of \(x\) in the list.

■ No further costs, if \(x\) is moved before \(p\)
■ Further costs \(q\) for each element that \(x\) is moved back starting from \(p\).


\section*{Potential Function}

Potential function \(\Phi=\) Number of inversions of A vs. MTF. Inversion = Pair \(x, y\) such that for the positions of \(a\) and \(y\) \(\left(p^{(A)}(x)<p^{(A)}(y)\right) \neq\left(p^{(M)}(x)<p^{(M)}(y)\right)\)

\#inversion = \#crossings

\section*{Amortized Analysis}

Let an arbitrary sequence of search requests be given and let \(G_{k}^{(M)}\) and \(G_{k}^{(A)}\) the costs in step \(k\) for Move-to-Front and A, respectively. Want estimation of \(\sum_{k} G_{k}^{(M)}\) compared with \(\sum_{k} G_{k}^{(A)}\).
\(\Rightarrow\) Amortized analysis with potential function \(\Phi\).

\section*{Estimating the Potential Function: MTF}
- Element \(i\) at position
\(p_{i}:=p^{(M)}(i)\).
- access costs \(C_{k}^{(M)}=p_{i}\).
- \(x_{i}\) : Number elements that are in \(M\) before \(p_{i}\) and in A after \(i\).
- MTF removes \(x_{i}\) inversions
- \(p_{i}-x_{i}-1\) : Number elements that in \(M\) are before \(p_{i}\) and in A are before \(i\).

■ MTF generates \(p_{i}-1-x_{i}\) inversions.


\section*{Estimating the Potential Function: A}

■ Wlog element \(i\) at position \(p^{(A)}(i)\).
- \(X_{k}^{(A)}\) : number movements to the back (otherwise 0).
- access costs for \(i\) :
\(C_{k}^{(A)}=p^{(A)}(i) \geq p^{(M)}(i)-x_{i}\).
- A increases the number of
inversions maximally by \(X_{k}^{(A)}\).


\section*{Estimation}
\[
\Phi_{k+1}-\Phi_{k} \leq-x_{i}+\left(p_{i}-1-x_{i}\right)+X_{k}^{(A)}
\]

Amortized costs of MTF in step \(k\) :
\[
\begin{aligned}
a_{k}^{(M)} & =C_{k}^{(M)}+\Phi_{k+1}-\Phi_{k} \\
& \leq p_{i}-x_{i}+\left(p_{i}-1-x_{i}\right)+X_{k}^{(A)} \\
& =\left(p_{i}-x_{i}\right)+\left(p_{i}-x_{i}\right)-1+X_{k}^{(A)} \\
& \leq C_{k}^{(A)}+C_{k}^{(A)}-1+X_{k}^{(A)} \leq 2 \cdot C_{k}^{(A)}+X_{k}^{(A)} .
\end{aligned}
\]
[

In the worst case MTF requires at most twice as many operations as the optimal strategy.
\[
\begin{aligned}
\sum_{k} G_{k}^{(M)}=\sum_{k} C_{k}^{(M)} & \leq \sum_{k} a_{k}^{(M)} \leq \sum_{k} 2 \cdot C_{k}^{(A)}+X_{k}^{(A)} \\
& \leq 2 \cdot \sum_{k} C_{k}^{(A)}+X_{k}^{(A)} \\
& =2 \cdot \sum_{k} G_{k}^{(A)}
\end{aligned}
\]

\section*{Estimation}

\section*{Summing up costs}

\section*{Sorted Linked List}


Search for element / insertion position: worst-case \(n\) Steps.

\section*{Sorted Linked List with two Levels}


■ Number elements: \(n_{0}:=n\)
- Stepsizes on levels \(0<i<3\) : \(n_{i}\)
- Stepsize on level 3: \(n_{3}=1\)
\(\Rightarrow\) Best Choice for \(\left(n_{1}, n_{2}\right): n_{2}=\frac{n_{0}}{n_{1}}=\frac{n_{1}}{n_{2}}=\sqrt[3]{n_{0}}\).
Search for element / insertion position: worst-case \(3 \cdot \sqrt[3]{n}\) steps.

\section*{Sorted Linked List with two Levels}


■ Number elements: \(n_{0}:=n\)
■ Stepsize on level 1: \(n_{1}\)
■ Stepsize on level 2: \(n_{2}=1\)
\(\Rightarrow\) Search for element / insertion position: worst-case \(\frac{n_{0}}{n_{1}}+\frac{n_{1}}{n_{2}}\).
\(\Rightarrow\) Best Choice for \({ }^{14} n_{1}: n_{1}=\frac{n_{0}}{n_{1}}=\sqrt{n_{0}}\).
Search for element / insertion position: worst-case \(2 \sqrt{n}\) steps.

\footnotetext{
\({ }^{14}\) Differentiate and set to zero, cf. appendix
}

\section*{Sorted Linked List with \(k\) Levels (Skiplist)}

■ Number elements: \(n_{0}:=n\)
■ Stepsizes on levels \(0<i<k\) : \(n_{i}\)
■ Stepsize on level \(k: n_{k}=1\)
\(\Rightarrow\) Best Choice for \(\left(n_{1}, \ldots, n_{k}\right): n_{k-1}=\frac{n_{0}}{n_{1}}=\frac{n_{1}}{n_{2}}=\cdots=\sqrt[k]{n_{0}}\).
Search for element / insertion position: worst-case \(k \cdot \sqrt[k]{n}\) steps \({ }^{15}\).
Assumption \(n=2^{k}\)
\(\Rightarrow\) worst case \(\log _{2} n \cdot 2\) steps and \(\frac{n_{i}}{n_{i+1}}=2 \forall 0 \leq i<\log _{2} n\).

\footnotetext{
\({ }^{15}\) (Derivation: Appendix)
}

\section*{Search in a Skiplist}

Perfect skip list

```

$x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{9}$.

```

Example: search for a key \(x\) with \(x_{5}<x<x_{6}\).

\section*{Randomized Skip List}

Idea: insert a key with random height \(H\) with \(\mathbb{P}(H=i)=\frac{1}{2^{i+1}}\).


\section*{Analysis perfect skip list (worst cases)}

Search in \(\mathcal{O}(\log n)\). Insert in \(\mathcal{O}(n)\).

\section*{Analysis Randomized Skip List}

\section*{Theorem 15}

The expected number of fundamental operations for Search, Insert and Delete of an element in a randomized skip list is \(\mathcal{O}(\log n)\).
The lengthy proof that will not be presented in this courseobserves the length of a path from a searched node back to the starting point in the highest level.

\section*{[ \(k\)-Level Skiplist Math]}

\subsection*{13.3 Appendix}

Mathematik zur Skipliste

\section*{[ \(k\)-Level Skiplist Math]}

Previous slide \(\Rightarrow \frac{n_{t}}{n_{0}}=\frac{n_{t}}{n_{t-1}} \frac{n_{t-1}}{n_{t-2}} \ldots \frac{n_{1}}{n_{0}}=\left(\frac{n_{1}}{n_{0}}\right)^{t}\)
Particularly \(1=n_{k}=\frac{n_{1}^{k}}{n_{0}^{k-1}} \Rightarrow n_{1}=\sqrt[k]{n_{0}^{k-1}}\)
Thus \(n_{k-1}=\frac{n_{0}}{n_{1}}=\sqrt[k]{\frac{n_{0}^{k}}{n_{0}^{k-1}}}=\sqrt[k]{n_{0}}\).
Maximum number of total steps in the skip list: \(f(\vec{n})=k \cdot\left(\sqrt[k]{n_{0}}\right)\)
Assume \(n_{0}=2^{k}\), then \(\frac{n_{l}}{n_{l+1}}=2\) for all \(0 \leq l<k\) (skiplist halves data in each step) and \(f(n)=k \cdot 2=2 \log _{2} n \in \Theta(\log n)\).

Let the number of data points \(n_{0}\) and number levels \(k>0\) be given and let \(n_{l}\) be the numbers of elements skipped per level \(l, n_{k}=1\). Maximum number of total steps in the skip list:
\[
f(\vec{n})=\frac{n_{0}}{n_{1}}+\frac{n_{1}}{n_{2}}+\ldots \frac{n_{k-1}}{n_{k}}
\]

Minimize \(f\) for \(\left(n_{1}, \ldots, n_{k-1}\right)\) : \(\frac{\partial f(\vec{n})}{\partial n_{t}}=0\) for all \(0<t<k\), \(\frac{\partial f(\vec{n})}{\partial n_{t}}=-\frac{n_{t-1}}{n_{t}{ }^{2}}+\frac{1}{n_{t+1}}=0 \Rightarrow n_{t+1}=\frac{n_{t}^{2}}{n_{t-1}}\) and \(\frac{n_{t+1}}{n_{t}}=\frac{n_{t}}{n_{t-1}}\).

\section*{14. Hashing}

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining, Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open Addressing: Probing, Uniform Hashing, Universal Hashing, Perfect Hashing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

\section*{Motivating Example}

Gloal: Efficient management of a table of all \(n\) ETH-students of Possible Requirement: fast access (insertion, removal, find) of a dataset by name

\section*{Dictionary in C++}

\section*{Associative Container std::unordered_map<>}
// Create an unordered_map of strings that map to strings std::unordered_map<std::string, std::string> \(u=\{\)
\{"RED", "\#FF0000"\}, \{"GREEN", "\#00FF00"\}
\};
u["BLUE"] = "\#0000FF"; // Add
std: : cout << "The HEX of color RED is: " << u["RED"] << "\n";
for ( const auto\& n : u ) // iterate over key-value pairs std: :cout << n.first << ":" << n.second << "\n";

\section*{Dictionary}

Abstract Data Type (ADT) \(D\) to manage items \({ }^{16} i\) with keys \(k \in \mathcal{K}\) with operations

■ D.insert \((i)\) : Insert or replace \(i\) in the dictionary \(D\)
■. delete \((i)\) : Delete \(i\) from the dictionary \(D\). Not existing \(\Rightarrow\) error message.
■ D. \(\operatorname{search}(k)\) : Returns item with key \(k\) if it exists.

\footnotetext{
\({ }^{16}\) Key-value pairs \((k, v)\), in the following we consider mainly the keys
}

\section*{Motivation / Use}

Perhaps the most popular data structure.
- Supported in many programming languages (C++, Java, Python, Ruby, Javascript, C\# ...)
■ Obvious use
■ Databases, Spreadsheets
- Symbol tables in compilers and interpreters

■ Less obvious
- Substrin Search (Google, grep)
- String commonalities (Document distance, DNA)
- File Synchronisation
- Cryptography: File-transfer and identification

\section*{1. Idea: Direct Access Table (Array)}
\begin{tabular}{l|c} 
Index & Item \\
\hline 0 & - \\
\hline 1 & - \\
\hline 2 & - \\
\hline 3 & {\([3\), value(3)] } \\
\hline 4 & - \\
\hline 5 & - \\
\hline\(\vdots\) & \(\vdots\) \\
\(k\) & {\([k, v a l u e(k)]\)}
\end{tabular}

\section*{Problems}
1. Keys must be non-negative integers
2. Large key-range \(\Rightarrow\) large array

\section*{Prehashing Example : String}

Mapping Name \(s=s_{1} s_{2} \ldots s_{l_{s}}\) to key
\[
p h(s)=\left(\sum_{i=0}^{l_{s}-1} s_{l_{s}-i} \cdot b^{i}\right) \bmod 2^{w}
\]
\(b\) so that different names map to different keys as far as possible.
\(b\) Word-size of the system (e.g. 32 or 64)
```

Example (Java) with b=31,w=32. Ascii-Values }\mp@subsup{s}{i}{}\mathrm{ .
Anna \mapsto 2045632
Jacqueline }\mapsto2042089953442505 mod 2 22 = 507919049

```

\section*{Solution to the first problem: Pre-hashing}

Prehashing: Map keys to positive integers using a function \(p h: \mathcal{K} \rightarrow \mathbb{N}\)
■ Theoretically always possible because each key is stored as a bit-sequence in the computer
■ Theoretically also: \(x=y \Leftrightarrow p h(x)=p h(y)\)
- Practically: APIs offer functions for pre-hashing. (Java: object.hashCode(), C++: std: :hash<>, Python: hash (object))
■ APIs map the key from the key set to an integer with a restricted size. \({ }^{17}\)

\footnotetext{
\({ }^{17}\) Therefore the implication \(p h(x)=p h(y) \Rightarrow x=y\) does not hold any more for all \(x, y\).
}

\section*{Lösung zum zweiten Problem: Hashing}

Reduce the universe. Map (hash-function) \(h: \mathcal{K} \rightarrow\{0, \ldots, m-1\}\) ( \(m \approx n=\) number entries of the table)


Collision: \(h\left(k_{i}\right)=h\left(k_{j}\right)\).

\section*{Nomenclature}

Hash funtion \(h\) : Mapping from the set of keys \(\mathcal{K}\) to the index set \(\{0,1, \ldots, m-1\}\) of an array (hash table).
\[
h: \mathcal{K} \rightarrow\{0,1, \ldots, m-1\} .
\]

Normally \(|\mathcal{K}| \gg m\). There are \(k_{1}, k_{2} \in \mathcal{K}\) with \(h\left(k_{1}\right)=h\left(k_{2}\right)\) (collision).
A hash function should map the set of keys as uniformly as possible to the hash table.

\section*{Algorithm for Hashing with Chaining}
- insert \((i)\) Check if key \(k\) of item \(i\) is in list at position \(h(k)\). If no, then append \(i\) to the end of the list. Otherwise replace element by \(i\).
- \(\operatorname{find}(k)\) Check if key \(k\) is in list at position \(h(k)\). If yes, return the data associated to key \(k\), otherwise return empty element null.
- delete \((k)\) Search the list at position \(h(k)\) for \(k\). If successful, remove the list element.

\section*{Resolving Collisions: Chaining}
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m .
\]

Keys \(12,55,5,15,2,19,43\)
Direct Chaining of the Colliding entries
hash table

Colliding entries


\section*{Worst-case Analysis}

Worst-case: all keys are mapped to the same index. \(\Rightarrow \Theta(n)\) per operation in the worst case.

\section*{Simple Uniform Hashing}

Strong Assumptions: Each key will be mapped to one of the \(m\) available slots

■ with equal probability (Uniformity)
■ and independent of where other keys are hashed (Independence).

\section*{Simple Uniform Hashing}

\section*{Theorem 16}

Let a hash table with chaining be filled with load-factor \(\alpha=\frac{n}{m}<1\). Under the assumption of simple uniform hashing, the next operation has expected costs of \(\leq 1+\alpha\).
Consequence: if the number slots \(m\) of the hash table is always at least proportional to the number of elements \(n\) of the hash table, \(n \in \mathcal{O}(m) \Rightarrow\) Expected Running time of Insertion, Search and Deletion is \(\mathcal{O}(1)\).

\section*{Simple Uniform Hashing}

Under the assumption of simple uniform hashing:
Expected length of a chain when \(n\) elements are inserted into a hash table with \(m\) elements
\[
\begin{aligned}
\mathbb{E}(\text { Länge Kette } \mathrm{j}) & =\mathbb{E}\left(\sum_{i=0}^{n-1} \mathbb{1}\left(k_{i}=j\right)\right)=\sum_{i=0}^{n-1} \mathbb{P}\left(k_{i}=j\right) \\
& =\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}
\end{aligned}
\]
\(\alpha=n / m\) is called load factor of the hash table.

\section*{Further Analysis (directly chained list)}
1. Unsuccesful search. The average list lenght is \(\alpha=\frac{n}{m}\). The list has to be traversed completely.
\(\Rightarrow\) Average number of entries considered
\[
C_{n}^{\prime}=\alpha
\]
2. Successful search Consider the insertion history: key \(j\) sees an average list length of \((j-1) / m\).
\(\Rightarrow\) Average number of considered entries
\[
\left.C_{n}=\frac{1}{n} \sum_{j=1}^{n}(1+(j-1) / m)\right)=1+\frac{1}{n} \frac{n(n-1)}{2 m} \approx 1+\frac{\alpha}{2}
\]

\section*{Advantages and Disadvantages of Chaining}

\section*{Advantages}

■ Possible to overcommit: \(\alpha>1\) allowed
- Easy to remove keys.

Disadvantages
■ Memory consumption of the chains-

\section*{Examples of popular Hash Functions}
\[
h(k)=k \bmod m
\]

Ideal: \(m\) prime, not too close to powers of 2 or 10
But often: \(m=2^{k}-1(k \in \mathbb{N})\)

\section*{[Variant:Indirect Chaining]}
```

Example $m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m$. Keys $12,55,5,15,2,19,43$
Indirect chaining the Collisions

```


\section*{Examples of popular Hash Functions}

\section*{Multiplication method}
\[
h(k)=\left\lfloor\left(a \cdot k \bmod 2^{w}\right) / 2^{w-r}\right\rfloor \bmod m
\]
- \(m=2^{r}, w=\) size of the machine word in bits.

■ Multiplication adds \(k\) along all bits of \(a\), integer division with \(2^{w-r}\) and \(\bmod m\) extract the upper \(r\) bits.

■ Written as code a * k >> (w-r)
■ A good value of \(a\) : \(\left\lfloor\frac{\sqrt{5}-1}{2} \cdot 2^{w}\right\rfloor\) : Integer that represents the first \(w\) bits of the fractional part of the irrational number.

\section*{Illustration}


\section*{Table size increase}
- 1.Idea \(n=m \Rightarrow m^{\prime} \leftarrow m+1\)

Increase for each insertion: Costs \(\Theta(1+2+3+\cdots+n)=\Theta\left(n^{2}\right) \ominus\)
- 2.Idea \(n=m \Rightarrow m^{\prime} \leftarrow 2 m\) Increase only if \(m=2^{i}\),
\(\Theta(1+2+4+8+\cdots+n)=\Theta(n)\)
Few insertions cost linear time but on average we have \(\Theta(1)\)
Jede Operation vom Hashing mit Verketten hat erwartet amortisierte Kosten \(\Theta(1)\).
( \(\Rightarrow\) Amortized Analysis)

\section*{Table size increase}
- We do not know beforehand how large \(n\) will be

■ Require \(m=\Theta(n)\) at all times.
Table size needs to be adapted. Hash-Function changes \(\Rightarrow\) rehashing
- Allocate array \(A^{\prime}\) with size \(m^{\prime}>m\)
- Insert each entry of \(A\) into \(A^{\prime}\) (with re-hashing the keys)
- Set \(A \leftarrow A^{\prime}\).
- Costs \(\mathcal{O}\left(n+m+m^{\prime}\right)\).

How to choose \(m^{\prime}\) ?

\section*{Open Addressing}

Store the colliding entries directly in the hash table using a probing
function \(s: \mathcal{K} \times\{0,1, \ldots, m-1\} \rightarrow\{0,1, \ldots, m-1\}\)
Key table position along a probing sequence
\[
S(k):=(s(k, 0), s(k, 1), \ldots, s(k, m-1)) \quad \bmod m
\]

Probing sequence must for each \(k \in \mathcal{K}\) be a permutation of \(\{0,1, \ldots, m-1\}\)

Notational clarification: this method uses open addressing(meaning that the positions in the hashtable are not fixed) but it is a closed hashing procedure (because the entries stay in the hashtable)

\section*{Algorithms for open addressing}

■ insert \((i)\) Search for kes \(k\) of \(i\) in the table according to \(S(k)\). If \(k\) is not present, insert \(k\) at the first free position in the probing sequence.
Otherwise error message.
■ \(\operatorname{find}(k)\) Traverse table entries according to \(S(k)\). If \(k\) is found, return data associated to \(k\). Otherwise return an empty element null.
■ delete \((k)\) Search \(k\) in the table according to \(S(k)\). If \(k\) is found, replace it with a special key removed.

\section*{[Analysis linear probing (without proof)]}
1. Unsuccessful search. Average number of considered entries
\[
C_{n}^{\prime} \approx \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)
\]
2. Successful search. Average number of considered entries
\[
C_{n} \approx \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)
\]

\section*{Linear Probing}
\[
s(k, j)=h(k)+j \Rightarrow S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1) \bmod m
\]
\[
m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m
\]
\[
\text { Key } 12,55,5,15,2,19
\]
\begin{tabular}{|c|c|c|c||c||c||c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 5 & 15 & 2 & 19 & & 12 & 55 \\
\hline
\end{tabular}

\section*{Discussion}

\section*{Example \(\alpha=0.95\)}

The unsuccessful search consideres 200 table entries on average! (here without derivation).

\section*{Disadvantage of the method?}

Primary clustering: similar hash addresses have similar probing sequences \(\Rightarrow\) long contiguous areas of used entries.

\section*{Quadratic Probing}
\[
\begin{aligned}
& s(k, j)=h(k)+\lceil j / 2\rceil^{2}(-1)^{j+1} \\
& S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, \ldots) \bmod m
\end{aligned}
\]
\(m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod m\).
Keys 12,55 , 5, 15, 2, 19
\begin{tabular}{|c||c||c|c||c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 19 & 15 & 2 & & 5 & 12 & 55 \\
\hline
\end{tabular}

\section*{Discussion}

\section*{Example \(\alpha=0.95\)}

Unsuccessfuly search considers 22 entries on average (here without derivation)

\section*{Problems of this method?}

Secondary clustering: Synonyms \(k\) and \(k^{\prime}\) (with \(h(k)=h\left(k^{\prime}\right)\) ) travers the same probing sequence.

\section*{[Analysis Quadratic Probing (without Proof)]}
1. Unsuccessful search. Average number of entries considered
\[
C_{n}^{\prime} \approx \frac{1}{1-\alpha}-\alpha+\ln \left(\frac{1}{1-\alpha}\right)
\]
2. Successful search. Average number of entries considered
\[
C_{n} \approx 1+\ln \left(\frac{1}{1-\alpha}\right)-\frac{\alpha}{2}
\]

\section*{Double Hashing}
\[
\text { Two hash functions } h(k) \text { and } h^{\prime}(k) . s(k, j)=h(k)+j \cdot h^{\prime}(k) .
\]
\[
S(k)=\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right) \bmod m
\]
\[
\begin{aligned}
& m=7, \mathcal{K}=\{0, \ldots, 500\}, h(k)=k \bmod 7, h^{\prime}(k)=1+k \bmod 5 \\
& \text { Keys } 12,55,5,15,2,19 \\
& \qquad \begin{array}{|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 5 & 15 & 2 & 19 & & 12 \\
\hline
\end{array}
\end{aligned}
\]

\section*{Double Hashing}
- Probing sequence must permute all hash addresses. Thus \(h^{\prime}(k) \neq 0\) and \(h^{\prime}(k)\) may not divide \(m\), for example guaranteed with \(m\) prime.
■ \(h^{\prime}\) should be as independent of \(h\) as possible (to avoid secondary clustering)

Independence:
\(\mathbb{P}\left(\left(h(k)=h\left(k^{\prime}\right)\right) \wedge\left(h^{\prime}(k)=h^{\prime}\left(k^{\prime}\right)\right)\right)=\mathbb{P}\left(h(k)=h\left(k^{\prime}\right)\right) \cdot \mathbb{P}\left(h^{\prime}(k)=h^{\prime}\left(k^{\prime}\right)\right)\).
Independence largely fulfilled by \(h(k)=k \bmod m\) and \(h^{\prime}(k)=1+k \bmod\) \((m-2)\) ( \(m\) prime).

\section*{Uniform Hashing}

Strong assumption: the probing sequence \(S(k)\) of a key \(l\) is equaly likely to be any of the \(m\) ! permutations of \(\{0,1, \ldots, m-1\}\)
(Double hashing is reasonably close)

\section*{[Analysis Double Hashing]}

Let \(h\) and \(h^{\prime}\) be independent, then:
1. Unsuccessful search. Average number of considered entries:
\[
C_{n}^{\prime} \approx \frac{1}{1-\alpha}
\]
2. Successful search. Average number of considered entries:
\[
C_{n} \approx \frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right)
\]

\section*{Analysis of Uniform Hashing with Open Addressing}

\section*{Theorem 17}

Let an open-addressing hash table be filled with load-factor \(\alpha=\frac{n}{m}<\) 1. Under the assumption of uniform hashing, the next operation has expected costs of \(\leq \frac{1}{1-\alpha}\).

\section*{Analysis of Uniform Hashing with Open Addressing}

Proof of the Theorem: Random Variable \(X\) : Number of probings when searching without success.
\[
\begin{aligned}
\mathbb{P}(X \geq i) & \stackrel{*}{=} \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2} \\
& \stackrel{* *}{\leq}\left(\frac{n}{m}\right)^{i-1}=\alpha^{i-1} . \quad(1 \leq i \leq m)
\end{aligned}
\]
*: \(A_{j}\) :Slot used during step \(j\).
\(\mathbb{P}\left(A_{1} \cap \cdots \cap A_{i-1}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2} \mid A_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right)\),
**: \(\frac{n-1}{m-1}<\frac{n}{m}\) because \(^{18} n<m\).
Moreover \(\mathbb{P}(x \geq i)=0\) for \(i \geq m\). Therefore
\[
\begin{array}{r}
\mathbb{E}(X) \stackrel{\text { Appendix }}{=} \sum_{i=1}^{\infty} \mathbb{P}(X \geq i) \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} . \\
{ }^{18} \frac{n-1}{m-1}<\frac{n}{m} \Leftrightarrow \frac{n-1}{n}<\frac{m-1}{m} \Leftrightarrow 1-\frac{1}{n}<1-\frac{1}{m} \Leftrightarrow n<m(n>0, m>0)
\end{array}
\]

\section*{Overview}
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{8}{c}{\(\alpha=0.50\)} \\
& \multicolumn{2}{c}{\(\alpha=0.90\)} & \multicolumn{2}{c}{\(\alpha=0.95\)} \\
& \(C_{n}\) & \(C_{n}^{\prime}\) & \(C_{n}\) & \(C_{n}^{\prime}\) & \(C_{n}\) & \(C_{n}^{\prime}\) \\
\hline (Direct) Chaining & 1.25 & 0.50 & 1.45 & 0.90 & 1.48 & 0.95 \\
\hline Linear Probing & 1.50 & 2.50 & 5.50 & 50.50 & 10.50 & 200.50 \\
Quadratic Probing & 1.44 & 2.19 & 2.85 & 11.40 & 3.52 & 22.05 \\
\hline Uniform Hashing & 1.39 & 2.00 & 2.56 & 10.00 & 3.15 & 20.00 \\
\(C_{n}:\) Anzahl Schritte erfolgreiche Suche, \(C_{n}^{\prime}:\) Anzahl Schritte erfolglose Suche, \\
Belegungsgrad \(\alpha\).
\end{tabular}

\section*{[Successful search of Uniform Open Hashing]}

\section*{Theorem 18}

Let an open-addressing hash table be filled with load-factor \(\alpha=\frac{n}{m}<1\). Under the assumption of uniform hashing, the successful search has expected costs of \(\leq \frac{1}{\alpha} \cdot \log \frac{1}{1-\alpha}\).
Proof: Cormen et al, Kap. 11.4

\section*{Universal Hashing}
- \(|\mathcal{K}|>m \Rightarrow\) Set of "similar keys" can be chosen such that a large number of collisions occur.
■ Impossible to select a "best" hash function for all cases.
- Possible, however \({ }^{19}\) : randomize!

Universal hash class \(\mathcal{H} \subseteq\{h: \mathcal{K} \rightarrow\{0,1, \ldots, m-1\}\}\) is a family of hash functions such that
\[
\forall k_{1} \neq k_{2} \in \mathcal{K} \text { it holds that } \mid\left\{h \in \mathcal{H} \text { with } h\left(k_{1}\right)=h\left(k_{2}\right)\right\} \left\lvert\, \leq \frac{|\mathcal{H}|}{m}\right.
\]

\footnotetext{
\({ }^{19}\) Similar as for quicksort
}

\section*{Universal Hashing}

\section*{Theorem 19}

A function \(h\) randomly chosen from a universal class \(\mathcal{H}\) of hash functions randomly distributes an arbitrary sequence of keys from \(\mathcal{K}\) as uniformly as possible on the available slots.
When using hashing with chaining, the expected chain length for an element that is not contained in the table is \(\leq \alpha=n / m\). The expected chain length for an element contained is \(\leq 1+\alpha\).

\section*{Universal Hashing}

Initial remark for the proof of the theorem:
Define with \(x, y \in \mathcal{K}, h \in \mathcal{H}, Y \subseteq \mathcal{K}\) :
\[
\begin{aligned}
\delta(h, x, y) & = \begin{cases}1, & \text { if } h(x)=h(y) \\
0, & \text { otherwise },\end{cases} \\
\delta(h, x, Y) & =\sum_{y \in Y} \delta(x, y, h),
\end{aligned} \quad \text { for how many } y \in Y \text { is } h(x)=h(y) ? ~ ? ~ f o r ~ h o w ~ m a n y ~ h \in \mathcal{H} \text { is } h(x)=h(y) ? . ?
\]
\(\mathcal{H}\) is universal if for all \(x, y \in \mathcal{K}, x \neq y: \delta(\mathcal{H}, x, y) \leq|\mathcal{H}| / m\).

\section*{Universal Hashing}
\(S \subseteq \mathcal{K}\) : keys stored up to now, now \(x \in S\).
Expected number of collisions of \(x\) with \(S\)
\[
\begin{aligned}
\mathbb{E}_{\mathcal{H}}(\delta(x, S, h)) & =\sum_{h \in \mathcal{H}} \delta(x, S, h) /|\mathcal{H}| \\
& =\frac{1}{|\mathcal{H}|} \sum_{h \in \mathcal{H}} \sum_{y \in S} \delta(h, x, y)=\frac{1}{|\mathcal{H}|} \sum_{y \in S} \sum_{h \in \mathcal{H}} \delta(h, x, y) \\
& =\frac{1}{|\mathcal{H}|}\left(\delta(\mathcal{H}, x, x)+\sum_{y \in S-\{x\}} \delta(\mathcal{H}, x, y)\right) \\
& \leq \frac{1}{|\mathcal{H}|}\left(|\mathcal{H}|+\sum_{y \in S-\{x\}}|\mathcal{H}| / m\right)=1+\frac{|S|-1}{m}=1+\frac{n-1}{m} \leq 1+\alpha
\end{aligned}
\]

\section*{Construction Universal Class of Hashfunctions}

Let key set be \(\mathcal{K}=\{0, \ldots, u-1\}\) and \(p \geq u\) be prime. With \(a \in \mathcal{K} \backslash\{0\}\), \(b \in \mathcal{K}\) define
\[
h_{a b}: \mathcal{K} \rightarrow\{0, \ldots, m-1\}, h_{a b}(x)=((a x+b) \bmod p) \bmod m .
\]

Then the following theorem holds:

\section*{Theorem 20}

The class \(\mathcal{H}=\left\{h_{a b} \mid a, b \in \mathcal{K}, a \neq 0\right\}\) is a universal class of hash functions.
(Here without proof, see e.g. Cormen et al, Kap. 11.3.3)

\section*{Observation (Birthday Paradox Reversed)}

■ \(h\) be chosen at random from universal hashclass \(\mathcal{H}\).
- \(n\) keys \(S \subset \mathcal{K}\)
- Random variable \(X\) : number collisionsof the \(n\) keys from \(S\)
\(\Rightarrow\)
\[
\begin{aligned}
\mathbb{E}(X) & =\mathbb{E}\left(\sum_{i \neq j} \mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{j}\right)\right)=\sum_{i \neq j} \mathbb{E}\left(\mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{j}\right)\right)\right.\right. \\
& \stackrel{*}{=}\binom{n}{2} \frac{1}{m} \leq \frac{n^{2}}{2 m}
\end{aligned}
\]
* \# Unordered Pairs
\(\sum_{i \neq j} 1=\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} 1=\sum_{i=0}^{n-1}(n-1-i)=n(n-1)-n(n-1) / 2=n(n-1) / 2\)

\section*{Perfect Hashing}

If the set of used keys is known up-front, the hash function can be chosen perfectly, i.e. such that there are no collisions.
Example: table of key words of a compiler.

\section*{Perfect Hashing with memory space \(\Theta\left(n^{2}\right)\)}
if \(m=n^{2} \Rightarrow \mathbb{E}(X) \leq \frac{1}{2}\).
Markov-Inequality \({ }^{20} \mathbb{P}(X \geq 1) \leq \frac{\mathbb{E}(X)}{1} \leq \frac{1}{2}\)
Thus
\[
\mathbb{P}(X<1)=\mathbb{P}(\text { no Collision }) \geq \frac{1}{2} .
\]

Consequence: for \(n\) keys, in expected \(2 \cdot n\) steps, a collision free hash-table of size \(m=n^{2}\) can be constructed by choosing from a universal hash class at random.

\footnotetext{
\({ }^{20}\) Appendix
}

\section*{Perfect Hashing Idea}


\section*{Expected Running times}
- For Step 1: hash table of size \(m=n\). We show on the next page that \(\mathbb{E}\left(\sum_{j=0}^{m-1} l_{j}^{2}\right) \leq 2 n\). Consequently (Markov): \(\mathbb{P}\left(\sum_{j=0}^{m-1} l_{j}^{2} \geq 4 n\right) \leq \frac{2 n}{4 n}=\frac{1}{2}\).
\(\Rightarrow\) Expected two retries of step 1 .
■ For Step 2: \(\sum l_{i}^{2} \leq 4 n\). For each \(i\) expected two trials with running time \(l_{i}^{2}\). Overal \(\mathcal{O}(n)\)
\(\Rightarrow\) The perfect hash tables can be constructed in expected \(\mathcal{O}(n)\) steps.

\section*{Perfect Hashing with \(\Theta(n)\) memory consumption.}

Two-level hashing
1. Choose \(m=n\) and \(h:\{0,1, \ldots, u-1\} \rightarrow\{0,1, \ldots, m-1\}\) from a universal hash-class. Insert all \(n\) keys into the hash table using chaining. Let \(l_{i}\) be the length of a chain at index \(i\). If \(\sum_{i=0}^{m-1} l_{i}^{2}>4 n\), then repeat this step 1 .
2. For each index \(i=1, \ldots, m-1\) with \(l_{i}>0\) construct, for the \(l_{i}\) contained keys, hash tables of length \(l_{i}^{2}\) using universal hashing (hash function \(h_{2, i}\) ) until there are no collisions.
Memory consumption \(\Theta(n)\).

\section*{Expected Memory Space 2nd Level Hash Tables}
\[
\begin{aligned}
\mathbb{E}\left(\sum_{j=0}^{m-1} l_{j}^{2}\right) & =\mathbb{E}\left(\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} \sum_{i^{\prime}=0}^{n-1} \mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)=j\right)\right) \\
& =\mathbb{E}\left(\sum_{i=0}^{n-1} \sum_{i^{\prime}=0}^{n-1} \mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\right)\right) \\
& =\mathbb{E}\left(\sum_{i=i^{\prime}} \mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\right)+2 \cdot \sum_{i \neq i^{\prime}} \mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\right)\right) \\
& =n+2 \cdot \sum_{i \neq i^{\prime}} \mathbb{E}\left(\mathbb{1}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\right)\right) \\
& =n+2\binom{n}{2} \frac{1}{m} \stackrel{m=n}{=} 2 n-1 \leq 2 n .
\end{aligned}
\]

\section*{[Birthday Paradox]}

Assumption: \(m\) urns, \(n\) balls ( \(w \log n \leq m\) ).
\(n\) balls are put uniformly distributed into the urns


What is the collision probability?
Birthdayparadox: with how many people ( \(n\) ) the probability that two of them share the same birthday ( \(m=365\) ) is larger than \(50 \%\) ?

\section*{[Formula for Expected Value]}
\(X \geq 0\) discrete random variable with \(\mathbb{E}(X)<\infty\)
\[
\begin{aligned}
\mathbb{E}(X) & \stackrel{(\text { def })}{=} \sum_{x=0}^{\infty} x \mathbb{P}(X=x) \\
& \stackrel{\text { Counting }}{=} \sum_{x=1}^{\infty} \sum_{y=x}^{\infty} \mathbb{P}(X=y) \\
& =\sum_{x=0}^{\infty} \mathbb{P}(X>x)
\end{aligned}
\]

Puzzle answer: with 23 people the probability for a birthday collision is \(50.7 \%\). Derived from the slightly more accurate Stirling formula. \(n!\approx \sqrt{2 \pi n} \cdot n^{n} \cdot e^{-n}\)

\section*{[Birthday Paradox]}
\(\mathbb{P}(\) no collision \()=\frac{m}{m} \cdot \frac{m-1}{m} \cdots \cdot \frac{m-n+1}{m}=\frac{m!}{(m-n)!\cdot m^{m}}\).
Let \(a \ll m\). With \(e^{x}=1+x+\frac{x^{2}}{2!}+\ldots\) approximate \(1-\frac{a}{m} \approx e^{-\frac{a}{m}}\). This yields:
\[
1 \cdot\left(1-\frac{1}{m}\right) \cdot\left(1-\frac{2}{m}\right) \cdot \ldots \cdot\left(1-\frac{n-1}{m}\right) \approx e^{-\frac{1+\cdots+n-1}{m}}=e^{-\frac{n(n-1)}{2 m}}
\]

Thus
\[
\mathbb{P}(\text { Kollision })=1-e^{-\frac{n(n-1)}{2 m}} .
\]

\section*{[Markov Inequality]}
discrete Version \(X \geq 0, a>0\) :
\[
\begin{aligned}
\mathbb{E}(X) & =\sum_{x=0}^{\infty} x \mathbb{P}(X=x) \\
& \geq \sum_{x=a}^{\infty} x \mathbb{P}(X=x) \\
& \geq a \sum_{x=a}^{\infty} \mathbb{P}(X=x) \\
& =a \cdot \mathbb{P}(X \geq a)
\end{aligned}
\]
\(\Rightarrow\)
\[
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
\]

\section*{What do we learn today?}

■ Functors: objects with overloaded function operator ().
- Closures
- Lambda-Expressions: syntactic sugar
- Captures

\section*{15. C++ advanced (III): Functors and Lambda}

\section*{Functors: Motivation}
```

A simple output filter
template <typename T, typename Function>
void filter(const T\& collection, Function f){
for (const auto\& x: collection)
if (f(x)) std::cout << x << " ";
std::cout << "\n";
}
filter works if the first argument offers an iterator and if the second argument can be applied to elements of the iterator with a result that can be converted to bool.

```

\section*{Functors: Motivation}
```

template <typename T, typename Function>
void filter(const T\& collection, Function f);
template <typename T>
bool even(T x){
return x % 2 == 0;
}
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16

```

\section*{Functor: object with overloaded operator ()}
```

template <typename T>
class GreaterThan{
T value;
public:
GreaterThan(T x):value{x}{}
bool operator() (T par) const{
return par > value;
}
};

```
(this also works with a template, of course)

\section*{Functor: Object with Overloaded Operator ()}
```

class GreaterThan{
int value; // state
public:
GreaterThan(int x):value{x}{}
bool operator() (int par) const {
return par > value;
}
};

```
std: : vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\}\); int value=8;
filter(a,GreaterThan(value)); // 9,11,16,19

A Functor is a callable object. Can be understood as
a stateful function.
filter(a,GreaterThan(value)); // 9,11,16,19

The same with a Lambda-Expression
```

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a, [value](int x) {return x > value;});

```

\footnotetext{
std::vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\}\);
int value=8;
filter(a,GreaterThan<int>(value)); // 9,11,16,19
}

\section*{Sum of Elements - Old School}
```

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)
sum += x;
std::cout << sum << std::endl; // 83

```

\section*{Sum of Elements - with References}
```

template <typename T>
struct SumR{
T\& value;
SumR (T\& v):value{v} {}
void operator() (T par){ value += par; }
};
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
SumR<int> sum{s};
// cannot (and do not need to) assign to sum here
std::for_each(a.begin(), a.end(), sum);
std::cout << s << std::endl; // 83

```

\section*{Sum of Elements - with \(\Lambda\)}
std::vector<int> a \(\{1,2,3,4,5,6,7,9,11,16,19\} ;\)
int \(s=0 ;\)
std: \(:\) for_each(a.begin(), a.end(), [\&s] (int \(x\) ) \{s += \(x ;\}\) );
std: :cout << \(s \ll\) std: :endl;
std::cout << s << std::endl;

\section*{Sum of Elements - with Functor}
```

template <typename T>
struct Sum{
T value = 0;
void operator() (T par){ value += par; }
};
std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
Sum<int> sum;
// for_each copies sum: we need to copy the result back
<< - lolololos
std::cout << sum.value << std::endl; // 83

```

\section*{Sorting by Different Order}
```

// pre: i >= 0
// post: returns sum of digits of i
int q(int i){
int res =0;
for(;i>0;i/=10)
res += i % 10;
return res;
}
std::vector<int> v {10,12,9,7,28,22,14};
std::sort (v.begin(), v.end(),
[] (int i, int j) { return q(i) < q(j);}
);
Now v=10,12, 22,14,7,9,28(sorted by sum of digits)

```

\section*{Closure}

\section*{[value] (int x) ->bool \{return x > value;\}}

■ Lambda expressions evaluate to a temporary object - a closure
■ The closure retains the execution context of the function - the captured objects.

■ Lambda expressions can be implemented as functors.

\section*{Lambda-Expressions in Detail}


\section*{Simple Lambda Expression}
```

[]()->void {std::cout << "Hello World";}
call:
[]()->void {std::cout << "Hello World";}();
assignment:
auto f = []()->void {std::cout << "Hello World";};

```

\section*{Minimal Lambda Expression}
[] \{\}
■ Return type can be inferred if no or only one return statement is present. \({ }^{21}\)
[]() \{std::cout << "Hello World";\}
- If no parameters and no explicit return type, then () can be omitted.
[]\{std::cout << "Hello World";\}
■ [...] can never be omitted.
\({ }^{21}\) Since \(\mathrm{C}++14\) also several returns possible, provided that the same return type is deduced

\section*{Examples}
```

int k = 8;
auto f = [](int\& v) {v += v;};
f(k);
std::cout << k;

```

Output: 16

\section*{Examples}
[] (int \(x\), int \(y)\) \{std: :cout \(\ll x * y ;\}(4,5)\); Output: 20

\section*{Examples}
```

int k = 8;
auto f = [](int v) {v += v;};
f(k);
std::cout << k;
Output: }

```

\section*{Capture - Lambdas}

For Lambda-expressions the capture list determines the context accessible Syntax:
■ [x]: Access a copy of \(x\) (read-only)
■ [\&x]: Capture \(x\) by reference
■ [\&x,y]: Capture \(x\) by reference and \(y\) by value
■ [\&]: Default capture all objects by reference in the scope of the lambda expression
- [=]: Default capture all objects by value in the context of the Lambda-Expression

\section*{Capture - Lambdas}
```

template <typename T>
void sequence(vector<int> \& v, T done){
int i=0;
while (!done()) v.push_back(i++);
}
vector<int> s;
sequence(s, [\&] {return s.size() >= 5;})
now v = 01234
The capture list refers to the context of the lambda expression.

```

\section*{Capture - Lambdas}
```

int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),
[\&] (int k) {sum += k; elements++;} // capture all by reference
)

```

\section*{Capture - Lambdas}

When is the value captured?
int \(\mathrm{v}=42\);
auto func \(=[=]\) \{std:: cout \(\ll \mathrm{v} \ll\) "\n"\};
\(\mathrm{v}=7\);
func();
Output: 42
Values are assigned when the lambda-expression is created.

\section*{Capture - Lambdas}
```

(Why) does this work?
class Limited{
int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>\& a){
int c = 0;
std::for_each(a.begin(), a.end(),
[=,\&c] (int x) {if (x < limit) c++;}
);
return c;
}
};
The this pointer is implicitly copied by value

```

\section*{Lambda Expressions are Functors}
```

 [x, &y] () {y = x;}
 can be implemented as
unnamed {x,y};
with
class unnamed {
int x; int\& y;
unnamed (int x_, int\& y_) : x (x_), y (y_) {}
void operator () () {y = x;}
};

```

\section*{Capture - Lambdas}
```

struct mutant{
int i = 0;
void do(){ [=] {i=42;}();}
};
mutant m;
m.do();
std::cout << m.i;
Output: 42
The this pointer is implicitly copied by value

```

\section*{Lambda Expressions are Functors}
```

[=] () {return x + y;}
can be implemented as
unnamed {x,y};
with
class unnamed {
int x; int y;
unnamed (int x_, int y_) : x (x_), y (y_) {}
int operator () () const {return x + y;}
};

```

\section*{Polymorphic Function Wrapper std: :function}
\#include <functional>
int \(\mathrm{k}=8\);
std: :function<int(int)> f;
f = [k] (int i) \{ return i+k; \};
std: : cout << f(8); // 16
can be used in order to store lambda expressions
Other Examples
std: :function<int(int,int)>; std: :function<void(double)> ...
http://en.cppreference.com/w/cpp/utility/functional/function

\section*{Example}
auto Gaussian(double mu, double sigma)\{
return [mu,sigma] (double x) \{ const double \(a=(x-m u) /\) sigma; return std: \(: \exp (-0.5 * a * a)\); \};
\(\}\)
template <typename F, typename Kernel>
auto smooth ( F f, Kernel kernel) \{
return [kernel,f] (auto x) \{
// compute convolution ...
// and return result
\};
\}

\section*{Example}
```

template <typename T>
auto toFunction(std::vector<T> v){
return [v] (T x) -> double {
int index = (int) (x+0.5);
if (index < 0) index = 0;
if (index >= v.size()) index = v.size()-1;
return v[index];
};
}

```

\section*{Example}
std: :vector<double> v \{1,2,5,3\};
auto \(\mathrm{f}=\) toFunction(v);
auto \(\mathrm{k}=\operatorname{Gaussian}(0,0.1)\);
auto \(g=\operatorname{smooth}(f, k)\);


\section*{Conclusion}

■ Functors allow to write functional programs in C++. Lambdas are syntactic sugar to simplify this.
■ With functors/lambdas classic patters from functional programming (e.g. map / filter / reduce) can be applied in C++.
- In combination with templates and the type inference (auto) very powerful functions can be stored in variables. Functions can even return functions (so called higher order functions).

\section*{Dictionary implementation}

Hashing: implementation of dictionaries with expected very fast access times.
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:
- enumerate keys in increasing order
- next smallest key to given key
- Key \(k\) in given interval \(k \in[l, r]\)

\section*{16. Binary Search Trees}
[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1-12.3]

\section*{Trees}

Trees are
■ Generalized lists: nodes can have more than one successor
- Special graphs: graphs consist of nodes and edges. A tree is a fully connected, directed, acyclic graph.

\section*{Trees}

\section*{Use}

■ Decision trees: hierarchic representation of decision rules
- syntax trees: parsing and traversing of expressions, e.g. in a compiler
■ Code tress: representation of a code, e.g. morse alphabet, huffman code
- Search trees: allow efficient searching for an element by value

\section*{Examples}


\section*{Examples}


Morsealphabet

\section*{Nomenclature}


■ Order of the tree: maximum number of child nodes, here: 3
- Height of the tree: maximum path length root - leaf (here: 4)

\section*{Binary Trees}

\section*{A binary tree is}
- either a leaf, i.e. an empty tree,
- or an inner leaf with two trees \(T_{l}\) (left subtree) and \(T_{r}\) (right subtree) as left and right successor.

In each inner node v we store
■ a key v.key and
\[

\]

■ two nodes v.left and v.right to the roots of the left and right subtree.
a leaf is represented by the null-pointer

\section*{Searching}

Input: Binary search tree with root \(r\), key \(k\)
Output: Node \(v\) with \(v\).key \(=k\) or null
while \(v \neq\) null do

\section*{if \(k=v\).key then} return \(v\)
else if \(k<v\).key then \(v \leftarrow v\).left
else
\(v \leftarrow v\).right

return null

\section*{Binary search tree}

A binary search tree is a binary tree that fulfils the search tree property:
- Every node v stores a key

■ Keys in left subtree v.left are smaller than v.key
■ Keys in right subtree v.right are greater than v.key


\section*{Height of a tree}

The height \(h(T)\) of a binary tree \(T\) with root \(r\) is given by
\[
h(r)= \begin{cases}0 & \text { if } r=\text { null } \\ 1+\max \{h(r . \text { left }), h(r . r i g h t)\} & \text { otherwise } .\end{cases}
\]

The worst case run time of the search is thus \(\mathcal{O}(h(T))\)

\section*{Insertion of a key}

Insertion of the key \(k\)
■ Search for \(k\)
■ If successful search: e.g. output error
- Of no success: insert the key at the leaf reached


\section*{Remove node}

Node has no children
Simple case: replace node by leaf.

\(\xrightarrow{\text { remove (4) }}\)


\section*{Remove node}

Three cases possible
■ Node has no children
■ Node has one child
■ Node has two children
[Leaves do not count here]


\section*{Remove node}

Node has one child
Also simple: replace node by single child.



\section*{Remove node}

\section*{Node v has two children}

The following observation helps: the smallest key in the right subtree v.right (the symmetric successor of v)
- is smaller than all keys in v.right

■ is greater than all keys in v.left
■ and cannot have a left child.
Solution: replace v by its symmetric successor.

\section*{Algorithm SymmetricSuccessor(v)}

Input: Node \(v\) of a binary search tree.
Output: Symmetric successor of \(v\)
\(w \leftarrow v\).right
\(x \leftarrow w\).left
while \(x \neq\) null do
\(w \leftarrow x\)
\(x \leftarrow x\).left

\section*{return w}

\section*{By symmetry...}


\section*{Node v has two children}

Also possible: replace v by its symmetric predecessor.


\section*{Analysis}

Deletion of an element \(v\) from a tree \(T\) requires \(\mathcal{O}(h(T))\) fundamental steps:
■ Finding \(v\) has costs \(\mathcal{O}(h(T))\)
■ If \(v\) has maximal one child unequal to nullthen removal takes \(\mathcal{O}(1)\) steps
■ Finding the symmetric successor \(n\) of \(v\) takes \(\mathcal{O}(h(T))\) steps. Removal and insertion of \(n\) takes \(\mathcal{O}(1)\) steps.

\section*{Traversal possibilities}

■ preorder: \(v\), then \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\). \(8,3,5,4,13,10,9,19\)
■ postorder: \(T_{\text {left }}(v)\), then \(T_{\text {right }}(v)\), then \(v\). \(4,5,3,9,10,19,13,8\)
■ inorder: \(T_{\text {left }}(v)\), then \(v\), then \(T_{\text {right }}(v)\). \(3,4,5,8,9,10,13,19\)


\section*{Degenerated search trees}


Insert 9,5,13,4,8,10,19 ideally balanced


Insert 4,5,8,9,10,13,19 linear list


Insert 19,13,10,9,8,5,4 linear list

\section*{Further supported operations}
- \(\operatorname{Min}(T)\) : Read-out minimal value in \(\mathcal{O}(h)\)
- ExtractMin( \(T\) ): Read-out and remove minimal value in \(\mathcal{O}(h)\)
■ List( \(T\) ): Output the sorted list of elements
■ Join \(\left(T_{1}, T_{2}\right)\) : Merge two trees with \(\max \left(T_{1}\right)<\min \left(T_{2}\right)\) in \(\mathcal{O}(n)\).


\section*{Probabilistically}

A search tree constructed from a random sequence of numbers provides an an expected path length of \(\mathcal{O}(\log n)\).
Attention: this only holds for insertions. If the tree is constructed by random insertions and deletions, the expected path length is \(\mathcal{O}(\sqrt{n})\). Balanced trees make sure (e.g. with rotations) during insertion or deletion that the tree stays balanced and provide a \(\mathcal{O}(\log n)\) Worst-case guarantee.

\section*{17. Heaps}

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

\section*{Heap as Array}

\section*{Tree \(\rightarrow\) Array:}

■ children \((i)=\{2 i, 2 i+1\}\)
■ parent \((i)=\lfloor i / 2\rfloor\)


Depends on the starting index \({ }^{22}\)

\footnotetext{
\({ }^{22}\) For array that start at \(0:\{2 i, 2 i+1\} \rightarrow\{2 i+1,2 i+2\},\lfloor i / 2\rfloor \rightarrow\lfloor(i-1) / 2\rfloor\)
}

\section*{[Max-]Heap*}

Binary tree with the following properties
1. complete up to the lowest level
2. Gaps (if any) of the tree in the last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child smaller (greater) that that of the parent node

leaves
*Heap(data structure), not: as in "heap and stack" (memory allocation)

\section*{Height of a Heap}

What is the height \(H(n)\) of Heap with \(n\) nodes? On the \(i\)-th level of a binary tree there are at most \(2^{i}\) nodes. Up to the last level of a heap all levels are filled with values.
\[
H(n)=\min \left\{h \in \mathbb{N}: \sum_{i=0}^{h-1} 2^{i} \geq n\right\}
\]
with \(\sum_{i=0}^{h-1} 2^{i}=2^{h}-1\) :
\[
H(n)=\min \left\{h \in \mathbb{N}: 2^{h} \geq n+1\right\}
\]
thus
\[
H(n)=\left\lceil\log _{2}(n+1)\right\rceil
\]

\section*{Insert}
- Insert new element at the first free position. Potentially violates the heap property


■ Reestablish heap property: climb successively
- Worst case number of operations: \(\mathcal{O}(\log n)\)


\section*{Remove the maximum}

■ Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)
- Worst case number of operations: \(\mathcal{O}(\log n)\)


\section*{Algorithm \(\operatorname{Sift-Up}(A, m)\)}

Input: Array \(A\) with at least \(m\) elements and Max-Heap-Structure on \(A[1, \ldots, m-1]\)
Output: Array \(A\) with Max-Heap-Structure on \(A[1, \ldots, m]\).
\(v \leftarrow A[m] / /\) value
\(c \leftarrow m / /\) current position (child)
\(p \leftarrow\lfloor c / 2\rfloor / /\) parent node
while \(c>1\) and \(v>A[p]\) do
\(A[c] \leftarrow A[p] / /\) Value parent node \(\rightarrow\) current node
\(c \leftarrow p\) // parent node \(\rightarrow\) current node
\(p \leftarrow\lfloor c / 2\rfloor\)
\(A[c] \leftarrow v / /\) value \(\rightarrow\) root of the (sub)tree

Why this is correct: Recursive heap structure

A heap consists of two heaps:
22


\section*{Algorithm \(\operatorname{SiftDown}(A, i, m)\)}

Input: Array \(A\) with heap structure for the children of \(i\). Last element \(m\).
Output: Array \(A\) with heap structure for \(i\) with last element \(m\).
while \(2 i \leq m\) do
\(j \leftarrow 2 i\); // \(j\) left child
if \(j<m\) and \(A[j]<A[j+1]\) then
\(j \leftarrow j+1\); // \(j\) right child with greater key
if \(A[i]<A[j]\) then \(\operatorname{swap}(A[i], A[j])\) \(i \leftarrow j\); // keep sinking down
else
\(i \leftarrow m\); // sift down finished

\section*{Heap creation}

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

\section*{Sort heap}
\(A[1, \ldots, n]\) is a Heap.
While \(n>1\)
- \(\operatorname{swap}(A[1], A[n])\)
- \(\operatorname{SiftDown}(A, 1, n-1)\);

■ \(n \leftarrow n-1\)

\section*{Algorithm HeapSort \((A, n)\)}

Input: Array \(A\) with length \(n\).
Output: \(A\) sorted.
// Build the heap.
for \(i \leftarrow n / 2\) downto 1 do
SiftDown \((A, i, n)\);
// Now \(A\) is a heap.
for \(i \leftarrow n\) downto 2 do
\(\operatorname{swap}(A[1], A[i])\)
\(\operatorname{SiftDown}(A, 1, i-1)\)
// Now \(A\) is sorted.

\section*{Analysis: sorting a heap}

SiftDown traverses at most \(\log n\) nodes. For each node 2 key comparisons. \(\Rightarrow\) sorting a heap costs in the worst case \(2 \log n\) comparisons.
Number of memory movements of sorting a heap also \(\mathcal{O}(n \log n)\).

\section*{Analysis: creating a heap}

Calls to siftDown: \(n / 2\).
Thus number of comparisons and movements: \(v(n) \in \mathcal{O}(n \log n)\).
But mean length of the sift-down paths is much smaller:
We use that \(h(n)=\left\lceil\log _{2} n+1\right\rceil=\left\lfloor\log _{2} n\right\rfloor+1\) für \(n>0\)
\[
\begin{aligned}
& \begin{aligned}
v(n) & =\sum_{l=0}^{\left\lfloor\log _{2} n\right\rfloor} \underbrace{2^{l}}_{\text {number heaps on level l }} \cdot(\underbrace{\left\lfloor\log _{2} n\right\rfloor+1-l}_{\text {height heaps on level । }}-1)=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} 2^{\left\lfloor\log _{2} n\right\rfloor-k} \cdot k \\
& =2^{\left\lfloor\log _{2} n\right\rfloor} \cdot \sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} \frac{k}{2^{k}} \leq n \cdot \sum_{k=0}^{\infty} \frac{k}{2^{k}} \leq n \cdot 2 \in \mathcal{O}(n)
\end{aligned} \\
& \text { with } s(x)
\end{aligned}==\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}} \quad(0<x<1) \text { and } s\left(\frac{1}{2}\right)=2 \text {. }
\]

\section*{Disadvantages}

\section*{Heapsort: \(\mathcal{O}(n \log n)\) Comparisons and movements.}

\section*{Disadvantages of heapsort?}

Missing locality: heapsort jumps around in the sorted array (negative cache effect).
(1) Two comparisons required before each necessary memory movement.

\section*{18. AVL Trees}

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

\section*{Objective}

Searching, insertion and removal of a key in a tree generated from \(n\) keys inserted in random order takes expected number of steps \(\mathcal{O}\left(\log _{2} n\right)\).
But worst case \(\Theta(n)\) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.
Balancing: guarantee that a tree with \(n\) nodes always has a height of \(\mathcal{O}(\log n)\).
Adelson-Venskii and Landis (1962): AVL-Trees

\section*{AVL Condition}

\section*{AVL Condition: for eacn node \(v\) of a tree}
\(\operatorname{bal}(v) \in\{-1,0,1\}\)

\section*{Balance of a node}

The height balance of a node \(v\) is defined as the height difference of its sub-trees \(T_{l}(v)\) and \(T_{r}(v)\)
\[
\operatorname{bal}(v):=h\left(T_{r}(v)\right)-h\left(T_{l}(v)\right)
\]


\section*{(Counter-)Examples}

AVL tree with height 2


AVL tree with height 3


\section*{Number of Leaves}

■ 1. observation: a binary search tree with \(n\) keys provides exactly \(n+1\) leaves. Simple induction argument.
- The binary search tree with \(n=0\) keys has \(m=1\) leaves

■ When a key is added \((n \rightarrow n+1)\), then it replaces a leaf and adds two new leafs \((m \rightarrow m-1+2=m+1)\).

■ 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

\section*{Lower bound of the leaves for \(h>2\)}

■ Height of one subtree \(\geq h-1\).
■ Height of the other subtree \(\geq h-2\).
Minimal number of leaves \(N(h)\) is
\[
N(h)=N(h-1)+N(h-2)
\]


Overal we have \(N(h)=F_{h+2}\) with Fibonacci-numbers \(F_{0}:=0, F_{1}:=1\), \(F_{n}:=F_{n-1}+F_{n-2}\) for \(n>1\).

\section*{Lower bound of the leaves}


AVL tree with height 1 has
\[
N(1):=2 \text { leaves. }
\]


AVL tree with height 2 has at least \(N(2):=3\) leaves.

\section*{Fibonacci Numbers, closed Form}

It holds that \({ }^{23}\)
\[
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)
\]
with the roots \(\phi, \hat{\phi}\) of the golden ratio equation \(x^{2}-x-1=0\) :
\[
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \\
& \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{aligned}
\]

\footnotetext{
\({ }^{23}\) Derivation using generating functions (power series) in the appendix.
}

\section*{Fibonacci Numbers, Inductive Proof}
\(F_{i} \stackrel{!}{=} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)\)
\(\left(\phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}\right)\).
1. Immediate for \(i=0, i=1\).
2. Let \(i>2\) and claim \([*]\) true for all \(F_{j}, j<i\).
\[
\begin{aligned}
F_{i} & \stackrel{\text { def }}{=} F_{i-1}+F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}}\left(\phi^{i-1}-\hat{\phi}^{i-1}\right)+\frac{1}{\sqrt{5}}\left(\phi^{i-2}-\hat{\phi}^{i-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{i-1}+\phi^{i-2}\right)-\frac{1}{\sqrt{5}}\left(\hat{\phi}^{i-1}+\hat{\phi}^{i-2}\right)=\frac{1}{\sqrt{5}} \phi^{i-2}(\phi+1)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}(\hat{\phi}+1)
\end{aligned}
\]
\(\left(\phi, \hat{\phi}\right.\) fulfil \(x+1=x^{2}\) )
\[
=\frac{1}{\sqrt{5}} \phi^{i-2}\left(\phi^{2}\right)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}\left(\hat{\phi}^{2}\right)=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
\]

\section*{Insertion}

\section*{Balance}

■ Keep the balance stored in each node
■ Re-balance the tree in each update-operation

\section*{New node \(n\) is inserted:}

■ Insert the node as for a search tree.
■ Check the balance condition increasing from \(n\) to the root.

\section*{Tree Height}

Because \(|\hat{\phi}|<1\), overal we have
\[
N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega\left(1.618^{h}\right)
\]
and thus
\[
\begin{aligned}
N(h) & \geq c \cdot 1.618^{h} \\
\Rightarrow \quad h & \leq 1.44 \log _{2} n+c^{\prime} .
\end{aligned}
\]

An AVL tree is asymptotically not more than \(44 \%\) higher than a perfectly balanced tree. \({ }^{24}\)

\footnotetext{
\({ }^{24}\) The perfectly balanced tree has a height of \(\left\lceil\log _{2} n+1\right\rceil\)
}

\section*{Balance at Insertion Point}

case \(1: \operatorname{bal}(p)=+1\)


Finished in both cases because the subtree height did not change

\section*{Balance at Insertion Point}

case 3.1: \(\operatorname{bal}(p)=0\) right

case 3.2: \(\operatorname{bal}(p)=0\), left

\section*{upin(p) - invariant}

When upin(p) is called it holds that
■ the subtree from \(p\) is grown and
■ \(\operatorname{bal}(p) \in\{-1,+1\}\)

Not finished in both case. Call of upin(p)

\section*{upin(p)}

Assumption: \(p\) is left son of \(p p^{25}\)

case 1: \(\operatorname{bal}(p p)=+1\), done.
\[
\text { case 2: } \operatorname{bal}(p p)=0, \operatorname{upin}(\mathrm{pp})
\]

In both cases the AVL-Condition holds for the subtree from \(p p\)

\footnotetext{
\({ }^{25}\) If \(p\) is a right son: symmetric cases with exchange of +1 and -1
}
upin(p)

Assumption: \(p\) is left son of \(p p\)


This case is problematic: adding \(n\) to the subtree from \(p p\) has violated the AVL-condition. Re-balance!
Two cases \(\operatorname{bal}(p)=-1, \operatorname{bal}(p)=+1\)

\section*{Rotations}
case \(1.1 \operatorname{bal}(p)=-1 .{ }^{26}\)

\({ }^{26} p\) right son: \(\Rightarrow \operatorname{bal}(p p)=\operatorname{bal}(p)=+1\), left rotation

\section*{Analysis}
- Tree height: \(\mathcal{O}(\log n)\).
- Insertion like in binary search tree.Balancing via recursion from node to the root. Maximal path lenght \(\mathcal{O}(\log n)\).
Insertion in an AVL-tree provides run time costs of \(\mathcal{O}(\log n)\).

\section*{Rotations}
case \(1.1 \operatorname{bal}(p)=-1 .{ }^{27}\)

\({ }^{27} p\) right son \(\Rightarrow \operatorname{bal}(p p)=+1, \operatorname{bal}(p)=-1\), double rotation right left

\section*{Deletion}

Case 1: Children of node \(n\) are both leaves Let \(p\) be parent node of \(n . \Rightarrow\) Other subtree has height \(h^{\prime}=0,1\) or 2 .

■ \(h^{\prime}=1\) : Adapt \(\operatorname{bal}(p)\).
\(\square h^{\prime}=0:\) Adapt \(\operatorname{bal}(p)\). Call upout (p).
- \(h^{\prime}=2\) : Rebalanciere des Teilbaumes. Call upout (p).


\section*{Deletion}

Case 2: one child \(k\) of node \(n\) is an inner node
■ Replace \(n\) by \(k\). upout(k)


\section*{Deletion}

Case 3: both children of node \(n\) are inner nodes
■ Replace \(n\) by symmetric successor. upout (k)
■ Deletion of the symmetric successor is as in case 1 or 2.

\section*{upout (p)}

Let \(p p\) be the parent node of \(p\).
(a) \(p\) left child of \(p p\)
1. \(\operatorname{bal}(p p)=-1 \Rightarrow \operatorname{bal}(p p) \leftarrow 0\). upout \((\mathrm{pp})\)
2. \(\operatorname{bal}(p p)=0 \Rightarrow \operatorname{bal}(p p) \leftarrow+1\).
3. \(\operatorname{bal}(p p)=+1 \Rightarrow\) next slides.
(b) \(p\) right child of \(p p\) : Symmetric cases exchanging +1 and -1 .

\section*{upout (p)}

Case (a).3: \(\operatorname{bal}(p p)=+1\). Let \(q\) be brother of \(p\) (a).3.1: \(\operatorname{bal}(q)=0 .{ }^{28}\)


\footnotetext{
\({ }^{28}(\mathrm{~b})\).3.1: \(\operatorname{bal}(p p)=-1, \operatorname{bal}(q)=-1\), Right rotation
}

\section*{upout (p)}

Case (a).3: \(\operatorname{bal}(p p)=+1\). (a).3.2: \(\operatorname{bal}(q)=+1 .{ }^{29}\)

plus upout (r).

\footnotetext{
\({ }^{29}(\mathrm{~b}) .3 .2: \operatorname{bal}(p p)=-1, \operatorname{bal}(q)=+1\), Right rotation+upout
}

\section*{Conclusion}
- AVL trees have worst-case asymptotic runtimes of \(\mathcal{O}(\log n)\) for searching, insertion and deletion of keys.
■ Insertion and deletion is relatively involved and an overkill for really small problems.

\section*{upout (p)}

Case (a).3: \(\operatorname{bal}(p p)=+1\). (a).3.3: \(\operatorname{bal}(q)=-1 .{ }^{30}\)

plus upout(r).
\({ }^{30}(\mathrm{~b}) .3 .3: \operatorname{bal}(p p)=-1, \operatorname{bal}(q)=-1\), left-right rotation + upout
18.5 Appendix

Derivation of some mathemmatical formulas

\section*{[Fibonacci Numbers: closed form]}

Closed form of the Fibonacci numbers: computation via generation functions:
1. Power series approach
\[
f(x):=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}
\]

\section*{[Fibonacci Numbers: closed form]}
3. Thus:
\[
\begin{aligned}
& f(x) \cdot\left(1-x-x^{2}\right)=x . \\
\Leftrightarrow & f(x)=\frac{x}{1-x-x^{2}}=-\frac{x}{x^{2}+x-1}
\end{aligned}
\]
with the roots \(-\phi\) and \(-\hat{\phi}\) of \(x^{2}+x-1\),
\[
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6, \quad \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.6 .
\]
it holds that \(\phi \cdot \hat{\phi}=-1\) and thus
\[
f(x)=-\frac{x}{(x+\phi) \cdot(x+\hat{\phi})}=\frac{x}{(1-\phi x) \cdot(1-\hat{\phi} x)}
\]

\section*{[Fibonacci Numbers: closed form]}
2. For Fibonacci Numbers it holds that \(F_{0}=0, F_{1}=1\), \(F_{i}=F_{i-1}+F_{i-2} \forall i>1\). Therefore:
\[
\begin{aligned}
f(x) & =x+\sum_{i=2}^{\infty} F_{i} \cdot x^{i}=x+\sum_{i=2}^{\infty} F_{i-1} \cdot x^{i}+\sum_{i=2}^{\infty} F_{i-2} \cdot x^{i} \\
& =x+x \sum_{i=2}^{\infty} F_{i-1} \cdot x^{i-1}+x^{2} \sum_{i=2}^{\infty} F_{i-2} \cdot x^{i-2} \\
& =x+x \sum_{i=0}^{\infty} F_{i} \cdot x^{i}+x^{2} \sum_{i=0}^{\infty} F_{i} \cdot x^{i} \\
& =x+x \cdot f(x)+x^{2} \cdot f(x) .
\end{aligned}
\]

\section*{[Fibonacci Numbers: closed form]}
4. It holds that:
\[
(1-\hat{\phi} x)-(1-\phi x)=\sqrt{5} \cdot x
\]

Damit:
\[
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}} \frac{(1-\hat{\phi} x)-(1-\phi x)}{(1-\phi x) \cdot(1-\hat{\phi} x)} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)
\end{aligned}
\]
[Fibonacci Numbers: closed form]
5. Power series of \(g_{a}(x)=\frac{1}{1-a \cdot x}(a \in \mathbb{R})\) :
\[
\frac{1}{1-a \cdot x}=\sum_{i=0}^{\infty} a^{i} \cdot x^{i}
\]
E.g. Taylor series of \(g_{a}(x)\) at \(x=0\) or like this: Let \(\sum_{i=0}^{\infty} G_{i} \cdot x^{i}\) a power series of \(g\). By the identity \(g_{a}(x)(1-a \cdot x)=1\) it holds that for all \(x\) (within the radius of convergence)
\[
1=\sum_{i=0}^{\infty} G_{i} \cdot x^{i}-a \cdot \sum_{i=0}^{\infty} G_{i} \cdot x^{i+1}=G_{0}+\sum_{i=1}^{\infty}\left(G_{i}-a \cdot G_{i-1}\right) \cdot x^{i}
\]

For \(x=0\) it follows \(G_{0}=1\) and for \(x \neq 0\) it follows then that \(G_{i}=a \cdot G_{i-1} \Rightarrow\) \(G_{i}=a^{i}\).

\section*{[Fibonacci Numbers: closed form]}
6. Fill in the power series:
\[
\begin{aligned}
f(x) & =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\phi x}-\frac{1}{1-\hat{\phi} x}\right)=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{\infty} \phi^{i} x^{i}-\sum_{i=0}^{\infty} \hat{\phi}^{i} x^{i}\right) \\
& =\sum_{i=0}^{\infty} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) x^{i}
\end{aligned}
\]

Comparison of the coefficients with \(f(x)=\sum_{i=0}^{\infty} F_{i} \cdot x^{i}\) yields
\[
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)
\]

\section*{Quadtree}

A quad tree is a tree of order 4.

... and as such it is not particularly interesting except when it is used for ...

\section*{Quadtree - Interpretation und Nutzen}

Separation of a two-dimensional range into 4 equally sized parts.

[analogously in three dimensions with an octtree (tree of order 8)]

\section*{Idea}

■ Many objects: \(n^{2}\) detections (naively)Improvement?Obviously: collision detection not required for objects far away from each other
■ What is „far away"?
- Grid \((m \times m)\)
- Collision detection per grid cell


\section*{Example 1: Collision Detection}

■ Objects in the 2D-plane, e.g. particle simulation on the screen.
- Goal: collision detection

- A grid often helps, but not always

■ Improvement?
■ More finegrained grid?
■ Too many grid cells!


\section*{Adaptive Grids}

■ A grid often helps, but not always
■ Improvement?
- Adaptively refine grid

■ Quadtree!


\section*{Algorithm: Collision Detection}
- Run through the quadtree in a recursive way. For each node test collision with all objects contained in the same or (recursively) contained nodes.

\section*{Algorithm: Insertion}

■ Quadtree starts with a single node
- Objects are added to the node. When a node contains too many objects, the node is split.
- Objects that are on the boundary of the quadtree remain in the higher level node.


\section*{Example 2: Image Segmentation}

(Possible applications: compression, denoising, edge detection)

\section*{Quadtree on Monochrome Bitmap}


Similar procedure to generate the quadtree: split nodes recursively until each node only contains pixels of the same color.

\section*{Piecewise Constant Approximation}
(Grey-value) Image \(z \in \mathbb{R}^{S}\) on pixel indices \(S\). \({ }^{31}\)
Rectangle \(r \subset S\).
Goal: determine
\[
\arg \min _{x \in r} \sum_{s \in r}\left(z_{s}-x\right)^{2}
\]

Solution: the arithmetic mean \(\mu_{r}=\frac{1}{|r|} \sum_{s \in r} z_{s}\)

\section*{Quadtree with Approximation}

When there are more than two color values, the quadtree can get very large. \(\Rightarrow\) Compressed representation: approximate the image piecewise constant on the rectangles of a quadtree.


\section*{Intermediate Result}

The (w.r.t. mean squared error) best approximation
\[
\mu_{r}=\frac{1}{|r|} \sum_{s \in r} z_{s}
\]
and the corresponding error
\[
\sum_{s \in r}\left(z_{s}-\mu_{r}\right)^{2}=:\left\|z_{r}-\mu_{r}\right\|_{2}^{2}
\]
can be computed quickly after a \(\mathcal{O}(|S|)\) tabulation: prefix sums!

\footnotetext{
\({ }^{31}\) we assume that \(S\) is a square with side length \(2^{k}\) for some \(k \geq 0\)
}

\section*{Which Quadtree?}

\section*{Conflict}

■ As close as possible to the data \(\Rightarrow\) small rectangles, large quadtree . Extreme case: one node per pixel. Approximation = original
■ Small amount of nodes \(\Rightarrow\) large rectangles, small quadtree Extreme case: a single rectangle. Approximation = a single grey value

\section*{Regularisation}

Let \(T\) be a quadtree over a rectangle \(S_{T}\) and let \(T_{l l}, T_{l r}, T_{u l}, T_{u r}\) be the four possible sub-trees and
\[
\widehat{H}_{\gamma}(T, z):=\min _{T} \gamma \cdot|L(T)|+\sum_{r \in L(T)}\left\|z_{r}-\mu_{r}\right\|_{2}^{2}
\]

\section*{Extreme cases:}
\(\gamma=0 \Rightarrow\) original data;
\(\gamma \rightarrow \infty \Rightarrow\) a single rectangle

\section*{Which Quadtree?}

Idea: choose between data fidelity and complexity with a regularisation parameter \(\gamma \geq 0\)
Choose quadtree \(T\) with leaves \({ }^{32} L(T)\) such that it minimizes the following function
\[
H_{\gamma}(T, z):=\gamma \cdot \underbrace{|L(T)|}_{\text {Number of Leaves }}+\underbrace{\sum_{r \in L(T)}\left\|z_{r}-\mu_{r}\right\|_{2}^{2}}_{\text {Cummulative approximation error of all leaves }}
\]
\({ }^{32}\) here: leaf: node with null-children

\section*{Observation: Recursion}

■ If the (sub-)quadtree \(T\) represents only one pixel, then it cannot be split and it holds that
\[
\widehat{H}_{\gamma}(T, z)=\gamma
\]

■ Let, otherwise,
\[
\begin{aligned}
& M_{1}:=\gamma+\left\|z_{S_{T}}-\mu_{S_{T}}\right\|_{2}^{2} \\
& M_{2}:=\widehat{H}_{\gamma}\left(T_{l l}, z\right)+\widehat{H}_{\gamma}\left(T_{l r}, z\right)+\widehat{H}_{\gamma}\left(T_{u l}, z\right)+\widehat{H}_{\gamma}\left(T_{u r}, z\right)
\end{aligned}
\]
then
\[
\widehat{H}_{\gamma}(T, z)=\min \{\underbrace{M_{1}(T, \gamma, z)}_{\text {no split }}, \underbrace{M_{2}(T, \gamma, z)}_{\text {split }}\}
\]

\section*{Algorithmus: Minimize \((z, r, \gamma)\)}

Input: Image data \(z \in \mathbb{R}^{S}\), rectangle \(r \subset S\), regularization \(\gamma>0\)
Output: \(\min _{T} \gamma|L(T)|+\left\|z-\mu_{L(T)}\right\|_{2}^{2}\)
if \(|r|=0\) then return 0
\(m \leftarrow \gamma+\sum_{s \in r}\left(z_{s}-\mu_{r}\right)^{2}\)
if \(|r|>1\) then
Split \(r\) into \(r_{l l}, r_{l r}, r_{u l}, r_{u r}\)
\(m_{1} \leftarrow \operatorname{Minimize}\left(z, r_{l l}, \gamma\right) ; m_{2} \leftarrow \operatorname{Minimize}\left(z, r_{l r}, \gamma\right)\)
\(m_{3} \leftarrow \operatorname{Minimize}\left(z, r_{u l}, \gamma\right) ; m_{4} \leftarrow \operatorname{Minimize}\left(z, r_{u r}, \gamma\right)\)
\(m^{\prime} \leftarrow m_{1}+m_{2}+m_{3}+m_{4}\)
else
\(m^{\prime} \leftarrow \infty\)
if \(m^{\prime}<m\) then \(m \leftarrow m^{\prime}\)
return \(m\)

\section*{Analysis}

The minimization algorithm over dyadic partitions (quadtrees) takes \(\mathcal{O}(|S| \log |S|)\) steps.

Extensions: Affine Regression + Wedgelets


\section*{Other ideas}
no quadtree: hierarchical one-dimensional modell (requires dynamic programming)


Fibonacci Numbers

\[
F_{n}:= \begin{cases}n & \text { if } n<2 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
\]

Analysis: why ist the recursive algorithm so slow?

\section*{20. Dynamic Programming I}

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Fibonacci, Rod Cutting, Longest Ascending Subsequence, Longest Common Subsequence, Edit Distance, Matrix Chain Multiplication (Strassen)
[Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

\section*{Algorithm FibonacciRecursive ( \(n\) )}

\section*{Input: \(n \geq 0\)}

Output: \(n\)-th Fibonacci number
```

if $n<2$ then
$f \leftarrow n$
else
$f \leftarrow$ FibonacciRecursive $(n-1)+$ FibonacciRecursive $(n-2)$
return f

```

\section*{Analysis}
\(T(n)\) : Number executed operations.
- \(n=0,1: T(n)=\Theta(1)\)

■ \(n \geq 2: T(n)=T(n-2)+T(n-1)+c\). \(T(n)=T(n-2)+T(n-1)+c \geq 2 T(n-2)+c \geq 2^{n / 2} c^{\prime}=(\sqrt{2})^{n} c^{\prime}\)

Algorithm is exponential in \(n\).

\section*{Memoization}

Memoization (sic) saving intermediate results.
■ Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
■ If an intermediate result exists then it is used.
■ Otherwise the algorithm is executed and the result is saved accordingly.

\section*{Reason (visual)}


Nodes with same values are evaluated (too) often.

\section*{Memoization with Fibonacci}


Rechteckige Knoten wurden bereits ausgewertet.

\section*{Algorithm FibonacciMemoization(n)}

Input: \(n \geq 0\)
Output: \(n\)-th Fibonacci number
```

f $n \leq 2$ then
$\bar{f} \leftarrow 1$
else if $\exists \mathrm{memo}[n]$ then
$f \leftarrow \operatorname{memo}[n]$
else
$f \leftarrow$ FibonacciMemoization $(n-1)+$ FibonacciMemoization $(n-2)$
memo $[n] \leftarrow f$

```
return \(f\)

\section*{Looking closer ...}
... the algorithm computes the values of \(F_{1}, F_{2}, F_{3}, \ldots\) in the top-down approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic programming.

\section*{Analysis}

Computational complexity:
\[
T(n)=T(n-1)+c=\ldots=\mathcal{O}(n)
\]
because after the call to \(f(n-1), f(n-2)\) has already been computed. A different argument: \(f(n)\) is computed exactly once recursively for each \(n\). Runtime costs: \(n\) calls with \(\Theta(1)\) costs per call \(n \cdot c \in \Theta(n)\). The recursion vanishes from the running time computation.
Algorithm requires \(\Theta(n)\) memory. \({ }^{33}\)
\({ }^{33}\) But the naive recursive algorithm also requires \(\Theta(n)\) memory implicitly.

\section*{Algorithm FibonacciBottomUp(n)}

Input: \(n \geq 0\)
Output: \(n\)-th Fibonacci number
\(F[1] \leftarrow 1\)
\(F[2] \leftarrow 1\)
for \(i \leftarrow 3, \ldots, n\) do
\(F[i] \leftarrow F[i-1]+F[i-2]\)
return \(F[n]\)

\section*{Dynamic Programming: Idea}

Divide a complex problem into a reasonable number of sub-problems
- The solution of the sub-problems will be used to solve the more complex problemIdentical problems will be computed only once

\section*{Dynamic Programming: Description}
1. Use a DP-table with information to the subproblems.

Dimension of the entries? Semantics of the entries?
2. Computation of the base cases

Which entries do not depend on others?
3. Determine computation order.

In which order can the entries be computed such that dependencies are fulfilled?
4. Read-out the solution

How can the solution be read out from the table?
Runtime (typical) \(=\) number entries of the table times required operations per entry.

\section*{Dynamic Programming Consequence}

Identical problems will be computed only once
\(\Rightarrow\) Results are saved


\section*{Dynamic Programing: Description with the example}
```

Dimension of the table? Semantics of the entries?
n\times1 table. nth entry contains nth Fibonacci number.
Which entries do not depend on other entries?
Values }\mp@subsup{F}{1}{}\mathrm{ and }\mp@subsup{F}{2}{}\mathrm{ can be computed easily and independently.
Computation order?
Fi}\mathrm{ with increasing i
Reconstruction of a solution?
F

```
\(n \times 1\) table. \(n\)th entry contains \(n\)th Fibonacci number.
Which entries do not depend on other entries?
Values \(F_{1}\) and \(F_{2}\) can be computed easily and independently.
Computation order?
\(F_{i}\) with increasing \(i\).
Reconstruction of a solution?
\(F_{n}\) ist die \(n\)-te Fibonacci-Zahl.
2.
3.
4.

\section*{Dynamic Programming = Divide-And-Conquer?}

■ In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
■ Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
■ DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
■ In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

\section*{Rod Cutting: Example}


Possibilities to cut a rod of length 4 (without permutations)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Length & 0 & 1 & 2 & 3 & 4 \\
\hline Price & 0 & 2 & 3 & 8 & 9 \\
\hline
\end{tabular}\(\Rightarrow\) Best cut: \(3+1\) with value 10.

\section*{Rod Cutting}

■ Rods (metal sticks) are cut and sold.
\(\square\) Rods of length \(n \in \mathbb{N}\) are available. A cut does not provide any costs.
\(■\) For each length \(l \in \mathbb{N}, l \leq n\) known is the value \(v_{l} \in \mathbb{R}^{+}\)
■ Goal: cut the rods such (into \(k \in \mathbb{N}\) pieces) that
\[
\sum_{i=1}^{k} v_{l_{i}} \text { is maximized subject to } \sum_{i=1}^{k} l_{i}=n \text {. }
\]

\section*{Wie findet man den DP Algorithms}
0. Exact formulation of the wanted solution
1. Define sub-problems (and compute the cardinality)
2. Guess / Enumerate (and determine the running time for guessing)
3. Recursion: relate sub-problems
4. Memoize / Tabularize. Determine the dependencies of the sub-problems
5. Solve the problem Running time \(=\) \#sub-problems \(\times\) time \(/\) sub-problem

\section*{Structure of the problem}

Wanted: \(r_{n}=\) maximal value of rod (cut or as a whole) with length \(n\).
sub-problems: maximal value \(r_{k}\) for each \(0 \leq k<n\)
Guess the length of the first piece
Recursion
\[
\begin{aligned}
& r_{k}=\max \left\{v_{i}+r_{k-i}: 0<i \leq k\right\}, \quad k>0 \\
& r_{0}=0
\end{aligned}
\]
4. Dependency: \(r_{k}\) depends (only) on values \(v_{i}, 1 \leq i \leq k\) and the optimal cuts \(r_{i}, i<k\)
5. Solution in \(r_{n}\)

\section*{Recursion Tree}


\section*{Algorithm RodCut \((v, n)\)}

Input: \(n \geq 0\), Prices \(v\)
Output: best value
\(q \leftarrow 0\)
if \(n>0\) then
for \(i \leftarrow 1, \ldots, n\) do
\(q \leftarrow \max \left\{q, v_{i}+\operatorname{RodCut}(v, n-i)\right\} ;\)
return \(q\)
Running time \(T(n)=\sum_{i=0}^{n-1} T(i)+c \quad \Rightarrow^{34} \quad T(n) \in \Theta\left(2^{n}\right)\)

\footnotetext{
\({ }^{34} T(n)=T(n-1)+\sum_{i=0}^{n-2} T(i)+c=T(n-1)+(T(n-1)-c)+c=2 T(n-1) \quad(n>0)\)
}

\section*{Algorithm RodCutMemoized \((m, v, n)\)}

Input: \(n \geq 0\), Prices \(v\), Memoization Table \(m\)
Output: best value
\(q \leftarrow 0\)
if \(n>0\) then
if \(\exists m[n]\) then
\(q \leftarrow m[n]\)
else
for \(i \leftarrow 1, \ldots, n\) do
\(L q \leftarrow \max \left\{q, v_{i}+\operatorname{RodCutMemoized}(m, v, n-i)\right\} ;\)
\(m[n] \leftarrow q\)
return \(q\)
Running time \(\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)\)

\section*{Subproblem-Graph}

Describes the mutual dependencies of the subproblems

and must not contain cycles

\section*{Bottom-up Description with the example}
1. Dimension of the table? Semantics of the entries?
\(n \times 1\) table. \(n\)th entry contains the best value of a rod of length \(n\).
Which entries do not depend on other entries?
2.

Value \(r_{0}\) is 0
3.

Computation order?
\(r_{i}, i=1, \ldots, n\).

4
Reconstruction of a solution?
\(r_{n}\) is the best value for the rod of length \(n\).

\section*{Construction of the Optimal Cut}
- During the (recursive) computation of the optimal solution for each \(k \leq n\) the recursive algorithm determines the optimal length of the first rod
- Store the lenght of the first rod in a separate table of length \(n\)

\section*{Rabbit!}

A rabbit sits on cite \((1,1)\) of an \(n \times n\) grid. It can only move to east or south. On each path way there is a number of carrots. How many carrots does the rabbit collect maximally?


\section*{Rabbit!}

Number of possible paths?
■ Choice of \(n-1\) ways to south out of \(2 n-2\) ways overal.

■
\[
\binom{2 n-2}{n-1} \in \Omega\left(2^{n}\right)
\]
\(\Rightarrow\) No chance for a naive algorithm


The path 100011
(1:to south, 0 : to east)

\section*{Graph of Subproblem Dependencies}


\section*{Bottom-up Description with the example}

Dimension of the table? Semantics of the entries?
1. Table \(T\) with size \(n \times n\). Entry at \(i, j\) provides the maximal number of carrots from \((i, j)\) to \((n, n)\).
2.
\[
\text { Value } T_{n, n} \text { is } 0
\]

Computation order?
3.
\(T_{i, j}\) with \(i=n \searrow 1\) and for each \(i: j=n \searrow 1\), (or vice-versa: \(j=n \searrow 1\) and for each \(j: i=n \searrow 1\) ).

Reconstruction of a solution?
4.

\footnotetext{
\(T_{1,1}\) provides the maximal number of carrots.
}

\section*{Longest Ascending Sequence (LAS)}


Connect as many as possible fitting ports without lines crossing.

\section*{First idea}

\section*{Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)}

Assumption: LAS \(L_{k}\) of \(A_{k}\) known for Now want to compute \(L_{k+1}\) for \(A_{k+1}\).
If \(a_{k+1}\) fits to \(L_{k}\), then \(L_{k+1}=L_{k} \oplus a_{k+1}\) ?
Counterexample \(A_{5}=(1,2,5,3,4)\). Let \(A_{3}=(1,2,5)\) with \(L_{3}=A_{3}\) and \(L_{4}=A_{3}\). Determine \(L_{5}\) from \(L_{4}\) ?
It does not work this way, we cannot infer \(L_{k+1}\) from \(L_{k}\).

\section*{Formally}

■ Consider Sequence \(A_{n}=\left(a_{1}, \ldots, a_{n}\right)\).
■ Search for a longest increasing subsequence of \(A_{n}\).
■ Examples of increasing subsequences: \((3,4,5)\), \((2,4,5,7),(3,4,5,7),(3,7)\).


Generalization: allow any numbers, even with duplicates (still only strictly increasing subsequences permitted). Example: \((2,3,3,3,5,1)\) with increasing subsequence \((2,3,5)\).

\section*{Second idea.}

Let \(L_{i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: a LAS \(L_{j}\) is known for each \(j \leq k\). Now compute LAS \(L_{k+1}\) for \(k+1\).
Look at all fitting \(L_{k+1}=L_{j} \oplus a_{k+1}(j \leq k)\) and choose a longest sequence. Counterexample: \(A_{5}=(1,2,5,3,4)\). Let \(A_{4}=(1,2,5,3)\) with \(L_{1}=(1)\), \(L_{2}=(1,2), L_{3}=(1,2,5), L_{4}=(1,2,5)\). Determine \(L_{5}\) from \(L_{1}, \ldots, L_{4}\) ? That does not work either: cannot infer \(L_{k+1}\) from only an arbitrary solution \(L_{j}\). We need to consider all LAS. Too many.

\section*{Third approach}

Let \(M_{n, i}=\) longest ascending subsequence of \(A_{i}(1 \leq i \leq n)\)
Assumption: the LAS \(M_{j}\) for \(A_{k}\), that end with smallest element are known for each of the lengths \(1 \leq j \leq k\).
Consider all fitting \(M_{k, j} \oplus a_{k+1}(j \leq k)\) and update the table of the LAS, that end with smallest possible element.

\section*{DP Table}

■ Idea: save the last element of the increasing sequence \(M_{k, j}\) at slot \(j\).Example: \(\begin{array}{lllllll}3 & 2 & 5 & 1 & 6 & 4\end{array}\)Problem: Table does not contain the subsequence, only the last value.
■ Solution: second table with the predecessors.

\section*{Third approach Example}
\begin{tabular}{ll}
\multicolumn{2}{c}{ Example: \(A=(1,1000,1001,4,5,2,6,7)\)} \\
\hline\(A\) & LAT \(M_{k,}\) \\
\hline 1 & \((1)\) \\
+1000 & \((1),(1,1000)\) \\
+1001 & \((1),(1,1000),(1,1000,1001)\) \\
+4 & \((1),(1,4),(1,1000,1001)\) \\
+5 & \((1),(1,4),(1,4,5)\) \\
+2 & \((1),(1,2),(1,4,5)\) \\
+6 & \((1),(1,2),(1,4,5),(1,4,5,6)\) \\
+7 & \((1),(1,2),(1,4,5),(1,4,5,6),(1,4,5,6,7)\) \\
\hline
\end{tabular}

\section*{Dynamic Programming Algorithm LAS}

\section*{Table dimension? Semantics?}
\begin{tabular}{lcccccc} 
Index & 1 & 2 & 3 & 4 & 5 & 6 \\
Wert & 3 & 2 & 5 & 1 & 6 & 4 \\
Predecessor & \(-\infty\) & \(-\infty\) & 2 & \(-\infty\) & 5 & 1
\end{tabular}
\[
\begin{array}{ccccccc}
\text { Index } & 0 & 1 & 2 & 3 & 4 & \ldots \\
\hline\left(L_{j}\right)_{j} & -\infty & 1 & 4 & 6 & \infty &
\end{array}
\]

Two tables \(T[0, \ldots, n]\) and \(V[1, \ldots, n]\)
\(T[j]\) : last Element of the increasing subequence \(M_{n, j}\) \(V[j]\) : Value of the predecessor of \(a_{j}\).
Start with \(T[0] \leftarrow-\infty, T[i] \leftarrow \infty \forall i>1\)
```

Computation of an entry

```
2. Entries in \(T\) sorted in ascending order. For each new entry \(a_{k}\) binary search for \(l\), such that \(T[l]<a_{k}<T[l+1]\). Set \(T[l+1] \leftarrow a_{k}\). Set \(V[k]=T[l]\).

\section*{Dynamic Programming algorithm LAS}
3.

\section*{Computation order}

Traverse the list anc compute \(T[k]\) and \(V[k]\) with ascending \(k\)
Reconstruction of a solution?
4. Search the largest \(l\) with \(T[l]<\infty . l\) is the last index of the LAS. Starting at \(l\) search for the index \(i<l\) such that \(V[l]=a_{i}, i\) is the predecessor of \(l\). Repeat with \(l \leftarrow i\) until \(T[l]=-\infty\)

\section*{Analysis}
- Computation of the table:

■ Initialization: \(\Theta(n)\) Operations
- Computation of the \(k\) th entry: binary search on positions \(\{1, \ldots, k\}\) plus constant number of assignments.
\[
\sum_{k=1}^{n}(\log k+\mathcal{O}(1))=\mathcal{O}(n)+\sum_{k=1}^{n} \log (k)=\Theta(n \log n)
\]

■ Reconstruction: traverse \(A\) from right to left: \(\mathcal{O}(n)\).
Overal runtime:
\[
\Theta(n \log n) .
\]

\section*{Minimal Editing Distance}

Wanted: cheapest character-wise transformation \(A_{n} \rightarrow B_{m}\) with costs
\begin{tabular}{l|c|c|c} 
operation & Levenshtein & LCS \(^{35}\) & general \\
\hline Insert \(c\) & 1 & 1 & \(\operatorname{ins}(c)\) \\
Delete \(c\) & 1 & 1 & \(\operatorname{del}(c)\) \\
Replace \(c \rightarrow c^{\prime}\) & \(\mathbb{1}\left(c \neq c^{\prime}\right)\) & \(\infty \cdot \mathbb{1}\left(c \neq c^{\prime}\right)\) & \(\operatorname{repl}\left(c, c^{\prime}\right)\) \\
\hline
\end{tabular}


\footnotetext{
\({ }^{35}\) Longest common subsequence - A special case of an editing problem
}

DP
0. \(E(n, m)=\) mimimum number edit operations (ED cost) \(a_{1 \ldots n} \rightarrow b_{1 \ldots m}\)
1. Subproblems \(E(i, j)=\) ED von \(a_{1 \ldots i} . b_{1 \ldots j}\). \#SP \(=n \cdot m\)
2. Guess

Costs \(\Theta\) (1)
- \(a_{1 . . i} \rightarrow a_{1 . . . i-1}\) (delete)
- \(a_{1 . . i} \rightarrow a_{1 \ldots . .} b_{j}\) (insert)
- \(a_{1 . . i} \rightarrow a_{1 \ldots i-1} b_{j}\) (replace)
3. Rekursion
\[
E(i, j)=\min \left\{\begin{array}{l}
\operatorname{del}\left(a_{i}\right)+E(i-1, j) \\
\operatorname{ins}\left(b_{j}\right)+E(i, j-1) \\
\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)
\end{array}\right.
\]

\section*{Example (Levenshtein Distance)}
\[
E[i, j] \leftarrow \min \left\{E[i-1, j]+1, E[i, j-1]+1, E[i-1, j-1]+\mathbb{1}\left(a_{i} \neq b_{j}\right)\right\}
\]
\begin{tabular}{c|cccccc} 
& \(\emptyset\) & Z & I & E & G & E \\
\hline\(\emptyset\) & 0 & 1 & 2 & 3 & 4 & 5 \\
T & 1 & 1 & 2 & 3 & 4 & 5 \\
I & 2 & 2 & 1 & 2 & 3 & 4 \\
G & 3 & 3 & 2 & 2 & 2 & 3 \\
E & 4 & 4 & 3 & 2 & 3 & 2 \\
R & 5 & 5 & 4 & 3 & 3 & 3
\end{tabular}

Editing steps: from bottom right to top left, following the recursion. Bottom-Up description of the algorithm: exercise
4. Dependencies

\(\Rightarrow\) Computation from left top to bottom right. Row- or column-wise.
5. Solution in \(E(n, m)\)

\section*{Bottom-Up DP algorithm ED}

\section*{Dimension of the table? Semantics?}
1. Table \(E[0, \ldots, m][0, \ldots, n]\). \(E[i, j]\) : minimal edit distance of the strings \(\left(a_{1}, \ldots, a_{i}\right)\) and \(\left(b_{1}, \ldots, b_{j}\right)\)

\section*{Computation of an entry}
2. \(E[0, i] \leftarrow i \forall 0 \leq i \leq m, E[j, 0] \leftarrow i \forall 0 \leq j \leq n\). Computation of \(E[i, j]\) otherwise via \(E[i, j]=\min \left\{\operatorname{del}\left(a_{i}\right)+E(i-1, j), \operatorname{ins}\left(b_{j}\right)+E(i, j-1)\right.\), repl \(\left(a_{i}, b_{j}\right)+\) \(E(i-1, j-1)\}\)

\section*{Bottom-Up DP algorithm ED}
3.

Computation order
Rows increasing and within columns increasing (or the other way round).

\section*{Reconstruction of a solution?}

Start with \(j=m, i=n\). If \(E[i, j]=\operatorname{repl}\left(a_{i}, b_{j}\right)+E(i-1, j-1)\) then output
4. \(\quad a_{i} \rightarrow b_{j}\) and continue with \((j, i) \leftarrow(j-1, i-1)\); otherwise, if \(E[i, j]=\) \(\operatorname{del}\left(a_{i}\right)+E(i-1, j)\) output \(\operatorname{del}\left(a_{i}\right)\) and continue with \(j \leftarrow j-1\) otherwise, if \(E[i, j]=\operatorname{ins}\left(b_{j}\right)+E(i, j-1)\), continue with \(i \leftarrow i-1\). Terminate for \(i=0\) and \(j=0\).

DNA - Comparison (Star Trek)


\section*{Analysis ED}

■ Number table entries: \((m+1) \cdot(n+1)\).
- Constant number of assignments and comparisons each. Number steps: \(\mathcal{O}(m n)\)
■ Determination of solition: decrease \(i\) or \(j\). Maximally \(\mathcal{O}(n+m)\) steps. Runtime overal:
\[
\mathcal{O}(m n)
\]

\section*{DNA - Comparison}
- DNA consists of sequences of four different nucleotides Adenine Guanine Thymine Cytosine
■ DNA sequences (genes) thus can be described with strings of A, G, T and C.
- Possible comparison of two genes: determine the longest common subsequence

The longest common subsequence problem is a special case of the minimal edit distance problem.

\section*{Longest common subsequence}

\section*{Subsequences of a string:}

Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

\section*{Problem:}
- Input: two strings \(A=\left(a_{1}, \ldots, a_{m}\right), B=\left(b_{1}, \ldots, b_{n}\right)\) with lengths \(m>0\) and \(n>0\).
- Wanted: Longest common subsequecnes (LCS) of \(A\) and \(B\).

\section*{Recursive Procedure}

Assumption: solutions \(L(i, j)\) known for \(A[1, \ldots, i]\) and \(B[1, \ldots, j]\) for all \(1 \leq i \leq m\) and \(1 \leq j \leq n\), but not for \(i=m\) and \(j=n\).


Consider characters \(a_{m}, b_{n}\). Three possibilities:
1. \(A\) is enlarged by one whitespace. \(L(m, n)=L(m, n-1)\)
2. \(B\) is enlarged by one whitespace. \(L(m, n)=L(m-1, n)\)
3. \(L(m, n)=L(m-1, n-1)+\delta_{m n}\) with \(\delta_{m n}=1\) if \(a_{m}=b_{n}\) and \(\delta_{m n}=0\) otherwise

\section*{Longest Common Subsequence}

Examples:
\(\operatorname{LGT}(I G E L, K A T Z E)=E, \quad \operatorname{LGT}(T I G E R, Z I E G E)=I G E\)
Ideas to solve?


\section*{Recursion}
\[
L(m, n) \leftarrow \max \left\{L(m-1, n-1)+\delta_{m n}, L(m, n-1), L(m-1, n)\right\}
\] for \(m, n>0\) and base cases \(L(\cdot, 0)=0, L(0, \cdot)=0\).
\begin{tabular}{c|cccccc} 
& \(\emptyset\) & \(Z\) & I & E & G & E \\
\hline\(\emptyset\) & 0 & 0 & 0 & 0 & 0 & 0 \\
T & 0 & 0 & 0 & 0 & 0 & 0 \\
I & 0 & 0 & 1 & 1 & 1 & 1 \\
G & 0 & 0 & 1 & 1 & 2 & 2 \\
E & 0 & 0 & 1 & 2 & 2 & 3 \\
R & 0 & 0 & 1 & 2 & 2 & 3
\end{tabular}

\section*{Dynamic Programming algorithm LCS}

Dimension of the table? Semantics?
1. Table \(L[0, \ldots, m][0, \ldots, n]\). \(L[i, j]\) : length of a LCS of the strings \(\left(a_{1}, \ldots, a_{i}\right)\) and \(\left(b_{1}, \ldots, b_{j}\right)\)

Computation of an entry
2.
\(L[0, i] \leftarrow 0 \forall 0 \leq i \leq m, L[j, 0] \leftarrow 0 \forall 0 \leq j \leq n\). Computation of \(L[i, j]\) otherwise via \(L[i, j]=\max \left(L[i-1, j-1]+\delta_{i j}, L[i, j-1], L[i-1, j]\right)\).

\section*{Analysis LCS}

■ Number table entries: \((m+1) \cdot(n+1)\).
- Constant number of assignments and comparisons each. Number steps: \(\mathcal{O}(m n)\)
■ Determination of solition: decrease \(i\) or \(j\). Maximally \(\mathcal{O}(n+m)\) steps.
Runtime overal:
\[
\mathcal{O}(m n)
\]

\section*{Dynamic Programming algorithm LCS}
3.

\section*{Computation order}

Rows increasing and within columns increasing (or the other way round).
Reconstruction of a solution?
Start with \(j=m, i=n\). If \(a_{i}=b_{j}\) then output \(a_{i}\) and continue with
4. \((j, i) \leftarrow(j-1, i-1)\); otherwise, if \(L[i, j]=L[i, j-1]\) continue with \(j \leftarrow j-1\) otherwise, if \(L[i, j]=L[i-1, j]\) continue with \(i \leftarrow i-1\). Terminate for \(i=0\) or \(j=0\).

\section*{Matrix-Chain-Multiplication}

Task: Computation of the product \(A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}\) of matrices \(A_{1}, \ldots, A_{n}\). Matrix multiplication is associative, i.e. the order of evalution can be chosen arbitrarily
Goal: efficient computation of the product.
Assumption: multiplicaiton of an \((r \times s)\)-matrix with an \((s \times u)\)-matrix provides costs \(r \cdot s \cdot u\).

\section*{Does it matter?}


\section*{Recursion}
- Assume that the best possible computation of \(\left(A_{1} \cdot A_{2} \cdots A_{i}\right)\) and \(\left(A_{i+1} \cdot A_{i+2} \cdots A_{n}\right)\) is known for each \(i\).
■ Compute best \(i\), done.
\(n \times n\)-table \(M\). entry \(M[p, q]\) provides costs of the best possible bracketing \(\left(A_{p} \cdot A_{p+1} \cdots A_{q}\right)\).
\(M[p, q] \leftarrow \min _{p \leq i<q}(M[p, i]+M[i+1, q]+\) costs of the last multiplication \()\)

\section*{Analysis}

DP-table has \(n^{2}\) entries. Computation of an entry requires considering up to \(n-1\) other entries.
Overal runtime \(\mathcal{O}\left(n^{3}\right)\).

Readout the order from \(M\) : exercise!

\section*{Digression: matrix multiplication}

Consider the mutliplicaiton of two \(n \times n\) matrices.
Let
\[
\begin{aligned}
& A=\left(a_{i j}\right)_{1 \leq i, j \leq n}, B=\left(b_{i j}\right)_{1 \leq i, j \leq n}, C=\left(c_{i j}\right)_{1 \leq i, j \leq n}, \\
& C=A \cdot B
\end{aligned}
\]
then
\[
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
\]

Naive algorithm requires \(\Theta\left(n^{3}\right)\) elementary multiplications.

\section*{Divide and Conquer}

■ Assumption \(n=2^{k}\).
■ Number of elementary multiplications: \(M(n)=8 M(n / 2), M(1)=1\).
■ yields \(M(n)=8^{\log _{2} n}=n^{\log _{2} 8}=n^{3}\). No advantage \(\bigodot\)

\section*{Divide and Conquer}


\section*{Strassen's Matrix Multiplication}

■ Nontrivial observation by Strassen (1969): It suffices to compute the seven products
\(A=(e+h) \cdot(a+d), B=(g+h) \cdot a, C=e \cdot(b-d)\),
\(D=h \cdot(c-a), E=(e+f) \cdot d, F=(g-e) \cdot(a+b)\),
\(G=(f-h) \cdot(c+d)\). Denn:
\(e a+f c=A+D-E+G, e b+f d=C+E\),
\(g a+h c=B+D, g b+h d=A-B+C+F\)
- This yields \(M^{\prime}(n)=7 M(n / 2), M^{\prime}(1)=1\).

Thus \(M^{\prime}(n)=7^{\log _{2} n}=n^{\log _{2} 7} \approx n^{2.807}\).


■ Fastest currently known algorithm: \(\mathcal{O}\left(n^{2.37}\right)\)

\section*{Task}

\section*{21. Dynamic Programming II}

Subset sum problem, knapsack problem, greedy algorithm vs dynamic programming [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]


Partition the set of the "item" above into two set such that both sets have the same value.
A solution:


\section*{Subset Sum Problem}

Consider \(n \in \mathbb{N}\) numbers \(a_{1}, \ldots, a_{n} \in \mathbb{N}\).
Goal: decide if a selection \(I \subseteq\{1, \ldots, n\}\) exists such that
\[
\sum_{i \in I} a_{i}=\sum_{i \in\{1, \ldots, n\} \backslash I} a_{i} .
\]

\section*{Naive Algorithm}

Check for each bit vector \(b=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}\), if
\[
\sum_{i=1}^{n} b_{i} a_{i} \stackrel{?}{=} \sum_{i=1}^{n}\left(1-b_{i}\right) a_{i}
\]

Worst case: \(n\) steps for each of the \(2^{n}\) bit vectors \(b\). Number of steps: \(\mathcal{O}\left(n \cdot 2^{n}\right)\).

\section*{Algorithm with Partition}

■ Partition the input into two equally sized parts \(a_{1}, \ldots, a_{n / 2}\) and \(a_{n / 2+1}, \ldots, a_{n}\).
- Iterate over all subsets of the two parts and compute partial sum \(S_{1}^{k}, \ldots, S_{2^{n / 2}}^{k}(k=1,2)\).
■ Sort the partial sums: \(S_{1}^{k} \leq S_{2}^{k} \leq \cdots \leq S_{2^{n / 2}}^{k}\).
■ Check if there are partial sums such that \(S_{i}^{1}+S_{j}^{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=\) : \(h\)
- Start with \(i=1, j=2^{n / 2}\)
- If \(S_{i}^{1}+S_{j}^{2}=h\) then finished
- If \(S_{i}^{1}+S_{j}^{2}>h\) then \(j \leftarrow j-1\)

■ If \(S_{i}^{1}+S_{j}^{2}<h\) then \(i \leftarrow i+1\)

\section*{Analysis}

■ Generate partial sums for each part: \(\mathcal{O}\left(2^{n / 2} \cdot n\right)\).
■ Each sorting: \(\mathcal{O}\left(2^{n / 2} \log \left(2^{n / 2}\right)\right)=\mathcal{O}\left(n 2^{n / 2}\right)\).
■ Merge: \(\mathcal{O}\left(2^{n / 2}\right)\)
Overal running time
\[
\mathcal{O}\left(n \cdot 2^{n / 2}\right)=\mathcal{O}\left(n(\sqrt{2})^{n}\right)
\]

Substantial improvement over the naive method but still exponential!

\section*{Example}

Set \(\{1,6,2,3,4\}\) with value sum 16 has 32 subsets.
Partitioning into \(\{1,6\}\), \(\{2,3,4\}\) yields the following 12 subsets with value sums:
\begin{tabular}{ll|cc|ccccccc}
\multicolumn{8}{c|}{1,6} \\
\(\}\) & \(\{1\}\) & \(\{6\}\) & \(\{1,6\}\) & \(\}\) & \(\{2\}\) & \(\{3\}\) & \(\{4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\)
\end{tabular}\(\}\{2,3,4\}\)

\section*{Dynamic programming}

Task: let \(z=\frac{1}{2} \sum_{i=1}^{n} a_{i}\). Find a selection \(I \subset\{1, \ldots, n\}\), such that \(\sum_{i \in I} a_{i}=z\) DP-table: \([0, \ldots, n] \times[0, \ldots, z]\)-table \(T\) with boolean entries. \(T[k, s]\)
specifies if there is a selection \(I_{k} \subset\{1, \ldots, k\}\) such that \(\sum_{i \in I_{k}} a_{i}=s\)
Initialization: \(T[0,0]=\) true. \(T[0, s]=\) false for \(s>1\).
Computation:
\[
T[k, s] \leftarrow \begin{cases}T[k-1, s] & \text { if } s<a_{k} \\ T[k-1, s] \vee T\left[k-1, s-a_{k}\right] & \text { if } s \geq a_{k}\end{cases}
\]
for increasing \(k\) and then within \(k\) increasing \(s\).

\section*{Example}


Determination of the solution: if \(T[k, s]=T[k-1, s]\) then \(a_{k}\) unused and continue with \(T[k-1, s]\), otherwise \(a_{k}\) used and continue with \(T\left[k-1, s-a_{k}\right]\).

\section*{Explained}

The algorithm does not necessarily provide a polynomial run time. \(z\) is an number and not a quantity!
Input length of the algorithm \(\cong\) number bits to reasonably represent the data. With the number \(z\) this would be \(\zeta=\log z\).
Consequently the algorithm requires \(\mathcal{O}\left(n \cdot 2^{\zeta}\right)\) fundamental operations and has a run time exponential in \(\zeta\).
If, however, \(z\) is polynomial in \(n\) then the algorithm has polynomial run time in \(n\). This is called pseudo-polynomial.

\section*{That is mysterious}

The algorithm requires a number of \(\mathcal{O}(n \cdot z)\) fundamental operations. What is going on now? Does the algorithm suddenly have polynomial running time?

\section*{NP}

It is known that the subset-sum algorithm belongs to the class of NP-complete problems (and is thus NP-hard).
\(\mathbf{P}\) : Set of all problems that can be solved in polynomial time
NP: Set of all problems that can be solved Nondeterministically in Polynomial time.
Implications:
- NP contains P.
- Problems can be verified in polynomial time.

■ Under the not (yet?) proven assumption \({ }^{36}\) that \(N P \neq P\), there is no algorithm with polynomial run time for the problem considered above.

\footnotetext{
\({ }^{36}\) The most important unsolved question of theoretical computer science.
}

\section*{The knapsack problem}

We pack our suitcase with ...
- toothbrush
- dumbell set
- Toothbrush
- Air balloon
- Pocket knife
- identity card

■ dumbell set
- toothbrush
- coffe machine
- pocket knife
- identity card
- Uh oh - too heavy.

■ Uh oh - too heavy.
Aim to take as much as possible with us. But some things are more valuable than others!

\section*{Greedy heuristics}

Sort the items decreasingly by value per weight \(v_{i} / w_{i}\) : Permutation \(p\) with \(v_{p_{i}} / w_{p_{i}} \geq v_{p_{i+1}} / w_{p_{i+1}}\)
Add items in this order \(\left(I \leftarrow I \cup\left\{p_{i}\right\}\right)\), if the maximum weight is not exceeded.
That is fast: \(\Theta(n \log n)\) for sorting and \(\Theta(n)\) for the selection. But is it good?

\section*{Knapsack problem}

Given:
■ set of \(n \in \mathbb{N}\) items \(\{1, \ldots, n\}\).
- Each item \(i\) has value \(v_{i} \in \mathbb{N}\) and weight \(w_{i} \in \mathbb{N}\).
- Maximum weight \(W \in \mathbb{N}\).

■ Input is denoted as \(E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}\).
Wanted:
a selection \(I \subseteq\{1, \ldots, n\}\) that maximises \(\sum_{i \in I} v_{i}\) under \(\sum_{i \in I} w_{i} \leq W\).

\section*{Counterexample}
\[
\begin{array}{lll}
v_{1}=1 & w_{1}=1 & v_{1} / w_{1}=1 \\
v_{2}=W-1 & w_{2}=W & v_{2} / w_{2}=\frac{W-1}{W}
\end{array}
\]

Greed algorithm chooses \(\left\{v_{1}\right\}\) with value 1.
Best selection: \(\left\{v_{2}\right\}\) with value \(W-1\) and weight \(W\).
Greedy heuristics can be arbitrarily bad.

\section*{Dynamic Programming}

Partition the maximum weight.
Three dimensional table \(m[i, w, v]\) ("doable") of boolean values. \(m[i, w, v]=\) true if and only if
- A selection of the first \(i\) parts exists \((0 \leq i \leq n)\)

■ with overal weight \(w(0 \leq w \leq W)\) and
■ a value of at least \(v\left(0 \leq v \leq \sum_{i=1}^{n} v_{i}\right)\).

\section*{Observation}

The definition of the problem obviously implies that
■ for \(m[i, w, v]=\) true it holds:
\(m\left[i^{\prime}, w, v\right]=\) true \(\forall i^{\prime} \geq i\),
\(m\left[i, w^{\prime}, v\right]=\) true \(\forall w^{\prime} \geq w\),
\(m\left[i, w, v^{\prime}\right]=\) true \(\forall v^{\prime} \leq v\).
■ fpr \(m[i, w, v]=\) false it holds:
\(m\left[i^{\prime}, w, v\right]=\) false \(\forall i^{\prime} \leq i\),
\(m\left[i, w^{\prime}, v\right]=\) false \(\forall w^{\prime} \leq w\),
\(m\left[i, w, v^{\prime}\right]=\) false \(\forall v^{\prime} \geq v\).
This strongly suggests that we do not need a 3d table!

\section*{Computation of the DP table}

\section*{Initially}

■ \(m[i, w, 0] \leftarrow\) true für alle \(i \geq 0\) und alle \(w \geq 0\).
■ \(m[0, w, v] \leftarrow\) false für alle \(w \geq 0\) und alle \(v>0\).
Computation
\[
m[i, w, v] \leftarrow \begin{cases}m[i-1, w, v] \vee m\left[i-1, w-w_{i}, v-v_{i}\right] & \text { if } w \geq w_{i} \text { und } v \geq v_{i} \\ m[i-1, w, v] & \text { otherwise }\end{cases}
\]
increasing in \(i\) and for each \(i\) increasing in \(w\) and for fixed \(i\) and \(w\) increasing by \(v\).
Solution: largest \(v\), such that \(m[i, w, v]=\) true for some \(i\) and \(w\).

\section*{2d DP table}

Table entry \(t[i, w]\) contains, instead of boolean values, the largest \(v\), that can be achieved \({ }^{37}\) with
■ items \(1, \ldots, i(0 \leq i \leq n)\)
■ at maximum weight \(w(0 \leq w \leq W)\).

\footnotetext{
\({ }^{37}\) We could have followed a similar idea in order to reduce the size of the sparse table.
}

\section*{Computation}

\section*{Initially}

■ \(t[0, w] \leftarrow 0\) for all \(w \geq 0\).
We compute
\[
t[i, w] \leftarrow \begin{cases}t[i-1, w] & \text { if } w<w_{i} \\ \max \left\{t[i-1, w], t\left[i-1, w-w_{i}\right]+v_{i}\right\} & \text { otherwise }\end{cases}
\]
increasing by \(i\) and for fixed \(i\) increasing by \(w\).
Solution is located in \(t[n, w]\)

\section*{Analysis}

The two algorithms for the knapsack problem provide a run time in \(\Theta\left(n \cdot W \cdot \sum_{i=1}^{n} v_{i}\right)\) (3d-table) and \(\Theta(n \cdot W)\) (2d-table) and are thus both pseudo-polynomial, but they deliver the best possible result.
The greedy algorithm is very fast butmight deliver an arbitrarily bad result. Now we consider a solution between the two extremes.

\section*{Example}
\[
\begin{aligned}
& E=\{(2,3),(4,5),(1,1)\} \\
& \begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
\]

Reading out the solution: if \(t[i, w]=t[i-1, w]\) then item \(i\) unused and continue with \(t[i-1, w]\) otherwise used and continue with \(t\left[i-1, s-w_{i}\right]\).

\section*{22. Dynamic Programming III}

FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5], Optimal Search Tree [Ottman/Widmayer, Kap. 5.7]

\section*{Approximation}

Let \(\varepsilon \in(0,1)\) given. Let \(I_{\text {opt }}\) an optimal selection. No try to find a valid selection \(I\) with
\[
\sum_{i \in I} v_{i} \geq(1-\varepsilon) \sum_{i \in I_{\mathrm{opt}}} v_{i} .
\]

Sum of weights may not violate the weight limit.

\section*{Computation}

\section*{Initially}

■ \(g[0,0] \leftarrow 0\)
■ \(g[0, v] \leftarrow \infty\) (Value \(v\) cannot be achieved with 0 items.).

\section*{Computation}
\[
g[i, v] \leftarrow \begin{cases}g[i-1, v] & \text { falls } v<v_{i} \\ \min \left\{g[i-1, v], g\left[i-1, v-v_{i}\right]+w_{i}\right\} & \text { sonst. }\end{cases}
\]
incrementally in \(i\) and for fixed \(i\) increasing in \(v\).
Solution can be found at largest index \(v\) with \(g[n, v] \leq w\).

\section*{Different formulation of the algorithm}

Before: weight limit \(w \rightarrow\) maximal value \(v\)
Reversed: value \(v \rightarrow\) minimal weight \(w\)
\(\Rightarrow\) alternative table \(g[i, v]\) provides the minimum weight with
- a selection of the first \(i\) items \((0 \leq i \leq n)\) that

■ provide a value of exactly \(v\left(0 \leq v \leq \sum_{i=1}^{n} v_{i}\right)\).

\section*{Example}
\[
\begin{aligned}
& E=\{(2,3),(4,5),(1,1)\}
\end{aligned}
\]

Read out the solution: if \(g[i, v]=g[i-1, v]\) then item \(i\) unused and continue with \(g[i-1, v]\) otherwise used and continue with \(g\left[i-1, b-v_{i}\right]\).

\section*{The approximation trick}

Pseduopolynomial run time gets polynmial if the number of occuring values can be bounded by a polynom of the input length.
Let \(K>0\) be chosen appropriately. Replace values \(v_{i}\) by "rounded values" \(\tilde{v}_{i}=\left\lfloor v_{i} / K\right\rfloor\) delivering a new input \(E^{\prime}=\left(w_{i}, \tilde{v}_{i}\right)_{i=1 \ldots n}\).
Apply the algorithm on the input \(E^{\prime}\) with the same weight limit \(W\).

\section*{Idea}

\section*{Example \(K=5\)}

Values
\[
\begin{aligned}
& 1,2,3,4,5,6,7,8,9,10, \ldots, 98,99,100 \\
& \rightarrow \\
& 0,0,0,0,1,1,1,1,1,2, \ldots, 19,19,20
\end{aligned}
\]

Obviously less different values

\section*{Properties of the new algorithm}

■ Selection of items in \(E^{\prime}\) is also admissible in \(E\). Weight remains unchanged!
■ Run time of the algorithm is bounded by \(\mathcal{O}\left(n^{2} \cdot v_{\max } / K\right)\) \(\left(v_{\max }:=\max \left\{v_{i} \mid 1 \leq i \leq n\right\}\right)\)

How good is the approximation?

It holds that
\[
v_{i}-K \leq K \cdot\left\lfloor\frac{v_{i}}{K}\right\rfloor=K \cdot \tilde{v}_{i} \leq v_{i}
\]

Let \(I_{\text {opt }}^{\prime}\) be an optimal solution of \(E^{\prime}\). Then
\[
\begin{aligned}
\left(\sum_{i \in I_{\text {opt }}} v_{i}\right)-n \cdot K & \stackrel{\mid I_{\text {opt }} \leq n}{\leq} \sum_{i \in I_{\text {opt }}}\left(v_{i}-K\right) \leq \sum_{i \in I_{\text {opt }}}\left(K \cdot \tilde{v}_{i}\right)=K \sum_{i \in I_{\text {opt }}} \tilde{v}_{i} \\
& \leq \leq \tilde{v}_{i} \leq \sum_{i \in I_{\text {opt }}^{\prime}} v_{i} .
\end{aligned}
\]

\section*{Choice of \(K\)}

Requirement:
\[
\sum_{i \in I^{\prime}} v_{i} \geq(1-\varepsilon) \sum_{i \in I_{\mathrm{opt}}} v_{i}
\]

Inequality from above:
\[
\sum_{i \in I_{\mathrm{opt}}^{\prime}} v_{i} \geq\left(\sum_{i \in I_{\mathrm{opt}}} v_{i}\right)-n \cdot K
\]
thus: \(K=\varepsilon \frac{\sum_{i \in I_{\mathrm{opt}}} v_{i}}{n}\).

\section*{FPTAS}

Such a family of algorithms is called an approximation scheme: the choice of \(\varepsilon\) controls both running time and approximation quality.
The runtime \(\mathcal{O}\left(n^{3} / \varepsilon\right)\) is a polynom in \(n\) and in \(\frac{1}{\varepsilon}\). The scheme is therefore also called a FPTAS - Fully Polynomial Time Approximation Scheme

\section*{Choice of \(K\)}

Choose \(K=\varepsilon \frac{\sum_{i \in I_{\text {opt }}} v_{i}}{n}\). The optimal sum is unknown. Therefore we choose \(K^{\prime}=\varepsilon \frac{v_{\text {max }}}{n} .{ }^{38}\)
It holds that \(v_{\max } \leq \sum_{i \in I_{\text {opt }}} v_{i}\) and thus \(K^{\prime} \leq K\) and the approximation is even slightly better.
The run time of the algorithm is bounded by
\[
\mathcal{O}\left(n^{2} \cdot v_{\max } / K^{\prime}\right)=\mathcal{O}\left(n^{2} \cdot v_{\max } /\left(\varepsilon \cdot v_{\max } / n\right)\right)=\mathcal{O}\left(n^{3} / \varepsilon\right)
\]

\footnotetext{
\({ }^{38}\) We can assume that items \(i\) with \(w_{i}>W\) have been removed in the first place.
}

\section*{Optimal binary Search Trees}

Given: search probabilities \(p_{i}\) for each key \(k_{i}(i=1, \ldots, n)\) and \(q_{i}\) of each interval \(d_{i}(i=0, \ldots, n)\) between search keys of a binary search tree. \(\sum_{i=1}^{n} p_{i}+\sum_{i=0}^{n} q_{i}=1\).
Wanted: optimal search tree \(T\) with key depths depth( \(\cdot\) ), that minimizes the expected search costs
\[
\begin{aligned}
C(T) & =\sum_{i=1}^{n} p_{i} \cdot\left(\operatorname{depth}\left(k_{i}\right)+1\right)+\sum_{i=0}^{n} q_{i} \cdot\left(\operatorname{depth}\left(d_{i}\right)+1\right) \\
& =1+\sum_{i=1}^{n} p_{i} \cdot \operatorname{depth}\left(k_{i}\right)+\sum_{i=0}^{n} q_{i} \cdot \operatorname{depth}\left(d_{i}\right)
\end{aligned}
\]

\section*{Example}


Search tree with expected costs
2.8


Search tree with expected costs 2.75

\section*{Example}

\section*{Expected Frequencies}
\begin{tabular}{c|cccccc}
\(i\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & & 0.15 & 0.10 & 0.05 & 0.10 & 0.20 \\
\(q_{i}\) & 0.05 & 0.10 & 0.05 & 0.05 & 0.05 & 0.10
\end{tabular}

\section*{Structure of a optimal binary search tree}

■ Subtree with keys \(k_{i}, \ldots, k_{j}\) and intervals \(d_{i-1}, \ldots, d_{j}\) must be optimal for the respective sub-problem. \({ }^{39}\)
- Consider all subtrees with roots \(k_{r}\) and optimal subtrees for keys \(k_{i}, \ldots, k_{r-1}\) and \(k_{r+1}, \ldots, k_{j}\)

\footnotetext{
\({ }^{39}\) The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
}

\section*{Sub-trees for Searching}

empty left subtree

non-empty left and right subtrees

empty right subtree

\section*{Expected Search Costs}

Let \(e[i, j]\) be the costs of an optimal search tree with nodes \(k_{i}, \ldots, k_{j}\).
Base case \(e[i, i-1]\), expected costs \(d_{i-1}\)
Let \(w(i, j)=\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l}\).
If \(k_{r}\) is the root of an optimal search tree with keys \(k_{i}, \ldots, k_{j}\), then
\[
e[i, j]=p_{r}+(e[i, r-1]+w(i, r-1))+(e[r+1, j]+w(r+1, j))
\]
with \(w(i, j)=w(i, r-1)+p_{r}+w(r+1, j)\) :
\[
e[i, j]=e[i, r-1]+e[r+1, j]+w(i, j)
\]

\section*{Expected Search Costs}

Let depth \({ }_{T}(k)\) be the depth of a node \(k\) in the sub-tree \(T\). Let \(k\) be the root of subtrees \(T_{r}\) and \(T_{L_{r}}\) and \(T_{R_{r}}\) be the left and right sub-tree of \(T_{r}\). Then
\[
\begin{aligned}
\operatorname{depth}_{T}\left(k_{i}\right) & =\operatorname{depth}_{T_{L_{r}}}\left(k_{i}\right)+1,(i<r) \\
\operatorname{depth}_{T}\left(k_{i}\right) & =\operatorname{depth}_{T_{R_{r}}}\left(k_{i}\right)+1,(i>r)
\end{aligned}
\]

\section*{Dynamic Programming}
\[
e[i, j]= \begin{cases}q_{i-1} & \text { if } j=i-1 \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w[i, j]\} & \text { if } i \leq j\end{cases}
\]

\section*{Computation}

Tables \(e[1 \ldots n+1,0 \ldots n], w[1 \ldots n+1,0 \ldots m], r[1 \ldots n, 1 \ldots n]\) Initially ■ \(e[i, i-1] \leftarrow q_{i-1}, w[i, i-1] \leftarrow q_{i-1}\) for all \(1 \leq i \leq n+1\).
We compute
\[
\begin{aligned}
w[i, j] & =w[i, j-1]+p_{j}+q_{j} \\
e[i, j] & =\min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w[i, j]\} \\
r[i, j] & =\arg \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w[i, j]\}
\end{aligned}
\]
for intervals \([i, j]\) with increasing lengths \(l=1, \ldots, n\), each for \(i=1, \ldots, n-l+1\). Result in \(e[1, n]\), reconstruction via \(r\). Runtime \(\Theta\left(n^{3}\right)\).

\section*{23. Greedy Algorithms}

Fractional Knapsack Problem, Huffman Coding [Cormen et al, Kap. 16.1, 16.3]

\section*{Example}
\begin{tabular}{c|cccccc}
\(i\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(p_{i}\) & & 0.15 & 0.10 & 0.05 & 0.10 & 0.20 \\
\(q_{i}\) & 0.05 & 0.10 & 0.05 & 0.05 & 0.05 & 0.10
\end{tabular}
\(e\)
```

0 0.05
1 1 0.45
2 2 0.90 0.40
3 3
4 4
5 5 2.75

```

The Fractional Knapsack Problem
set of \(n \in \mathbb{N}\) items \(\{1, \ldots, n\}\) Each item \(i\) has value \(v_{i} \in \mathbb{N}\) and weight \(w_{i} \in \mathbb{N}\). The maximum weight is given as \(W \in \mathbb{N}\). Input is denoted as \(E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}\).
Wanted: Fractions \(0 \leq q_{i} \leq 1(1 \leq i \leq n)\) that maximise the sum \(\sum_{i=1}^{n} q_{i} \cdot v_{i}\) under \(\sum_{i=1}^{n} q_{i} \cdot w_{i} \leq W\).

\section*{Greedy heuristics}

Sort the items decreasingly by value per weight \(v_{i} / w_{i}\).
Assumption \(v_{i} / w_{i} \geq v_{i+1} / w_{i+1}\)
Let \(j=\max \left\{0 \leq k \leq n: \sum_{i=1}^{k} w_{i} \leq W\right\}\). Set
■ \(q_{i}=1\) for all \(1 \leq i \leq j\).
■ \(q_{j+1}=\frac{W-\sum_{i=1}^{j} w_{i}}{w_{j+1}}\).
- \(q_{i}=0\) for all \(i>j+1\).

That is fast: \(\Theta(n \log n)\) for sorting and \(\Theta(n)\) for the computation of the \(q_{i}\).

\section*{Correctness}
\[
\begin{aligned}
\sum_{i=k}^{n} r_{i}^{\prime} v_{i} & =r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n}\left(r_{i} w_{i}-\delta_{i}\right) \frac{v_{i}}{w_{i}} \\
& \geq r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}}-\delta_{i} \frac{v_{k}}{w_{k}} \\
& =r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}-x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}}=\sum_{i=k}^{n} r_{i} v_{i} .
\end{aligned}
\]

Thus \(\left(r_{i}^{\prime}\right)\) is also optimal. Iterative application of this idea generates the solution \(\left(q_{i}\right)\).

\section*{Correctness}

Assumption: optimal solution \(\left(r_{i}\right)(1 \leq i \leq n)\).
The knapsack is full: \(\sum_{i} r_{i} \cdot w_{i}=\sum_{i} q_{i} \cdot w_{i}=W\).
Consider \(k\) : smallest \(i\) with \(r_{i} \neq q_{i}\) Definition of greedy: \(q_{k}>r_{k}\). Let \(x=q_{k}-r_{k}>0\).
Construct a new solution \(\left(r_{i}^{\prime}\right): r_{i}^{\prime}=r_{i} \forall i<k . r_{k}^{\prime}=q_{k}\). Remove weight \(\sum_{i=k+1}^{n} \delta_{i}=x \cdot w_{k}\) from items \(k+1\) to \(n\). This works because
\(\sum_{i=k}^{n} r_{i} \cdot w_{i}=\sum_{i=k}^{n} q_{i} \cdot w_{i}\).

\section*{Huffman-Codes}

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

\section*{Example}

File consisting of 100.000 characters from the alphabet \(\{a, \ldots, f\}\).
\begin{tabular}{lcccccc} 
& a & b & c & d & e & f \\
\hline Frequency (Thousands) & 45 & 13 & 12 & 16 & 9 & 5 \\
Code word with fix length & 000 & 001 & 010 & 011 & 100 & 101 \\
Code word variable length & 0 & 101 & 100 & 111 & 1101 & 1100
\end{tabular}

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

\section*{Huffman-Codes}

■ Consider prefix-codes: no code word can start with a different codeword.
■ Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
■ Encoding: concatenation of the code words without stop character (difference to morsing).
affe \(\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101\)
- Decoding simple because prefixcode
\(0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow\) affe

\section*{Properties of the Code Trees}

■ An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let \(C\) be the set of all code words, \(f(c)\) the frequency of a codeword \(c\) and \(d_{T}(c)\) the depth of a code word in tree \(T\). Define the cost of a tree as
\[
B(T)=\sum_{c \in C} f(c) \cdot d_{T}(c) .
\]
(cost = number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

\section*{Code trees}


Code words with fixed length

\section*{Algorithm Idea}

Tree construction bottom up
■ Start with the set \(C\) of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.


Code words with variable length

\section*{Algorithm Huffman(C)}

Input: code words \(c \in C\)
Output: Root of an optimal code tree
\(n \leftarrow|C|\)
\(Q \leftarrow C\)
```

for $i=1$ to $n-1$ do
allocate a new node z
z.left $\leftarrow \operatorname{ExtractMin}(Q)$
z. right \leftarrow ExtractMin (Q)
z.freq $\leftarrow z$.left.freq $+z$.right.freq
$\operatorname{Insert}(Q, z)$
return ExtractMin (Q)
// extract word with minimal frequency.

```

\section*{The greedy approach is correct}

\section*{Theorem 21}

Let \(x, y\) be two symbols with smallest frequencies in \(C\) and let \(T^{\prime}\left(C^{\prime}\right)\) be an optimal code tree to the alphabet \(C^{\prime}=C-\{x, y\}+\{z\}\) with a new symbol \(z\) with \(f(z)=f(x)+f(y)\). Then the tree \(T(C)\) that is constructed from \(T^{\prime}\left(C^{\prime}\right)\) by replacing the node \(z\) by an inner node with children \(x\) and \(y\) is an optimal code tree for the alphabet \(C\).

\section*{Analyse}

Use a heap: build Heap in \(\mathcal{O}(n)\). Extract-Min in \(O(\log n)\) for \(n\) Elements. Yields a runtime of \(O(n \log n)\).

\section*{Proof}

It holds that
\(f(x) \cdot d_{T}(x)+f(y) \cdot d_{T}(y)=(f(x)+f(y)) \cdot\left(d_{T^{\prime}}(z)+1\right)=f(z) \cdot d_{T^{\prime}}(x)+f(x)+f(y)\) Thus \(B\left(T^{\prime}\right)=B(T)-f(x)-f(y)\).
Assumption: \(T\) is not optimal. Then there is an optimal tree \(T^{\prime \prime}\) with \(B\left(T^{\prime \prime}\right)<B(T)\). We assume that \(x\) and \(y\) are brothers in \(T^{\prime \prime}\). Let \(T^{\prime \prime \prime}\) be the tree where the inner node with children \(x\) and \(y\) is replaced by \(z\). Then it holds that \(B\left(T^{\prime \prime \prime}\right)=B\left(T^{\prime \prime}\right)-f(x)-f(y)<B(T)-f(x)-f(y)=B\left(T^{\prime}\right)\). Contradiction to the optimality of \(T^{\prime}\).
The assumption that \(x\) and \(y\) are brothers in \(T^{\prime \prime}\) can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of \(B\).

\section*{24. C++ advanced (IV): Exceptions}

\section*{Possibilities of Error Handling}
- None (inacceptable)
- Global error variable (flags)
- Functions returning Error Codes
- Objects that keep error status
- Exceptions

\section*{Some operations that can fail}
- Opening files for reading and writing
std::ifstream input("myfile.txt");
- Parsing
int value = std::stoi("12-8");
- Memory allocation
std::vector<double> data(ManyMillions);
- Invalid data
int \(\mathrm{a}=\mathrm{b} / \mathrm{x}\); // what if x is zero?

\section*{Global error variables}
- Common in older C-Code
- Concurrency is a problem.
- Error handling at good will. Requires extreme discipline, documentation and litters the code with seemingly unrelated checks.

\section*{Functions Returning Error Codes}

■ Every call to a function yields a result.
- Typical for large APIs (e.g. OS level). Often combined with global error code. \({ }^{40}\)

■ Caller can check the return value of a function in order to check the correct execution.

\footnotetext{
\({ }^{40}\) Global error code thread-safety provided via thread-local storage.
}

\section*{Error state Stored in Object}

■ Error state of an object stored internally in the object.
```

Example
int i;
std::cin >> i;
if (std::cin.good()){// success, continue
}

```

\section*{Functions Returning Error Codes}
```

Example
\#include <errno.h>
pf = fopen ("notexisting.txt", "r+");
if (pf == NULL) {
fprintf(stderr, "Error opening file: %s\n", strerror(errno));
}
else { // ...
fclose (pf);
}

```

\section*{Exceptions}
- Exceptions break the normal control flow
- Exceptions can be thrown (throw) and catched (catch)
- Exceptions can become effective accross function boundaries.

\section*{Example: throw exception}
```

```
class MyException{};
```

```
class MyException{};
void f(int i){
void f(int i){
    if (i==0) throw MyException();
    if (i==0) throw MyException();
    f(i-1);
    f(i-1);
}
}
int main()
int main()
{
{
    f(4);
    f(4);
    return 0; terminate called after throwing an instance of 'MyException'
    return 0; terminate called after throwing an instance of 'MyException'
} Aborted
```

} Aborted

```
```

}

```
```

}

```

\section*{Resources get closed}
```

class MyException{};
struct SomeResource{
~SomeResource(){std::cout << "closed resource\n";}
};
void f(int i){
if (i==O) throw MyException();
SomeResource x;
f(i-1);
}
int main(){
try{f(5);}
catch (MyException e){
std::cout << "exception caught\n";
}
}

```

\footnotetext{
closed resource
}
closed resource closed resource closed resource closed resource exception caught

\section*{Example: catch exception}
```

class MyException{};
void f(int i){
if (i==0) throw MyException();
f(i-1);
}
int main(){
try{
f(4);
}
catch (MyException e){
std::cout << "exception caught\n"; exception caught
}
}

```

\section*{When Exceptions?}

Exceptions are used for error handling exclusively.
- Use throw only in order to identify an error that violates the post-condition of a function or that makes the continued execution of the code impossible in an other way.
- Use catch only when it is clear how to handle the error (potentially re-throwing the exception)
- Do not use throw in order to show a programming error or a violation of invariants, use assert instead.
- Do not use exceptions in order to change the control flow. Throw is not a better return.

\section*{Why Exceptions?}

This:
```

int ret = f();
if (ret == 0) {
// ...
} else {
// ...code that handles the error...
}
may look better than this on a first sight:
try {
f();
// ...
} catch (std::exception\& e) {
// ...code that handles the error...
}

```

\section*{Why exceptions?}

Truth is that toy examples do not necessarily hit the point.
Using return-codes for error handling either pollutes the code with checks or the error handling is not done right in the first place.

\section*{Second Example}

Value type with guarantee: values in range provided.
```

template <typename T, T min, T max>
class Range{
public:
Range() {}
Range (const T\& v) : value (v) {
if (value < min) throw Underflow (); Error handling in the con-
if (value > max) throw Overflow ();
}
operator const T\& () const {return value;}
private:
T value;
};
\};

```

Example 1: Expression evaluation (expression parser from Introduction to programming)
Input: 1 + (3 * \(6 /(/ 7\) ))
Error is deap in the recursion hierarchy. How to produce a meaningful error message (and continue execution)? Would have to pass error code over recursion steps.

\section*{That's why}

\section*{Types of Exceptions, Hierarchical}
class RangeException \{\};
class Overflow : public RangeException \{\};
class Underflow : public RangeException \{\}; class DivisionByZero: public RangeException \{\}; class FormatError: public RangeException \{\};

\section*{Operators}
```

template <typename T, T min, T max>
Range<T, min, max> operator/ (const Range<T, min, max>\& a,
const Range<T, min, max>\& b){
if (b == 0) throw DivisionByZero();
return T (a) * T(b);
}
template <typename T, T min, T max>
std::istream\& operator >> (std::istream\& is, Range<T, min, max>\& a){
T value;
if (!(is >> value)) throw FormatError(); Error handling in the opera-
a = value; tor
return is;
}

```

\section*{25. Graphs}

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting , Reflexive transitive closure, Connected components [Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22]

\section*{Königsberg 1736}


\section*{[Multi]Graph}


\section*{Cycles}

■ Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
■ Euler (1736): no.
- Such a cycle is called Eulerian path.

■ Eulerian path \(\Leftrightarrow\) each node provides an even number of edges (each node is of an even degree).
" \(\Rightarrow\) " is straightforward, " \(\Leftarrow\) " ist a bit more difficult but


\section*{Notation}

undirected
\[
\begin{aligned}
V= & \{1,2,3,4,5\} \\
E= & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}, \\
& \{2,5\},\{3,4\},\{3,5\},\{4,5\}\}
\end{aligned}
\]

directed
\[
\begin{aligned}
V & =\{1,2,3,4,5\} \\
E & =\{(1,3),(2,1),(2,5),(3,2),
\end{aligned}
\]
\[
(3,4),(4,2),(4,5),(5,3)\}
\]

\section*{Notation}

A directed graph consists of a set \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) of nodes (Vertices) and a set \(E \subseteq V \times V\) of Edges. The same edges may not be contained more than once.

loop

\section*{Notation}

An undirected graph \(G=(V, E)\) without loops where \(E\) comprises all edges between pairwise different nodes is called complete.

a complete undirected graph

\section*{Notation}

An undirected graph consists of a set \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) of nodes \(a\) and a set \(E \subseteq\{\{u, v\} \mid u, v \in V\}\) of edges. Edges may bot be contained more than once. \({ }^{41}\)

undirected graph

\footnotetext{
\({ }^{41}\) As opposed to the introductory example - it is then called multi-graph.
}

\section*{Notation}

A graph where \(V\) can be partitioned into disjoint sets \(U\) and \(W\) such that each \(e \in E\) provides a node in \(U\) and a node in \(W\) is called bipartite.


\section*{Notation}

A weighted graph \(G=(V, E, c)\) is a graph \(G=(V, E)\) with an edge weight function \(c: E \rightarrow \mathbb{R} . c(e)\) is called weight of the edge \(e\).


\section*{Notation}

For directed graphs \(G=(V, E)\)
■ In-Degree: \(\operatorname{deg}^{-}(v)=\left|N^{-}(v)\right|\)
Out-Degree: \(\operatorname{deg}^{+}(v)=\left|N^{+}(v)\right|\)

\[
\operatorname{deg}^{-}(v)=3, \operatorname{deg}^{+}(v)=2 \quad \operatorname{deg}^{-}(w)=1, \operatorname{deg}^{+}(w)=1
\]

\section*{Notation}

For directed graphs \(G=(V, E)\)
■ \(w \in V\) is called adjacent to \(v \in V\), if \((v, w) \in E\)
■ Predecessors of \(v \in V: N^{-}(v):=\{u \in V \mid(u, v) \in E\}\).
Successors: \(N^{+}(v):=\{u \in V \mid(v, u) \in E\}\)


\section*{Notation}

For undirected graphs \(G=(V, E)\) :
■ \(w \in V\) is called adjacent to \(v \in V\), if \(\{v, w\} \in E\)
■ Neighbourhood of \(v \in V: N(v)=\{w \in V \mid\{v, w\} \in E\}\)
■ Degree of \(v: \operatorname{deg}(v)=|N(v)|\) with a special case for the loops: increase the degree by 2 .

\(\operatorname{deg}(v)=5\)

\(\operatorname{deg}(w)=2\)

Relationship between node degrees and number of edges

For each graph \(G=(V, E)\) it holds
1. \(\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|\), for \(G\) directed
2. \(\sum_{v \in V} \operatorname{deg}(v)=2|E|\), for \(G\) undirected.

\section*{Connectedness}

■ An undirected graph is called connected, if for eacheach pair \(v, w \in V\) there is a connecting path.
■ A directed graph is called strongly connected, if for each pair \(v, w \in V\) there is a connecting path.
- A directed graph is called weakly connected, if the corresponding undirected graph is connected.

\section*{Paths}

■ Path: a sequence of nodes \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) such that for each \(i \in\{1 \ldots k\}\) there is an edge from \(v_{i}\) to \(v_{i+1}\).
■ Length of a path: number of contained edges \(k\).
■ Weight of a path (in weighted graphs): \(\sum_{i=1}^{k} c\left(\left(v_{i}, v_{i+1}\right)\right)\) (bzw. \(\left.\sum_{i=1}^{k} c\left(\left\{v_{i}, v_{i+1}\right\}\right)\right)\)
■ Simple path: path without repeating vertices

\section*{Simple Observations}

■ generally: \(0 \leq|E| \in \mathcal{O}\left(|V|^{2}\right)\)
■ connected graph: \(|E| \in \Omega(|V|)\)
■ complete graph: \(|E|=\frac{|V| \cdot(|V|-1)}{2}\) (undirected)
■ Maximally \(|E|=|V|^{2}\) (directed), \(|E|=\frac{|V| \cdot(|V|+1)}{2}\) (undirected)

\section*{Cycles}

■ Cycle: path \(\left\langle v_{1}, \ldots, v_{k+1}\right\rangle\) with \(v_{1}=v_{k+1}\)
■ Simple cycle: Cycle with pairwise different \(v_{1}, \ldots, v_{k}\), that does not use an edge more than once.
■ Acyclic: graph without any cycles.
Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

\section*{Representation with a List}

Many graphs \(G=(V, E)\) with nodes \(v_{1}, \ldots, v_{n}\) provide much less than \(n^{2}\) edges. Representation with adjacency list: Array \(A[1], \ldots, A[n]\), \(A_{i}\) comprises a linked list of nodes in \(N^{+}\left(v_{i}\right)\).


Memory Consumption \(\Theta(|V|+|E|)\).

\section*{Representation using a Matrix}

Graph \(G=(V, E)\) with nodes \(v_{1} \ldots, v_{n}\) stored as adjacency matrix \(A_{G}=\left(a_{i j}\right)_{1 \leq i, j \leq n}\) with entries from \(\{0,1\} . a_{i j}=1\) if and only if edge from \(v_{i}\) to \(v_{j}\).

\[
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
\]

Memory consumption \(\Theta\left(|V|^{2}\right)\). \(A_{G}\) is symmetric, if \(G\) undirected.

\section*{Runtimes of simple Operations}
\begin{tabular}{lll} 
Operation & Matrix & List \\
\hline Find neighbours/successors of \(v \in V\) & \(\Theta(n)\) & \(\Theta\left(\mathrm{deg}^{+} v\right)\) \\
find \(v \in V\) without neighbour/successor & \(\Theta\left(n^{2}\right)\) & \(\Theta(n)\) \\
\((u, v) \in E ?\) & \(\Theta(1)\) & \(\Theta\left(\mathrm{deg}^{+} v\right)\) \\
Insert edge & \(\Theta(1)\) & \(\Theta(1)\) \\
Delete edge & \(\Theta(1)\) & \(\Theta\left(\mathrm{deg}^{+} v\right)\)
\end{tabular}

\section*{Depth First Search}


Colors

Conceptual coloring of nodes
■ white: node has not been discovered yet.
- grey: node has been discovered and is marked for traversal / being processed.
■ black: node was discovered and entirely processed.

\section*{Graph Traversal: Depth First Search}

Follow the path into its depth until nothing is left to visit.


Adjazenzliste


\section*{Algorithm Depth First visit DFS-Visit( \(G, v\) )}

Input: graph \(G=(V, E)\), Knoten \(v\).
v.color \(\leftarrow\) grey
foreach \(w \in N^{+}(v)\) do
if \(w . c o l o r=\) white then
\(\operatorname{DFS}-\operatorname{Visit}(G, w)\)
v.color \(\leftarrow\) black

Depth First Search starting from node \(v\). Running time (without recursion): \(\Theta\left(\mathrm{deg}^{+} v\right)\)

\section*{Algorithm Depth First visit DFS-Visit( \(G\) )}
```

Input: graph G=(V,E)
foreach v\inV do
v.color }\leftarrow\mathrm{ white
foreach v\inV do
if v.color = white then
DFS-Visit(G,v)

```

Depth First Search for all nodes of a graph. Running time: \(\Theta\left(|V|+\sum_{v \in V}\left(\operatorname{deg}^{+}(v)+1\right)\right)=\Theta(|V|+|E|)\).

\section*{nextWhiteSuccessor( \(v\) )}

\section*{nput: node \(v \in V\)}

Output: Successor node \(u\) of \(v\) with \(u\). color \(=\) white, null otherwise

\section*{foreach \(u \in N^{+}(v)\) do}

\section*{if \(u\). color \(=\) white then \\ return \(u\)}
return null

\section*{Iterative DFS-Visit \((G, v)\)}

Input: graph \(G=(V, E), v \in V\) with \(v . c o l o r=\) white
Stack \(S \leftarrow \emptyset\)
v.color \(\leftarrow\) grey; \(S\).push \((v) \quad / /\) invariant: grey nodes always on stack
while \(S \neq \emptyset\) do
\(w \leftarrow \operatorname{nextWhiteSuccessor}(v) \quad / /\) code: next slide
if \(w \neq\) null then
\(w\). color \(\leftarrow\) grey; \(S\). push \((w)\)
\(v \leftarrow w \quad / /\) work on \(w\). parent remains on the stack
else
\(v . c o l o r ~ \leftarrow\) black // no grey successors, \(v\) becomes black
if \(S \neq \emptyset\) then
\(v \leftarrow S . \operatorname{pop}()\)
if \(v\). color \(=\) grey then \(S\). push \((v) \quad\) Memory Consumption Stack \(\Theta(|V|)\)

Memory Consumption Stack \(\Theta(|V|)\)

\section*{Interpretation of the Colors}

When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases
■ White node: new tree edge
- Grey node: Zyklus ("back-egde")
- Black node: forward- / cross edge

\section*{Breadth First Search}


\section*{(Iterative) BFS-Visit( \(G, v\) )}

Input: graph \(G=(V, E)\)
Queue \(Q \leftarrow \emptyset\)
\(v\). color \(\leftarrow\) grey
enqueue \((Q, v)\)
while \(Q \neq \emptyset\) do
\[
w \leftarrow \text { dequeue }(Q)
\]
foreach \(c \in N^{+}(w)\) do
if \(c . c o l o r=\) white then
c.color \(\leftarrow\) grey
enqueue \((Q, c)\)
w.color \(\leftarrow\) black

Algorithm requires extra space of \(\mathcal{O}(|V|)\).

\section*{Graph Traversal: Breadth First Search}

Follow the path in breadth and only then descend into depth.


Adjazenzliste


Main program BFS-Visit( \(G\) )

Input: graph \(G=(V, E)\)
foreach \(v \in V\) do
v.color \(\leftarrow\) white
foreach \(v \in V\) do
if \(v\). .color \(=\) white then
BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: \(\Theta(|V|+|E|)\).

\section*{Topological Sorting}


\section*{(Counter-)Examples}


Cyclic graph: cannot be sorted topologically.


A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,!

\section*{Topological Sorting}

Topological Sorting of an acyclic directed graph \(G=(V, E)\) : Bijective mapping
\[
\text { ord }: V \rightarrow\{1, \ldots,|V|\}
\]
such that
\[
\operatorname{ord}(v)<\operatorname{ord}(w) \forall(v, w) \in E
\]

Identify \(i\) with Element \(v_{i}:=\operatorname{ord}^{1}(i)\). Topological sorting \(\hat{=}\left\langle v_{1}, \ldots, v_{|V|}\right\rangle\).

\section*{Observation}

\section*{Theorem 22}

A directed graph \(G=(V, E)\) permits a topological sorting if and only if it is acyclic.

Proof " \(\Rightarrow\) ": If \(G\) contains a cycle it cannot permit a topological sorting, because in a cycle \(\left\langle v_{i_{1}}, \ldots, v_{i_{m}}\right\rangle\) it would hold that \(v_{i_{1}}<\cdots<v_{i_{m}}<v_{i_{1}}\).

\section*{Inductive Proof Opposite Direction}

■ Base case \((n=1)\) : Graph with a single node without loop can be sorted topologically, setord \(\left(v_{1}\right)=1\).
■ Hypothesis: Graph with \(n\) nodes can be sorted topologically
■ Step \((n \rightarrow n+1)\) :
1. \(G\) contains a node \(v_{q}\) with in-degree \(\operatorname{deg}^{-}\left(v_{q}\right)=0\). Otherwise iteratively follow edges backwards - after at most \(n+1\) iterations a node would be revisited. Contradiction to the cycle-freeness.
2. Graph without node \(v_{q}\) and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set \(\operatorname{ord}\left(v_{i}\right) \leftarrow \operatorname{ord}\left(v_{i}\right)+1\) for all \(i \neq q\) and set \(\operatorname{ord}\left(v_{q}\right) \leftarrow 1\).

\section*{Improvement}

\section*{Idea?}

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

\section*{Preliminary Sketch of an Algorithm}

Graph \(G=(V, E) . d \leftarrow 1\)
1. Traverse backwards starting from any node until a node \(v_{q}\) with in-degree 0 is found.
2. If no node with in-degree 0 found after \(n\) stepsm, then the graph has a cycle.
3. Set \(\operatorname{ord}\left(v_{q}\right) \leftarrow d\).
4. Remove \(v_{q}\) and his edges from \(G\).
5. If \(V \neq \emptyset\), then \(d \leftarrow d+1\), go to step 1 .

Worst case runtime: \(\Theta\left(|V|^{2}\right)\).

\section*{Algorithm Topological-Sort( \(G\) )}

Input: graph \(G=(V, E)\).
Output: Topological sorting ord
Stack \(S \leftarrow \emptyset\)
foreach \(v \in V\) do \(A[v] \leftarrow 0\)
foreach \((v, w) \in E\) do \(A[w] \leftarrow A[w]+1 / /\) Compute in-degrees
foreach \(v \in V\) with \(A[v]=0\) do \(\operatorname{push}(S, v) / /\) Memorize nodes with in-degree 0
\(i \leftarrow 1\)
while \(S \neq \emptyset\) do
\(v \leftarrow \operatorname{pop}(S) ; \operatorname{ord}[v] \leftarrow i ; i \leftarrow i+1 / /\) Choose node with in-degree 0
foreach \((v, w) \in E\) do // Decrease in-degree of successors
\(A[w] \leftarrow A[w]-1\)
if \(A[w]=0\) then \(\operatorname{push}(S, w)\)
if \(i=|V|+1\) then return ord else return "Cycle Detected"

\section*{Algorithm Correctness}

\section*{Theorem 23}

Let \(G=(V, E)\) be a directed acyclic graph. Algorithm TopologicalSort( \(G\) ) computes a topological sorting ord for \(G\) with runtime \(\Theta(|V|+|E|)\).
Proof: follows from previous theorem:
1. Decreasing the in-degree corresponds with node removal.
2. In the algorithm it holds for each node \(v\) with \(A[v]=0\) that either the node has in-degree 0 or that previously all predecessors have been assigned a value \(\operatorname{ord}[u] \leftarrow i\) and thus ord \([v]>\operatorname{ord}[u]\) for all predecessors \(u\) of \(v\). Nodes are put to the stack only once.
3. Runtime: inspection of the algorithm (with some arguments like with graph traversal)

\section*{Alternative: Algorithm DFS-Topsort( \(G, v\) )}

Input: graph \(G=(V, E)\), node \(v\), node list \(L\).
if \(v\). color \(=\) grey then stop (Cycle)
if \(v\).color \(=\) black then return
v.color \(\leftarrow\) grey
foreach \(w \in N^{+}(v)\) do
DFS-Topsort \((G, w)\)
v.color \(\leftarrow\) black

Add \(v\) to head of \(L\)
Call this algorithm for each node that has not yet been visited. Asymptotic Running Time \(\Theta(|V|+|E|)\).

\section*{Algorithm Correctness}

\section*{Theorem 24}

Let \(G=(V, E)\) be a directed graph containing a cycle. Algorithm TopologicalSort terminates within \(\Theta(|V|+|E|)\) steps and detects a cycle.

Proof: let \(\left\langle v_{i_{1}}, \ldots, v_{i_{k}}\right\rangle\) be a cycle in \(G\). In each step of the algorithm remains \(A\left[v_{i_{j}}\right] \geq 1\) for all \(j=1, \ldots, k\). Thus \(k\) nodes are never pushed on the stack und therefore at the end it holds that \(i \leq V+1-k\).
The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already \(\Theta(|V|+|E|)\).

\section*{Adjacency Matrix Product}

\[
B:=A_{G}^{2}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)^{2}=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 2
\end{array}\right)
\]

\section*{Interpretation}

\section*{Theorem 25}

Let \(G=(V, E)\) be a graph and \(k \in \mathbb{N}\). Then the element \(a_{i, j}^{(k)}\) of the matrix \(\left(a_{i, j}^{(k)}\right)_{1 \leq i, j \leq n}=\left(A_{G}\right)^{k}\) provides the number of paths with length \(k\) from \(v_{i}\) to \(v_{j}\)

\section*{Example: Shortest Path}

Question: is there a path from \(i\) to \(j\) ? How long is the shortest path?
Answer: exponentiate \(A_{G}\) until for some \(k<n\) it holds that \(a_{i, j}^{(k)}>0\). \(k\) provides the path length of the shortest path. If \(a_{i, j}^{(k)}=0\) for all \(1 \leq k<n\), then there is no path from \(i\) to \(j\).

\section*{Proof}

By Induction.
Base case: straightforward for \(k=1\). \(a_{i, j}=a_{i, j}^{(1)}\).
Hypothesis: claim is true for all \(k \leq l\)
Step \((l \rightarrow l+1)\) :
\[
a_{i, j}^{(l+1)}=\sum_{k=1}^{n} a_{i, k}^{(l)} \cdot a_{k, j}
\]

\(a_{k, j}=1\) iff egde \(k\) to \(j\), 0 otherwise. Sum counts the number paths of length \(l\) from node \(v_{i}\) to all nodes \(v_{k}\) that provide a direct direction to node \(v_{j}\), i.e. all paths with length \(l+1\).

\section*{Example: Number triangles}

Question: How many triangular path does an undirected graph contain?
Answer: Remove all cycles (diagonal entries). Compute \(A_{G}^{3}\). \(a_{i i}^{(3)}\) determines the number of paths of length 3 that contain \(i\). There are 6 different permutations of a triangular path. Thus for the number of triangles: \(\sum_{i=1}^{n} a_{i i}^{(3)} / 6\).


\section*{Relation}

Given a finite set \(V\)
(Binary) Relation \(R\) on \(V\) : Subset of the cartesian product
\(V \times V=\{(a, b) \mid a \in V, b \in V\}\)
Relation \(R \subseteq V \times V\) is called
■ reflexive, if \((v, v) \in R\) for all \(v \in V\)
■ symmetric, if \((v, w) \in R \Rightarrow(w, v) \in R\)
■ transitive, if \((v, x) \in R,(x, w) \in R \Rightarrow(v, w) \in R\)
The (Reflexive) Transitive Closure \(R^{*}\) of \(R\) is the smallest extension \(R \subseteq R^{*} \subseteq V \times V\) such that \(R^{*}\) is reflexive and transitive.

\section*{Example: Equivalence Relation}

Equivalence relation \(\Leftrightarrow\) symmetric, transitive, reflexive relation \(\Leftrightarrow\) collection of complete, undirected graphs where each element has a loop.

Example: Equivalence classes of the numbers \(\{0, \ldots, 7\}\) modulo 3


\section*{Graphs and Relations}

Graph \(G=(V, E)\)
adjacencies \(A_{G} \widehat{=}\) Relation \(E \subseteq V \times V\) over \(V\)
■ reflexive \(\Leftrightarrow a_{i, i}=1\) for all \(i=1, \ldots, n\). (loops)
■ symmetric \(\Leftrightarrow a_{i, j}=a_{j, i}\) for all \(i, j=1, \ldots, n\) (undirected)
■ transitive \(\Leftrightarrow(u, v) \in E,(v, w) \in E \Rightarrow(u, w) \in E\). (reachability)

\section*{Reflexive Transitive Closure}

Reflexive transitive closure of \(G \Leftrightarrow\) Reachability relation \(E^{*}:(v, w) \in E^{*}\) iff \(\exists\) path from node \(v\) to \(w\).
\(\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]\)

\(G=(V, E)\)

\(\Rightarrow\)

\(G^{*}=\left(V, E^{*}\right)\)

\section*{Computation of the Reflexive Transitive Closure}

Goal: computation of \(B=\left(b_{i j}\right)_{1 \leq i, j \leq n}\) with \(b_{i j}=1 \Leftrightarrow\left(v_{i}, v_{j}\right) \in E^{*}\) Observation: \(a_{i j}=1\) already implies \(\left(v_{i}, v_{j}\right) \in E^{*}\).
First idea:
■ Start with \(B \leftarrow A\) and set \(b_{i i}=1\) for each \(i\) (Reflexivity.).
■ Iterate over \(i, j, k\) and set \(b_{i j}=1\), if \(b_{i k}=1\) and \(b_{k j}=1\). Then all paths with lenght 1 and 2 taken into account.
■ Repeated iteration \(\Rightarrow\) all paths with length \(1 \ldots 4\) taken into account.
■ \(\left\lceil\log _{2} n\right\rceil\) iterations required. \(\Rightarrow\) running time \(n^{3}\left\lceil\log _{2} n\right\rceil\)

\section*{Algorithm TransitiveClosure \(\left(A_{G}\right)\)}

\section*{Input: Adjacency matrix \(A_{G}=\left(a_{i j}\right)_{i, j=1 \ldots n}\)}

Output: Reflexive transitive closure \(B=\left(b_{i j}\right)_{i, j=1 \ldots n}\) of \(G\)
```

$B \leftarrow A_{G}$
for $k \leftarrow 1$ to n do

```
```

 \(a_{k k} \leftarrow 1\)
    ```
    \(a_{k k} \leftarrow 1\)
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
            \(b_{i j} \leftarrow \max \left\{b_{i j}, b_{i k} \cdot b_{k j}\right\} \quad / /\) All paths via \(v_{k}\)
```


return B

Runtime $\Theta\left(n^{3}\right)$.

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\left\{v_{i}: i<k\right\}$. Add node v_{k}.

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index $<k$ considered.
■ Base case ($k=1$): All directed paths (all edges) in A_{G} considered.

- Hypothesis: invariant (k) fulfilled.

■ Step $(k \rightarrow k+1)$: For each path from v_{i} to v_{j} via nodes with maximal index k : by the hypothesis $b_{i k}=1$ and $b_{k j}=1$. Therefore in the k-th iteration: $b_{i j} \leftarrow 1$.

Connected Components

Connected components of an undirected graph G : equivalence classes of the reflexive, transitive closure of G. Connected component = subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right), E^{\prime}=\left\{\{v, w\} \in E \mid v, w \in V^{\prime}\right\}$ with $\left\{\{v, w\} \in E \mid v \in V^{\prime} \vee w \in V^{\prime}\right\}=E=\left\{\{v, w\} \in E \mid v \in V^{\prime} \wedge w \in V^{\prime}\right\}$

Graph with connected components $\{1,2,3,4\},\{5,7\},\{6\}$.

26. Shortest Paths

Motivation, Universal Algorithm, Dijkstra's algorithm on distance graphs, Bellman-Ford Algorithm, Floyd-Warshall Algorithm, Johnson Algorithm [Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3, 25.2-25.3]

Computation of the Connected Components

■ Computation of a partitioning of V into pairwise disjoint subsets V_{1}, \ldots, V_{k}
■ such that each V_{i} contains the nodes of a connected component.
■ Algorithm: depth-first search or breadth-first search. Upon each new start of DFSSearch (G, v) or BFSSearch (G, v) a new empty connected component is created and all nodes being traversed are added.

River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river bank. The available boat can carry two people. At no time may at any place (banks or boat) be more cannibals than missionaries. How can the missionaries and cannibals cross the river as fast as possible? ${ }^{42}$

[^7]
Problem as Graph

Enumerate permitted configurations as nodes and connect them with an edge, when a crossing is allowed. The problem then becomes a shortest path problem.
Example

	links	rechts	Überfahrt möglich		links	rechts
Missionare Kannibalen Boot	3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Missionare	2	1
	3			Kannibalen	2	1
	x			Boot		x

6 Personen am linken Ufer
4 Personen am linken Ufer

Another Example: Mystic Square

Want to find the fastest solution for

The whole problem as a graph

Problem as Graph

Route Finding

Provided cities A - Z and Distances between cities.

What is the shortest path from A to Z ?

Weighted Graphs

Given: $G=(V, E, c), c: E \rightarrow \mathbb{R}, s, t \in V$
Wanted: Length (weight) of a shortest path from s to t.
Path: $p=\left\langle s=v_{0}, v_{1}, \ldots, v_{k}=t\right\rangle,\left(v_{i}, v_{i+1}\right) \in E(0 \leq i<k)$
Weight: $c(p):=\sum_{i=0}^{k-1} c\left(\left(v_{i}, v_{i+1}\right)\right)$

Path with weight 9

Simplest Case

Constant edge weight 1 (wlog)
Solution: Breadth First Search

Shortest Paths

Notation: we write

$$
u \stackrel{p}{\rightsquigarrow} v \quad \text { oder } \quad p: u \rightsquigarrow v
$$

and mean a path p from u to v
Notation: $\delta(u, v)=$ weight of a shortest path from u to v :

$$
\delta(u, v)= \begin{cases}\infty & \text { no path from } u \text { to } v \\ \min \{c(p): u \stackrel{p}{\rightsquigarrow} v\} & \text { otherwise }\end{cases}
$$

Observations (1)

It may happen that a shortest paths does not exist: negative cycles can occur.

Observations (3)

Triangle Inequality

For all $s, u, v \in V$:

$$
\delta(s, v) \leq \delta(s, u)+\delta(u, v)
$$

A shortest path from s to v cannot be longer than a shortest path from s to v that has to include u

Observations (2)

There can be exponentially many paths.

(at least $2^{|V| / 2}$ paths from s to t)
\Rightarrow To try all paths is too inefficient

Observations (4)

Optimal Substructure

Sub-paths of shortest paths are shortest paths. Let $p=\left\langle v_{0}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{0} to v_{k}. Then each of the sub-paths $p_{i j}=\left\langle v_{i}, \ldots, v_{j}\right\rangle$ ($0 \leq i<j \leq k$) is a shortest path from v_{i} to v_{j}.

If not, then one of the sub-paths could be shortened which immediately leads to a contradiction.

Observations (5)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path, contradiction
2. Path contains a positive cycle: removing the cycle from the path will reduce the weight. Contradiction.
3. Path contains a cycle with weight 0 : removing the cycle from the path will not change the weight. Remove the cycle (convention).

General Algorithm

1. Initialise d_{s} and $\pi_{s}: d_{s}[v]=\infty, \pi_{s}[v]=$ null for each $v \in V$
2. Set $d_{s}[s] \leftarrow 0$
3. Choose an edge $(u, v) \in E$

Relaxiere (u, v) :
if $d_{s}[v]>d[u]+c(u, v)$ then
$d_{s}[v] \leftarrow d_{s}[u]+c(u, v)$
$\pi_{s}[v] \leftarrow u$
4. Repeat 3 until nothing can be relaxed any more. (until $d_{s}[v] \leq d_{s}[u]+c(u, v) \quad \forall(u, v) \in E$)

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s
■ Weight of the shortest path found so far

$$
d_{s}: V \rightarrow \mathbb{R}
$$

At the beginning: $d_{s}[v]=\infty$ for all $v \in V$.
Goal: $d_{s}[v]=\delta(s, v)$ for all $v \in V$.

- Predecessor of a node

$$
\pi_{s}: V \rightarrow V
$$

Initially $\pi_{s}[v]$ undefined for each node $v \in V$

It is Safe to Relax

At any time in the algorithm above it holds

$$
d_{s}[v] \geq \delta(s, v) \quad \forall v \in V
$$

In the relaxation step:

$$
\left.\begin{array}{rlrl}
\delta(s, v) & \leq \delta(s, u)+\delta(u, v) & \text { [Triangle Inequality]. } \\
\delta(s, u) & \leq d_{s}[u] & \text { [Induction Hypothesis]. } \\
\delta(u, v) & \leq c(u, v) & \text { [Minimality of } \delta \text {] } \\
\Rightarrow \quad d_{s}[u]+c(u, v) & \geq \delta(s, v) & \\
\Rightarrow & & \\
& & \\
& & \\
& & \\
&
\end{array} d_{s}[v], d_{s}[u]+c(u, v)\right\} \geq \delta(s, v) \text {. }
$$

Central Question

How / in which order should edges be chosen in above algorithm?

Assumption (preliminary)

Special Case: Directed Acyclic Graph (DAG)

DAG \Rightarrow topological sorting returns optimal visiting order

Top. Sort: \Rightarrow Order $s, v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{5}, v_{8}, v_{7}$.

Observation (Dijkstra)

Basic Idea

Set V of nodes is partitioned into
■ the set M of nodes for which a shortest path from s is already known,

■ the set $R=\bigcup_{v \in M} N^{+}(v) \backslash M$ of nodes where a shortest path is not yet known but that are accessible directly from M,
■ the set $U=V \backslash(M \cup R)$ of nodes that have not yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph $G=(V, E, c)$, starting point $s \in V$,
Output: Minimal weights d of the shortest paths and corresponding predecessor node for each node.

```
foreach u\inV do
    ds[u]}\leftarrow\infty;\mp@subsup{\pi}{s}{}[u]\leftarrow\mathrm{ null
ds[s]\leftarrow0;R\leftarrow{s}
while R\not=\emptyset do
    u\leftarrowExtractMin}(R
    foreach v\in N+}(u)\mathrm{ do
        if }\mp@subsup{d}{s}{}[u]+c(u,v)<\mp@subsup{d}{s}{}[v]\mathrm{ then
            d
            \mp@subsup{\pi}{s}{}[v]\leftarrowu
            R\leftarrowR\cup{v}
```

Induction

Induction over $|M|$: choose nodes from R with smallest upper bound. Add r to M and update R and U accordingly.

Correctness: if within the "wavefront" a node with minimal weight w has been found then no path over later nodes (providing weight \geq d) can provide any improvement.

Example

$$
\begin{gathered}
M=\{s, a, b\} \\
R=\{c, d\} \\
U=\{e\}
\end{gathered}
$$

Implementation: Data Structure for R ?

Required operations:
■ Insert (add to R)
■ ExtractMin (over R) and DecreaseKey (Update in R)
foreach $v \in N^{+}(u)$ do
if $d_{s}[u]+c(u, v)<d_{s}[v]$ then
$d_{s}[v] \leftarrow d_{s}[u]+c(u, v)$
$\pi_{s}[v] \leftarrow u$
if $v \in R$ then
DecreaseKey $(R, v) \quad / /$ Update of a $d(v)$ in the heap of R else
$R \leftarrow R \cup\{v\} \quad / /$ Update of $d(v)$ in the heap of R

MinHeap!

Runtime

- $|V| \times$ ExtractMin: $\mathcal{O}(|V| \log |V|)$
- $|E| \times$ Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$

■ $1 \times$ Init: $\mathcal{O}(|V|)$

- Overal: $\mathcal{O}(|E| \log |V|)$.

Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist used (Fibonacci Heap), then runtime $\mathcal{O}(|E|+|V| \log |V|)$.

DecreaseKey

- DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$
- Position in the heap?

■ alternative (a): Store position at the nodes

- alternative (b): Hashtable of the nodes

■ alterantive (c): re-insert node after successful relax operation and mark it "deleted" once extracted (Lazy Deletion). ${ }^{43}$

[^8]
General Weighted Graphs

Relaxing Step as before but with a return value:
$\operatorname{Relax}(u, v)(u, v \in V,(u, v) \in E)$
if $d_{s}[u]+c(u, v)<d_{s}[v]$ then
$d_{s}[v] \leftarrow d_{s}[u]+c(u, v)$
$\pi_{s}[v] \leftarrow u$
return true
return false

Problem: cycles with negative weights can shorten the path, a shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges $d_{s}[i, v]$: Shortest path from s to v via maximally i edges.

$$
\begin{aligned}
& d_{s}[i, v]=\min \left\{d_{s}[i-1, v], \min _{(u, v) \in E}\left(d_{s}[i-1, u]+c(u, v)\right)\right. \\
& d_{s}[0, s]=0, d_{s}[0, v]=\infty \forall v \neq s .
\end{aligned}
$$

Algorithm Bellman-Ford (G, s)

Input: Graph $G=(V, E, c)$, starting point $s \in V$
Output: If return value true, minimal weights d for all shortest paths from s, otherwise no shortest path.

```
foreach \(u \in V\) do
    \(d_{s}[u] \leftarrow \infty ; \pi_{s}[u] \leftarrow\) null
\(d_{s}[s] \leftarrow 0\);
for \(i \leftarrow 1\) to \(|V|\) do
    \(f \leftarrow\) false
    foreach \((u, v) \in E\) do
        \(f \leftarrow f \vee \operatorname{Relax}(u, v)\)
```

 if \(f=\) false then return true
 return false;

Dynamic Programming Approach (Bellman)

	s	\cdots	v	\cdots	w
0	0	∞	∞	∞	∞
1	0	∞	7	∞	-2
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$n-1$	0	\cdots	\cdots	\cdots	\cdots

Algorithm: Iterate over last row until the relaxation steps do not provide any further changes, maximally $n-1$ iterations. If still changes, then there is no shortest path.

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.
■ $|V| \times$ Application of Dijkstra's Shortest Path algorithm $\mathcal{O}(|V| \cdot|E| \cdot \log |V|)$ (with Fibonacci Heap: $\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)$)
$\square|V| \times$ Application of Bellman-Ford: $\mathcal{O}\left(|E| \cdot|V|^{2}\right)$

- There are better ways!

Induction via node number

Consider weights of all shortest paths S^{k} with intermediate nodes in ${ }^{44}$ $V^{k}:=\left\{v_{1}, \ldots, v_{k}\right\}$, provided that weights for all shortest paths S^{k-1} with intermediate nodes in V^{k-1} are given.
$\square v_{k}$ no intermediate node of a shortest path of $v_{i} \rightsquigarrow v_{j}$ in V^{k} : Weight of a shortest path $v_{i} \rightsquigarrow v_{j}$ in S^{k-1} is then also weight of shortest path in S^{k}.
■ v_{k} intermediate node of a shortest path $v_{i} \rightsquigarrow v_{j}$ in V^{k} : Sub-paths $v_{i} \rightsquigarrow v_{k}$ and $v_{k} \rightsquigarrow v_{j}$ contain intermediate nodes only from S^{k-1}.

[^9]
DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph $G=(V, E, c)$
Output: Minimal weights of all paths d
$d^{0} \leftarrow c$

for $k \leftarrow 1$ to $|V|$ do

for $i \leftarrow 1$ to $|V|$ do

for $j \leftarrow 1$ to $|V|$ do

$$
d^{k}\left(v_{i}, v_{j}\right)=\min \left\{d^{k-1}\left(v_{i}, v_{j}\right), d^{k-1}\left(v_{i}, v_{k}\right)+d^{k-1}\left(v_{k}, v_{j}\right)\right\}
$$

Runtime: $\Theta\left(|V|^{3}\right)$

Remark: Algorithm can be executed with a single matrix d (in place).

DP Induction

$d^{k}(u, v)=$ Minimal weight of a path $u \rightsquigarrow v$ with intermediate nodes in V^{k} Induktion

$$
\begin{aligned}
d^{k}(u, v) & =\min \left\{d^{k-1}(u, v), d^{k-1}(u, k)+d^{k-1}(k, v)\right\}(k \geq 1) \\
d^{0}(u, v) & =c(u, v)
\end{aligned}
$$

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra's algorithm.
The following does not work. The graphs are not equivalent in terms of shortest paths.

Reweighting

Other Idea: "Potential" (Height) on the nodes
■ $G=(V, E, c)$ a weighted graph.
■ Mapping $h: V \rightarrow \mathbb{R}$

- New weights

$$
\tilde{c}(u, v)=c(u, v)+h(u)-h(v),(u, v \in V)
$$

Johnson's Algorithm

Add a new node $s \notin V$:

$$
\begin{aligned}
G^{\prime} & =\left(V^{\prime}, E^{\prime}, c^{\prime}\right) \\
V^{\prime} & =V \cup\{s\} \\
E^{\prime} & =E \cup\{(s, v): v \in V\} \\
c^{\prime}(u, v) & =c(u, v), u \neq s \\
c^{\prime}(s, v) & =0(v \in V)
\end{aligned}
$$

Reweighting

Observation: A path p is shortest path in in $G=(V, E, c)$ iff it is shortest path in in $\tilde{G}=(V, E, \tilde{c})$

$$
\begin{aligned}
\tilde{c}(p) & =\sum_{i=1}^{k} \tilde{c}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k} c\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=1}^{k} c\left(v_{i-1}, v_{i}\right)=c(p)+h\left(v_{0}\right)-h\left(v_{k}\right)
\end{aligned}
$$

Thus $\tilde{c}(p)$ minimal in all $v_{0} \rightsquigarrow v_{k} \Longleftrightarrow c(p)$ minimal in all $v_{0} \rightsquigarrow v_{k}$.
Weights of cycles are invariant: $\tilde{c}\left(v_{0}, \ldots, v_{k}=v_{0}\right)=c\left(v_{0}, \ldots, v_{k}=v_{0}\right)$

Johnson's Algorithm

If no negative cycles, choose as height function the weight of the shortest paths from s,

$$
h(v)=d(s, v)
$$

For a minimal weight d of a path the following triangular inequality holds:

$$
d(s, v) \leq d(s, u)+c(u, v)
$$

Substitution yields $h(v) \leq h(u)+c(u, v)$. Therefore

$$
\tilde{c}(u, v)=c(u, v)+h(u)-h(v) \geq 0
$$

Algorithm Johnson(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimal weights of all paths D
New node s. Compute $G^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}\right)$
if BellmanFord $\left(G^{\prime}, s\right)=$ false then return "graph has negative cycles"

foreach $v \in V^{\prime}$ do

$h(v) \leftarrow d(s, v) / / d$ aus BellmanFord Algorithmus

foreach $(u, v) \in E^{\prime}$ do

$\tilde{c}(u, v) \leftarrow c(u, v)+h(u)-h(v)$
foreach $u \in V$ do
$\tilde{d}(u, \cdot) \leftarrow \operatorname{Dijkstra}\left(\tilde{G}^{\prime}, u\right)$
foreach $v \in V$ do

$$
D(u, v) \leftarrow \tilde{d}(u, v)+h(v)-h(u)
$$

Analysis

Runtimes

■ Computation of $G^{\prime}: \mathcal{O}(|V|)$
■ Bellman Ford $G^{\prime}: \mathcal{O}(|V| \cdot|E|)$
■ $|V| \times$ Dijkstra $\mathcal{O}(|V| \cdot|E| \cdot \log |V|)$
(with Fibonacci Heap: $\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)$)
Overal $\mathcal{O}(|V| \cdot|E| \cdot \log |V|)$
$\left(\mathcal{O}\left(|V|^{2} \log |V|+|V| \cdot|E|\right)\right)$

Disclaimer

These slides contain the most important formalities around the A*-algorithm and its correctness. We motivate the algorithm in the lectures and give more examples there.
Another nice motivation of the algorithm can found here:
https://www.youtube.com/watch?v=bRvs8rOQU-Q

A*-Algorithm

Prerequisites

■ Positively weighted graph $G=(V, E, c)$
■ G finite or δ-Graph: $\exists \delta>0: c(e) \geq \delta$ for all $e \in E$
■ $s \in V, t \in V$
■ Distance estimate $\widehat{h}_{t}(v) \leq h_{t}(v):=\delta(v, t) \forall v \in V$.
■ Wanted: shortest path $p: s \rightsquigarrow t$

Notation

Let $f(v)$ be the distance of a shortest path from s to t via v, thus

$$
f(v):=\underbrace{\delta(s, v)}_{g(v)}+\underbrace{\delta(v, t)}_{h(v)}
$$

let p be a shortest path from s to t.
It holds that $f(s)=\delta(s, t)$ and $f(v)=f(s)$ for all $v \in p$.
Let $\widehat{g}(v):=d[v]$ be an estimate of $g(v)$ in the algorithm above. It holds that $\hat{g}(v) \geq g(v)$.
$\widehat{h}(v)$ is an estimate of $h(v)$ with $\widehat{h}(v) \leq h(v)$.

A*-Algorithm (G, s, t, \hat{h})

Input: Positively weighted Graph $G=(V, E, c)$, starting point $s \in V$, end point $t \in V$, estimate $\widehat{h}(v) \leq \delta(v, t)$
Output: Existence and value of a shortest path from s to t

```
foreach \(u \in V\) do
    \(d[u] \leftarrow \infty ; \widehat{f}[u] \leftarrow \infty ; \pi[u] \leftarrow\) null
\(d[s] \leftarrow 0 ; \widehat{f}[s] \leftarrow \widehat{h}(s) ; R \leftarrow\{s\} ; M \leftarrow\{ \}\)
while \(R \neq \emptyset\) do
    \(u \leftarrow \operatorname{ExtractMin}_{\hat{f}}(R) ; M \leftarrow M \cup\{u\}\)
    if \(u=t\) then return success
    foreach \(v \in N^{+}(u)\) with \(d[v]>d[u]+c(u, v)\) do
        \(d[v] \leftarrow d[u]+c(u, v) ; \widehat{f}[v] \leftarrow d[v]+\widehat{h}(v) ; \pi[v] \leftarrow u\)
    \(R \leftarrow R \cup\{v\} ; M \leftarrow M-\{v\}\)
return failure
```


Why the Algorithm Works

Lemma 26

Let $u \in V$ and, at a time during the execution of the algorithm, $u \notin M$. Let p be a shortest path from s to u. Then there is a $u^{\prime} \in p$ with $\widehat{g}\left(u^{\prime}\right)=$ $g\left(u^{\prime}\right)$ and $u^{\prime} \in R$.
The lemma states that there is always a node in the open set R with the minimal distance from s already computed and that belongs to a shortest path (if existing).

Illustration and Proof

Proof: If $s \in R$, then $\widehat{g}(s)=g(s)=0$. Therefore, let $s \notin R$.
Let $p=\left\langle s=u_{0}, u_{1}, \ldots, u_{k}=u\right\rangle$ and $\Delta=\left\{u_{i} \in p, u_{i} \in M, \widehat{g}\left(u_{i}\right)=g\left(u_{i}\right)\right\}$.
$\Delta \neq \emptyset$, because $s \in \Delta$.
Let $m=\max \left\{i: u_{i} \in \Delta\right\}, u^{*}=u_{m}$. Then $u^{*} \neq u$, since $u \notin M$. Let $u^{\prime}=u_{m+1}$.

1. $\widehat{g}\left(u^{\prime}\right) \leq \widehat{g}\left(u^{*}\right)+c\left(u^{*}, u^{\prime}\right)$ (construction of \hat{g})
2. $\widehat{g}\left(u^{*}\right)=g\left(u^{*}\right)$ (because $u^{*} \in \Delta$)
3. $g\left(u^{\prime}\right)=g\left(u^{*}\right)+c\left(u^{*}, u^{\prime}\right)$ (because p optimal)
4. $\hat{g}\left(u^{\prime}\right) \geq g\left(u^{\prime}\right)$ (construction of \hat{g})

Therefore: $\widehat{g}\left(u^{\prime}\right)=g\left(u^{\prime}\right)$ and thus also $u^{\prime} \in R$.

Proof of the Corollary

Proof:

From the lemma: $\exists u^{\prime} \in p$ with $\widehat{g}\left(u^{\prime}\right)=g\left(u^{\prime}\right)$.
Therefore:

$$
\begin{aligned}
\widehat{f}\left(u^{\prime}\right) & =\widehat{g}\left(u^{\prime}\right)+\widehat{h}\left(u^{\prime}\right) \\
& =g\left(u^{\prime}\right)+\widehat{h}\left(u^{\prime}\right) \\
& \leq g\left(u^{\prime}\right)+h\left(u^{\prime}\right)=f\left(u^{\prime}\right)
\end{aligned}
$$

Because p is shortest path: $f\left(u^{\prime}\right)=\delta(s, t)$.

[^10]
Revisiting nodes

■ The A*-algorithm can re-insert nodes that had been extracted from R before.

- This can lead to suboptimal behavior (w.r.t. running time of the algorithm).
■ If \widehat{h}, in addition to being admissible $(\widehat{h}(v) \leq h(v)$ for all $v \in V)$, fulfils monotonicity, i.e. if for all $\left(u, u^{\prime}\right) \in E$:

$$
\widehat{h}\left(u^{\prime}\right) \leq \widehat{h}(u)+c\left(u^{\prime}, u\right)
$$

then the A^{*}-Algorithm is equivalent to the Dijsktra-algorithm with edge weights $\tilde{c}(u, v)=c(u, v)+\widehat{h}(u)-\widehat{h}(v)$, and no node is re-inserted into R.It is not always possible to find monotone heuristics.

Problem

Given: Undirected, weighted, connected graph $G=(V, E, c)$.
Wanted: Minimum Spanning Tree $T=\left(V, E^{\prime}\right)$: connected, cycle-free subgraph $E^{\prime} \subset E$, such that $\sum_{e \in E^{\prime}} c(e)$ minimal.

27. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra, Fibonacci Heaps [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

Application Examples

■ Network-Design: find the cheapest / shortest network that connects all nodes.
■ Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once.

Greedy Procedure

Recall:

■ Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
■ Most problems cannot be solved with a greedy algorithm.
■ The Minimum Spanning Tree problem can be solved with a greedy strategy.

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

Algorithm MST-Kruskal(G)

Input: Weighted Graph $G=(V, E, c)$

Output: Minimum spanning tree with edges A
Sort edges by weight $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
$A \leftarrow \emptyset$
for $k=1$ to $|E|$ do
if $\left(V, A \cup\left\{e_{k}\right\}\right)$ acyclic then
$A \leftarrow A \cup\left\{e_{k}\right\}$
return (V, A, c)

Correctness

At each point in the algorithm (V, A) is a forest, a set of trees.
MST-Kruskal considers each edge e_{k} exactly once and either chooses or rejects e_{k}
Notation (snapshot of the state in the running algorithm)
■ A : Set of selected edges
$\square R$: Set of rejected edges
■ U : Set of yet undecided edges

Cut

A cut of G is a partition $S, V-S$ of V. $(S \subseteq V)$.
An edge crosses a cut when one of its endpoints is in S and the other is in $V \backslash S$.

Rules

Kruskal applies both rules:

1. A selected e_{k} connects two connection components, otherwise it would generate a cycle. e_{k} is minimal, i.e. a cut can be chosen such that e_{k} crosses and e_{k} has minimal weight.
2. A rejected e_{k} is contained in a cycle. Within the cycle e_{k} has minimal weight.

Rules

1. Selection rule: choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the one with minimal weight.
2. Rejection rule: choose a cycle without rejected edges. Of all undecided edges of the cycle, reject those with maximal weight.

Correctness

Theorem 29

Every algorithm that applies the rules above in a step-wise manner until $U=\emptyset$ is correct.
Consequence: MST-Kruskal is correct.

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains all selected and none of the rejected edges.
If both rules satisfy the invariant, then the algorithm is correct. Induction:

■ At beginning: $U=E, R=A=\emptyset$. Invariant obviously holds.
■ Invariant is preserved at each step of the algorithm.
■ At the end: $U=\emptyset, R \cup A=E \Rightarrow(V, A)$ is a spanning tree.
Proof of the theorem: show that both rules preserve the invariant.

Rejection rule preserves the invariant

```
At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cycle without rejected edges. Of all undecided edges of the cycle, reject an edge
e with maximal weight.
■ Case 1: \(e \notin T\) (done)
■ Case 2: \(e \in T\). Remove \(e\) from \(T\), This yields a cut. This cut must be crossed by another edge \(e^{\prime}\) of the cycle. Because \(c\left(e^{\prime}\right) \leq c(e)\),
\(T^{\prime}=T \backslash\{e\} \cup\left\{e^{\prime}\right\}\) is also minimal (and \(c(e)=c\left(e^{\prime}\right)\) ).
```


Selection rule preserves the invariant

```
At each step there is a minimal spanning tree T that contains all selected and none of
the rejected edges.
Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross
the cut, select the egde e with minimal weight.
■ Case 1: \(e \in T\) (done)
■ Case 2: \(e \notin T\). Then \(T \cup\{e\}\) contains a cycle that contains \(e\) Cycle must have a second edge \(e^{\prime}\) that also crosses the cut. \({ }^{46}\) Because \(e^{\prime} \notin R\), \(e^{\prime} \in U\). Thus \(c(e) \leq c\left(e^{\prime}\right)\) and \(T^{\prime}=T \backslash\left\{e^{\prime}\right\} \cup\{e\}\) is also a minimal spanning tree (and \(c(e)=c\left(e^{\prime}\right)\) ).
```

[^11]
Implementation Issues

Consider a set of sets $i \equiv A_{i} \subset V$. To identify cuts and cycles: membership of the both ends of an edge to sets?

Implementation Issues

General problem: partition (set of subsets) .e.g. $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$
Required: Abstract data type "Union-Find" with the following operations
■ Make-Set(i): create a new set represented by i.
■ Find(e): name of the set i that contains e.
■ Union (i, j) : union of the sets with names i and j.

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph $G=(V, E, c)$
Output: Minimum spanning tree with edges A.
Sort edges by weight $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$
$A \leftarrow \emptyset$
for $k=1$ to $|V|$ do MakeSet(k)
for $k=1$ to m do
$(u, v) \leftarrow e_{k}$
if $\operatorname{Find}(u) \neq \operatorname{Find}(v)$ then
Union $(\operatorname{Find}(u), \operatorname{Find}(v))$
$A \leftarrow A \cup e_{k}$
else // conceptual: $R \leftarrow R \cup e_{k}$
return (V, A, c)

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
$\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$

roots $=$ names (representatives) of the sets, trees = elements of the sets

Implementation Union-Find

Representation as array:

$$
\begin{array}{lllllllllll}
\text { Index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { Parent } & 1 & 1 & 1 & 6 & 5 & 6 & 5 & 5 & 3 & 10
\end{array}
$$

Implementation Union-Find

$\left.\begin{array}{llllllllllll} & \begin{array}{llllllll}\text { Index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline\end{array} & 8 & 9 & 10 \\ & \text { Parent } 1 & 1 & 1 & 6 & 5 & 6 & 5 & 5 & 3 & 10\end{array}\right]$

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

Make-Set (i)	$p[i] \leftarrow i ; g[i] \leftarrow 1 ;$ return i
	if $g[j]>g[i]$ then swap (i, j)
Union (i, j)	$p[j] \leftarrow i$
	if $g[i]=g[j]$ then $g[i] \leftarrow g[i]+1$

\Rightarrow Tree depth (and worst-case running time for Find) in $\Theta(\log n)$

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

```
Index 1. 1
Parent 1.lllllllll
```

Worst-case running time of Find in $\Theta(n)$.

Observation

Theorem 30

The method above (union by size) preserves the following property of the trees: a tree of height h has at least 2^{h} nodes.
Immediate consequence: runtime Find $=\mathcal{O}(\log n)$.

Proof

Induction: by assumption, sub-trees have at least $2^{h_{i}}$ nodes. WLOG: $h_{2} \leq h_{1}$

- $h_{2}<h_{1}$:

$$
h\left(T_{1} \oplus T_{2}\right)=h_{1} \Rightarrow g\left(T_{1} \oplus T_{2}\right) \geq 2^{h}
$$

- $h_{2}=h_{1}$:

$$
\begin{aligned}
& g\left(T_{1}\right) \geq g\left(T_{2}\right) \geq 2^{h_{2}} \\
\Rightarrow & g\left(T_{1} \oplus T_{2}\right)=g\left(T_{1}\right)+g\left(T_{2}\right) \geq 2 \cdot 2^{h_{2}}=2^{h\left(T_{1} \oplus T_{2}\right)}
\end{aligned}
$$

Running time of Kruskal's Algorithm

■ Sorting of the edges: $\Theta(|E| \log |E|)=\Theta(|E| \log |V|)$. ${ }^{49}$

- Initialisation of the Union-Find data structure $\Theta(|V|)$

■ $|E| \times \operatorname{Union}(\operatorname{Find}(x)$, Find $(y)): \mathcal{O}(|E| \log |E|)=\mathcal{O}(|E| \log |V|)$.
Overal $\Theta(|E| \log |V|)$.

[^12]
Further improvement

Link all nodes to the root when Find is called.
Find (i) :
$j \leftarrow i$
while $(p[i] \neq i)$ do $i \leftarrow p[i]$
while $(j \neq i)$ do
$t \leftarrow j$
$j \leftarrow p[j]$
$p[t] \leftarrow i$
return i
Cost: amortised nearly constant (inverse of the Ackermann-function).48

[^13]
Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.
$A \leftarrow \emptyset$
$S \leftarrow\left\{v_{0}\right\}$
for $i \leftarrow 1$ to $|V|$ do
Choose cheapest (u, v) mit $u \in S, v \notin S$
$A \leftarrow A \cup\{(u, v)\}$
$S \leftarrow S \cup\{v\} / /$ (Coloring)

Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Running time

Trivially $\mathcal{O}(|V| \cdot|E|)$.
Improvement (like with Dijkstra's ShortestPath)
■ With Min-Heap: costs
■ Initialization (node coloring) $\mathcal{O}(|V|)$

- $|V| \times$ ExtractMin $=\mathcal{O}(|V| \log |V|)$,

■ $|E| \times$ Insert or DecreaseKey: $\mathcal{O}(|E| \log |V|)$,
$\mathcal{O}(|E| \cdot \log |V|)$
■ With a Fibonacci-Heap: $\mathcal{O}(|E|+|V| \cdot \log |V|)$

Advantage over binary heap?

	Binary Heap (worst-Case)	Fibonacci Heap (amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Fibonacci Heaps

Data structure for elements with key with operations
■ MakeHeap(): Return new heap without elements
■ Insert(H, x): Add x to H
■ Minimum (H) : return a pointer to element m with minimal key
■ ExtractMin (H) : return and remove (from H) pointer to the element m
■ Union $\left(H_{1}, H_{2}\right)$: return a heap merged from H_{1} and H_{2}
■ DecreaseKey (H, x, k) : decrease the key of x in H to k
■ Delete (H, x) : remove element x from H

Structure

Set of trees that respect the Min-Heap property. Nodes that can be marked.

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

ExtractMin

1. Remove minimal node m from the root list
2. Insert children of m into the root list
3. Merge heap-ordered trees with the same degrees until all trees have a different degree:
Array of degrees $a[0, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:
a Let g be the degree of e
b If $a[g]=n i l: a[g] \leftarrow e$.
c If $e^{\prime}:=a[g] \neq$ nil: Merge e with e^{\prime} resutling in $e^{\prime \prime}$ and set $a[g] \leftarrow$ nil. Set $e^{\prime \prime}$ unmarked. Re-iterate with $e \leftarrow e^{\prime \prime}$ having degree $g+1$.

Simple Operations

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)

1. Insert new element into root-list
2. If key is smaller than minimum, reset min-pointer.

- Union $\left(H_{1}, H_{2}\right)$

1. Concatenate root-lists of H_{1} and H_{2}
2. Reset min-pointer.

■ Delete (H, e)

1. DecreaseKey $(H, e,-\infty)$
2. ExtractMin (H)

DecreaseKey (H, e, k)

1. Remove e from its parent node p (if existing) and decrease the degree of p by one.
2. Insert (H, e)
3. Avoid too thin trees:
a If $p=n i l$ then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent $p p$. Insert (H, p). Iterate with $p \leftarrow p p$.

Estimation of the degree

Theorem 31

Let p be a node of a F-Heap H. If child nodes of p are sorted by time of insertion (Union), then it holds that the ith child node has a degree of at least $i-2$.

Proof: p may have had more children and lost by cutting. When the i th child p was linked, p and p_{i} must at least have had degree $i-1$. p_{i} may have lost at least one child (marking!), thus at least degree $i-2$ remains.

Estimation of the degree

Theorem 32

Every node p with degree k of a F-Heap is the root of a subtree with at least F_{k+1} nodes. (F : Fibonacci-Folge)
Proof: Let S_{k} be the minimal number of successors of a node of degree k in a F-Heap plus 1 (the node itself). Clearly $S_{0}=1, S_{1}=2$. With the previous theorem $S_{k} \geq 2+\sum_{i=0}^{k-2} S_{i}, k \geq 2$ (p and nodes p_{1} each 1). For Fibonacci numbers it holds that (induction) $F_{k} \geq 2+\sum_{i=2}^{k} F_{i}, k \geq 2$ and thus (also induction) $S_{k} \geq F_{k+2}$. Fibonacci numbers grow exponentially fast $\left(\mathcal{O}\left(\varphi^{k}\right)\right)$ Consequence: maximal degree of an arbitrary node in a Fibonacci-Heap with n nodes is $\mathcal{O}(\log n)$.

Amortized costs of ExtractMin

■ Number trees in the root list $t(H)$.

- Real costs of ExtractMin operation $\mathcal{O}(\log n+t(H))$.
- When merged still $\mathcal{O}(\log n)$ nodes.

■ Number of markings can only get smaller when trees are merged
■ Thus maximal amortized costs of ExtractMin

$$
\mathcal{O}(\log n+t(H))+\mathcal{O}(\log n)-\mathcal{O}(t(H))=\mathcal{O}(\log n)
$$

Amortized costs of DecreaseKey

- Assumption: DecreaseKey leads to c cuts of a node from its parent node, real costs $\mathcal{O}(c)$
■ c nodes are added to the root list
■ Delete $(c-1)$ mark flags, addition of at most one mark flag
- Amortized costs of DecreaseKey:

$$
\mathcal{O}(c)+(t(H)+c)+2 \cdot(m(H)-c+2))-(t(H)+2 m(H))=\mathcal{O}(1)
$$

Motivation

- Modelling flow of fluents, components on conveyors, current in electrical networks or information flow in communication networks.
■ Connectivity of Communication Networks, Bipartite Matching, Circulation, Scheduling, Image Segmentation, Baseball Eliminination...

28. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm, Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

Flow Network

■ Flow network $G=(V, E, c)$: directed graph with capacities
■ Antiparallel edges forbidden:
$(u, v) \in E \Rightarrow(v, u) \notin E$.
■ Model a missing edge (u, v) by $c(u, v)=0$.
■ Source s and sink t : special nodes. Every node v is on a path between s and t :

Flow

A Flow $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:
■ Bounded Capacity:
For all $u, v \in V: f(u, v) \leq c(u, v)$.
■ Skew Symmetry:
For all $u, v \in V: f(u, v)=-f(v, u)$.

- Conservation of flow:

For all $u \in V \backslash\{s, t\}$:

$$
\sum_{v \in V} f(u, v)=0 .
$$

Value of the flow:
$|f|=\sum_{v \in V} f(s, v)$.
Here $|f|=18$.

Implicit Summation

Notation: Let $U, U^{\prime} \subseteq V$

$$
f\left(U, U^{\prime}\right):=\sum_{\substack{u \in U \\ u^{\prime} \in U^{\prime}}} f\left(u, u^{\prime}\right), \quad f\left(u, U^{\prime}\right):=f\left(\{u\}, U^{\prime}\right)
$$

Thus

- $|f|=f(s, V)$
- $f(U, U)=0$
- $f\left(U, U^{\prime}\right)=-f\left(U^{\prime}, U\right)$
- $f(X \cup Y, Z)=f(X, Z)+f(Y, Z)$, if $X \cap Y=\emptyset$.

■ $f(R, V)=0$ if $R \cap\{s, t\}=\emptyset$. [flow conversation!]

How large can a flow possibly be?

Limiting factors: cuts

■ cut separating s from t : Partition of V into S and T with $s \in S, t \in T$.
■ Capacity of a cut: $c(S, T)=\sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)$

- Minimal cut: cut with minimal capacity.

■ Flow over the cut: $f(S, T)=\sum_{v \in S, v^{\prime} \in T} f\left(v, v^{\prime}\right)$

How large can a flow possibly be?

For each flow and each cut it holds that $f(S, T)=|f|$:

$$
\begin{aligned}
f(S, T) & =f(S, V)-\underbrace{f(S, S)}_{0}=f(S, V) \\
& =f(s, V)+f(\underbrace{S-\{s\}}_{\not \nexists t, \not \supset s}, V)=|f| .
\end{aligned}
$$

Maximal Flow ?

In particular, for each cut (S, T) of V.

$$
|f| \leq \sum_{v \in S, v^{\prime} \in T} c\left(v, v^{\prime}\right)=c(S, T)
$$

Will discover that equality holds for $\min _{S, T} c(S, T)$.

The Method of Ford-Fulkerson

■ Start with $f(u, v)=0$ for all $u, v \in V$
■ Determine rest network* G_{f} and expansion path in G_{f}
■ Increase flow via expansion path*

- Repeat until no expansion path available.

$$
\begin{aligned}
G_{f} & :=\left(V, E_{f}, c_{f}\right) \\
c_{f}(u, v) & :=c(u, v)-f(u, v) \quad \forall u, v \in V \\
E_{f} & :=\left\{(u, v) \in V \times V \mid c_{f}(u, v)>0\right\}
\end{aligned}
$$

*Will now be explained

Maximal Flow?

Naive Procedure

Conclusion: greedy increase of flow does not solve the problem.

Increase of flow, negative!

Let some flow f in the network be given
Finding:
■ Increase of the flow along some edge possible, when flow can be increased along the edge,i.e. if $f(u, v)<c(u, v)$. Rest capacity $c_{f}(u, v)=c(u, v)-f(u, v)>0$.
■ Increase of flow against the direction of the edge possible, if flow can be reduced along the edge, i.e. if $f(u, v)>0$.
Rest capacity $c_{f}(v, u)=f(u, v)>0$.

Rest Network

Rest network G_{f} provided by the edges with positive rest capacity:

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel capacity-edges

Proof

$f \oplus f^{\prime}$ defines a flow in G :

- capacity limit

$$
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+\underbrace{f^{\prime}(u, v)}_{\leq c(u, v)-f(u, v)} \leq c(u, v)
$$

- skew symmetry

$$
\left(f \oplus f^{\prime}\right)(u, v)=-f(v, u)+-f^{\prime}(v, u)=-\left(f \oplus f^{\prime}\right)(v, u)
$$

■ flow conservation $u \in V-\{s, t\}$:

$$
\sum_{v \in V}\left(f \oplus f^{\prime}\right)(u, v)=\sum_{v \in V} f(u, v)+\sum_{v \in V} f^{\prime}(u, v)=0
$$

Theorem 33

Let $G=(V, E, c)$ be a flow network with source s and sink t and f a flow in G. Let G_{f} be the corresponding rest networks and let f^{\prime} be a flow in G_{f}. Then $f \oplus f^{\prime}$ with

$$
\left(f \oplus f^{\prime}\right)(u, v)=f(u, v)+f^{\prime}(u, v)
$$

defines a flow in G with value $|f|+\left|f^{\prime}\right|$.

Proof

Value of $f \oplus f^{\prime}$

$$
\begin{aligned}
\left|f \oplus f^{\prime}\right| & =\left(f \oplus f^{\prime}\right)(s, V) \\
& =\sum_{u \in V} f(s, u)+f^{\prime}(s, u) \\
& =f(s, V)+f^{\prime}(s, V) \\
& =|f|+\left|f^{\prime}\right|
\end{aligned}
$$

Augmenting Paths

expansion path p : simple path from s to t in the rest network G_{f}. Rest capacity $c_{f}(p)=\min \left\{c_{f}(u, v):(u, v)\right.$ edge in $\left.p\right\}$

Consequence

Strategy for an algorithm:
With an expansion path p in G_{f} the flow $f \oplus f_{p}$ defines a new flow with value $\left|f \oplus f_{p}\right|=|f|+\left|f_{p}\right|>|f|$.

Flow in G_{f}

Theorem 34

The mapping $f_{p}: V \times V \rightarrow \mathbb{R}$,

$$
f_{p}(u, v)= \begin{cases}c_{f}(p) & \text { if }(u, v) \text { edge in } p \\ -c_{f}(p) & \text { if }(v, u) \text { edge in } p \\ 0 & \text { otherwise }\end{cases}
$$

provides a flow in G_{f} with value $\left|f_{p}\right|=c_{f}(p)>0$
f_{p} is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $\left|f_{p}\right|=\sum_{v \in V} f_{p}(s, v)=f_{p}(s, u)=c_{f}(p)$.

Max-Flow Min-Cut Theorem

Theorem 35

Let f be a flow in a flow network $G=(V, E, c)$ with source s and $\operatorname{sink} t$ The following statementsa are equivalent:
f is a maximal flow in G
The rest network G_{f} does not provide any expansion paths It holds that $|f|=c(S, T)$ for a cut (S, T) of G.

Proof

- $(3) \Rightarrow(1)$:

It holds that $|f| \leq c(S, T)$ for all cuts S, T. From $|f|=c(S, T)$ it follows that $|f|$ is maximal.(1) \Rightarrow (2):
f maximal Flow in G. Assumption: G_{f} has some expansion path $\left|f \oplus f_{p}\right|=|f|+\left|f_{p}\right|>|f|$. Contradiction.

Proof $(2) \Rightarrow(3)$

Assumption: G_{f} has no expansion path
Define $S=\left\{v \in V\right.$: there is a path $s \rightsquigarrow v$ in $\left.G_{f}\right\}$.
$(S, T):=(S, V \backslash S)$ is a cut: $s \in S, t \in T$.
Let $u \in S$ and $v \in T$. Then $c_{f}(u, v)=0$, also $c_{f}(u, v)=c(u, v)-f(u, v)=0$.
Somit $f(u, v)=c(u, v)$.
Thus

$$
|f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)=\sum_{u \in S} \sum_{v \in T} c(u, v)=C(S, T) .
$$

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative flow egdes are usually not stored because their value always equals the negated value of the antiparallel edge.
$f(u, v) \leftarrow f(u, v)+c_{f}(p)$
$f(v, u) \leftarrow f(v, u)-c_{f}(p)$
is then transformed to
if $(u, v) \in E$ then
$f(u, v) \leftarrow f(u, v)+c_{f}(p)$
else

$$
\left\lfloor f(v, u) \leftarrow f(v, u)-c_{f}(p)\right.
$$

Analysis

- The Ford-Fulkerson algorithm does not necessarily have to converge for irrational capacities. For integers or rational numbers it terminates.
■ For an integer flow, the algorithms requires maximally $\left|f_{\text {max }}\right|$ iterations of the while loop (because the flow increases minimally by 1). Search a single increasing path (e.g. with DFS or BFS) $\mathcal{O}(|E|)$ Therefore $\mathcal{O}\left(f_{\max }|E|\right)$.

With an unlucky choice the algorithm may require up to 2000 iterations here.

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G_{f} the expansion path of shortest possible length (e.g. with BFS)

Application: maximal bipartite matching

Given: bipartite undirected graph $G=(V, E)$.
Matching $M: M \subseteq E$ such that $|\{m \in M: v \in m\}| \leq 1$ for all $v \in V$. Maximal Matching M : Matching M, such that $|M| \geq\left|M^{\prime}\right|$ for each matching M^{\prime}.

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a bipartite graph with source s and $\operatorname{sink} t$, with directed edges from s to L, from L to R and from R to t. Each edge has capacity 1 .

Integer number theorem

Theorem 37

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each $f(u, v), u, v \in V$.
[without proof]
Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching

$$
M=\{(u, v): f(u, v)=1\}
$$

Disclaimer

These slides contain the most important formalities around the Push-Relabel algorithm and its correctness. One example is still missing. We motivate the algorithm in the lectures and give more examples there. The conception of this lecture taken from Tim Roughgarden (Stanford) https://www.youtube.com/watch?v=0hI89H39USg

Beispiel

Here, the Ford-Fulkerson algorithm (and Edmonds-Karp) executes $\Omega\left(k^{2}\right)$ steps.

Algorithmus Push (u, v)

The residual network G_{f} remains defined for a pre-flow as before for a flow.

if $\alpha_{f}(u)>0$ then

if $c_{f}(u, v)>0$ in G_{f} then $\Delta \leftarrow \min \left\{c_{f}(u, v), \alpha_{f}(u)\right\}$ $f(u, v) \leftarrow f(u, v)+\Delta$.

Pre-Flow

A pre-flow $f: V \times V \rightarrow \mathbb{R}$ is a flow with a relaxed flow conservation condition:

- Bounded Capacity

For all $u, v \in V: f(u, v) \leq c(u, v)$.
■ Skew Symmetry:
For all $u, v \in V: f(u, v)=-f(v, u)$.

- Relaxed flow condition

For all $u \in V \backslash\{s, t\}$:

$$
\alpha_{f}(u):=\sum_{v \in V} f(v, u) \geq 0 .
$$

node with excess $\alpha_{f}(u)=3+2-1-2=2$.

The quantitiy $\alpha_{f}(u)$ is called excess of f at u

Height Function

A height function $h V \rightarrow \mathbb{N}_{0}$ on G will make sure that the flow is not pushed infinitely often in circles. Moreover, the following invariants makes sure that s keeps being disconnected from t in the residual network.

Invariants of the height function

$$
\begin{aligned}
& h(s)=n \\
& h(t)=0 \\
& \text { for each } u, v \in V \text { with } c_{f}(u, v)>0 \text { it holds that } h(u) \leq h(v)+1 .
\end{aligned}
$$

Beispiel

Edges in the residual network go at most down by one (or stay on the same height or go up)

Strategies

Ford-Fulkerson (conservative)

Invariant: flow conservation
Steps: augmenting paths
Goal: separate s from t in the residual network.

Push-Relabel

Invariant: height invariant (no augmenting path!)
Steps: push flow
Goal: achieve flow conservation

No Augmenting Path

The length of a path from s to t in the residual network is at most $n-1$. Because for each edge (u, v) with $c_{f}(u, v)>0$ it holds that $h(v) \geq h(u)-1$ and since $h(s)=n$ and $h(t)=0$ (thus a path from height n to height 0 requires at least n steps), no augmenting path exists when the invariants are preserved.

Push-Relabel-Algorithmus
 ush-Relabel-Algorithmus

Input: Flow graph $G=(V, E, c)$, with source s and sink $t n:=|v|$
$h(s) \leftarrow n$
foreach $v \neq s$ do $h(v) \leftarrow 0$
foreach $(u, v) \in E$ do $f(u, v) \leftarrow 0$
foreach $(s, v) \in E$ do $f(s, v) \leftarrow c(s, v)$
while $\exists u \in V \backslash\{s, t\}: \alpha_{f}(u)>0$ do
choose u with $\alpha_{f}(u)>0$ and maximal $h(u)$
if $\exists v \in V: c_{f}(u, v)>0 \wedge h(v)=h(u)-1$ then

```
        push \((u, v)\)
                                    // push
```

 else
 $$
h(u) \leftarrow h(u)+1 \quad \text { // relabel }
$$

Correctness: Invariants Lemma

Lemma 38

During the execution of the Push-Relabel algorithm, the invariants for the height functions are preserved

Immediate conclusion: when the Push-Relabel algorithm terminates, it terminates with a max-flow.

Termination and Running Time

```
Theorem 39
The Push-Relabel algorithm terminates after
O
O
```

The proof is conducted in the following separately for relabel and push.

Invariants-Lemma: Proof

Proof:

After initialization, the invariants are fulfilled because only for edges (s, u) the height difference less than -1 , but there we have $c_{f}(s, u)=0$ Invariants on s and t are preserved because the height of s and t is never changed.
Execution of push (u, v) can at most yield a new edge (v, u) in the residual network with $h(v)>h(u)$
Execution of relabel takes place only when there is no downward edge. Thus after a relabel it holds that $h(u) \geq h(v)-1$ for all edges (u, v)

Key Lemma

```
Lemma 40
Let f be a pre-flow in G If }\mp@subsup{\alpha}{f}{}(u)>0\mathrm{ holds for some node }u\inV-{s,t}
then there is some path p:u\rightsquigarrows in the residual network G}\mp@subsup{G}{f}{
```


Key Lemma: Proof

Proof: Let $A:=\{u \in V: \exists p: s \rightsquigarrow u$ mit $f(e)>0 \forall e \in p\}$ and $B:=V \backslash A$. For each $u \in A$ there is a path from s with positive flow. Therefore in the residual network there is a path from u to s.
Let $u \in B$. Then $\sum_{v \in V} f(v, u) \geq 0$, because f is a pre-flow.

$$
\text { But also } \sum_{v \in V} \sum_{u \in B} f(v, u)=\underbrace{\sum_{v \in A} \sum_{u \in B} f(v, u)}_{\leq 0}+\underbrace{\sum_{v \in B} \sum_{u \in B} f(v, u)}_{=0} \leq 0 \text { because }
$$ ≤ 0

there cannot be an edge with postiive weight from A to B and for each edge within B it holds that $f(u, v)=-f(v, u) . \Rightarrow \alpha_{f}(u)=0 \forall u \in B$. Thus $\alpha_{f}(u)>0$ implies that $u \in A$.

Number Relabels

From the previous corollary immediately follows

Corollary 42

The Push-Relabel algorithm executes $\mathcal{O}\left(n^{2}\right.$ relabel operations.

Maximum Node Height

Corollary 41

During the execution of the Push-Relabel algorithm it holds that $h(u)<$ $2 n$ for all $u \in V$.

Proof:

Mainlemma: for each node t with $\alpha_{f}(u)>0$ there is a path $p: u \rightsquigarrow s$ in residual network

Height invariants: edges in G_{f} go down by at most one step. , $h(s)=n$.
Maximal length of $p: u \rightsquigarrow s$ (no cycles!) is $n-1$. \Rightarrow Maximum height of node is $n+n-1=2 n-1$.

(Non-)Saturating Pushes

$\operatorname{push}(u, v)$ is called

- saturating, if $c_{f}(u, v) \leq \alpha_{f}(u)$
$\alpha_{f}=3$

$$
\alpha_{f}=1
$$

($c_{f}=2$
$\rightarrow v$
\Rightarrow

\&
v

■ non-saturating, if $c_{f}(u, v)>\alpha_{f}(u)$
$\alpha_{f}=3$

Number Saturating Pushes

Lemma 43

Between two non-saturing pushes an the same edge (u, v), the PushRelabel algorithm executes at least two relabel operations.

Immediate conlusion: there are $\mathcal{O}\left(n^{3}\right)$ saturating push operations overal because for each node by corollary 41 there are at $\mathcal{O}(n)$ relabels.

Number Non-Saturating pushes

Lemma 44

Between two relabel-operations, the Push-Relabel algorithm executes at most n non-saturating pushes.

Immediate conlusion: there are $\mathcal{O}\left(n^{3}\right)$ non-saturating push operations overal because by corollary 42 there are $\mathcal{O}\left(n^{2}\right)$ relabel operations.

Proof: Number Saturating Pushes

Proof:

After a saturing push (u, v) (with $h(u)=h(v)+1$) edge (u, v) disappears from the residual network.
In order to (u, v) to reappear on the residual network, $\operatorname{push}(v, u)$ (reverse edge) has to be executed. But before it must hold that $h(v)=h(u)+1$ therefore to relabels of v are required.
Two more relabels are required on u before a call to push $\left(u, v^{\prime \prime}\right)$

Proof: Number Non-saturating pushes

Proof:

$$
\text { Let } A_{f}:=\left\{v \in V: \alpha_{f}(v)>0\right\}
$$

Choice of u for push: $u \in A_{f}$ with $h(u) \geq h(v)$ for all $v \in A_{f}$. During a non-saturating push u disappears from A_{f}. During this push and following pushes only $v \in A_{f}$ with $h(v)<h(u)$ are added to $A_{f^{-}}$ Before a new relabel has been executed, it holds thus that $u \notin A_{f}$. Because this argument holds for all chosen u, until the next relabel operation at most n non-saturating pushes can be executed.

The Free Lunch

30. Parallel Programming I

Moore's Law and the Free Lunch, Hardware Architectures, Parallel Execution, Flynn's Taxonomy, Multi-Threading, Parallelism and Concurrency, C++ Threads, Scalability: Amdahl and Gustafson, Data-parallelism, Task-parallelism, Scheduling
[Task-Scheduling: Cormen et al, Kap. 27] [Concurrency, Scheduling: Williams, Kap. 1.1-1.2]

Moore's Law

Observation by Gordon E. Moore:
The number of transistors on integrated circuits
doubles approximately every two years.

The free lunch is over ${ }^{50}$
${ }^{50}$ "The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb's Journal, 2005

For a long time...

■ the sequential execution became faster ("Instruction Level Parallelism", "Pipelining", Higher Frequencies)
■ more and smaller transistors = more performance
■ programmers simply waited for the next processor generation

Trends

Today

■ the frequency of processors does not increase significantly and more (heat dissipation problems)

- the instruction level parallelism does not increase significantly any more
- the execution speed is dominated by memory access times (but caches still become larger and faster)

Multicore

■ Use transistors for more compute cores
■ Parallelism in the software
■ Programmers have to write parallel programs to benefit from new hardware

Forms of Parallel Execution

■ Vectorization

- Pipelining
- Instruction Level Parallelism

■ Multicore / Multiprocessing

- Distributed Computing

Pipelining in CPUs

\section*{| Fetch Decode | Execute \quad Data Fetch \quad Writeback |
| :--- | :--- | :--- | :--- |}

Multiple Stages
■ Every instruction takes 5 time units (cycles)
■ In the best case: 1 instruction per cycle, not always possible ("stalls") Paralellism (several functional units) leads to faster execution.

Vectorization

Parallel Execution of the same operations on elements of a vector (register)
skalar

vector
vector

ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute independent instructions in parallel.
■ Pipelining

- Superscalar CPUs (multiple instructions per cycle)

■ Out-Of-Order Execution (Programmer observes the sequential execution)
■ Speculative Execution ()

Shared vs. Distributed Memory

Shared Memory
CPU CPU CPU

Mem

Distributed Memory

CPU	CPU

Interconnect

Shared vs. Distributed Memory Programming

- Categories of programming interfaces

■ Communication via message passing

- Communication via memory sharing
- It is possible:

■ to program shared memory systems as distributed systems (e.g. with message passing MPI)
■ program systems with distributed memory as shared memory systems (e.g. partitioned global address space PGAS)

Shared Memory Architectures

■ Multicore (Chip Multiprocessor - CMP)

- Symmetric Multiprocessor Systems (SMP)

■ Simultaneous Multithreading (SMT = Hyperthreading)
■ one physical core, Several Instruction Streams/Threads: several virtual cores
■ Between ILP (several units for a stream) and multicore (several units for several streams). Limited parallel performance.

- Non-Uniform Memory Access (NUMA)

Same programming interface

Overview

CMP

CPU
CPU

Memory

SMP

NUMA

Flynn's Taxonomy

An Example

AMD Bulldozer: between
CMP and SMT

- $2 x$ integer core
- 1x floating point core

Massively Parallel Hardware

[General Purpose] Graphical Processing Units ([GP]GPUs)

- Revolution in High Performance Computing

■ Calculation 4.5 TFlops vs. 500 GFlops
■ Memory Bandwidth 170 GB/s vs. 40 GB/s

- SIMD
- High data parallelism

- Requires own programming model. Z.B. CUDA / OpenCL

Processes and Threads

30.3 Multi-Threading, Parallelism and Concurrency

Why Multithreading?

Multithreading conceptually

Thread switch on one core (Preemption)

Thread Safety

Thread Safety means that in a concurrent application of a program this always yields the desired results.
Many optimisations (Hardware, Compiler) target towards the correct execution of a sequential program.
Concurrent programs need an annotation that switches off certain optimisations selectively.

Parallelität vs. Concurrency

■ Parallelism: Use extra resources to solve a problem faster
■ Concurrency: Correctly and efficiently manage access to shared resources
■ Begriffe überlappen offensichtlich. Bei parallelen Berechnungen besteht fast immer Synchronisierungsbedarf.

Example: Caches

- Access to registers faster than to shared memory.
- Principle of locality.

■ Use of Caches (transparent to the programmer)
If and how far a cache coherency is guaranteed depends on the used system.

C++11 Threads

```
void hello(int id){
    std::cout << "hello from " << id << "\n";
}
int main(){
    std::vector<std::thread> tv(3);
    int id = 0;
    for (auto & t:tv)
    t = std::thread(hello, ++id);
    std::cout << "hello from main \n";
    for (auto & t:tv)
    for (auto &
    return 0;
}
```


C++11 Threads

30.4 C++ Threads

\qquad

```
#include <iostream>
#include <thread>
void hello(){
    std::cout << "hello\n";
}
int main(){
    // create and launch thread t
    std::thread t(hello);
    // wait for termination of }
    t.join();
    return 0;
}
```


Nondeterministic Execution!

One execution:
hello from main hello from 2 hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0 hello from hello from 1

2

Technical Detail

To let a thread continue as background thread:
void background() ;
void someFunction() \{
std: :thread t(background);
t. detach();
\} // no problem here, thread is detached

Scalability

In parallel Programming:

- Speedup when increasing number p of processors
- What happens if $p \rightarrow \infty$?

■ Program scales linearly: Linear speedup.

Parallel Performance

Given a fixed amount of computing work W (number computing steps) Sequential execution time T_{1}
Parallel execution time on p CPUs
■ Perfection: $T_{p}=T_{1} / p$
■ Performance loss: $T_{p}>T_{1} / p$ (usual case)

- Sorcery: $T_{p}<T_{1} / p$

Parallel Speedup

Parallel speedup S_{p} on p CPUs:

$$
S_{p}=\frac{W / T_{p}}{W / T_{1}}=\frac{T_{1}}{T_{p}} .
$$

■ Perfection: linear speedup $S_{p}=p$
■ Performance loss: sublinear speedup $S_{p}<p$ (the usual case)

- Sorcery: superlinear speedup $S_{p}>p$

Efficiency: $E_{p}=S_{p} / p$

Amdahl's Law: Ingredients

Computational work W falls into two categories
■ Paralellisable part W_{p}
■ Not parallelisable, sequential part W_{s}
Assumption: W can be processed sequentially by one processor in W time units $\left(T_{1}=W\right)$:

$$
\begin{aligned}
& T_{1}=W_{s}+W_{p} \\
& T_{p} \geq W_{s}+W_{p} / p
\end{aligned}
$$

Amdahl's Law

$$
S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{W_{s}+W_{p}}{W_{s}+\frac{W_{p}}{p}}
$$

Illustration Amdahl's Law

Amdahl's Law

With sequential, not parallelizable fraction λ : $W_{s}=\lambda W, W_{p}=(1-\lambda) W$:

$$
S_{p} \leq \frac{1}{\lambda+\frac{1-\lambda}{p}}
$$

Thus

$$
S_{\infty} \leq \frac{1}{\lambda}
$$

Amdahl's Law is bad news

All non-parallel parts of a program can cause problems

Gustafson's Law

- Fix the time of execution
- Vary the problem size.
- Assumption: the sequential part stays constant, the parallel part becomes larger

Gustafson's Law

Work that can be executed by one processor in time T :

$$
W_{s}+W_{p}=T
$$

Work that can be executed by p processors in time T :

$$
W_{s}+p \cdot W_{p}=\lambda \cdot T+p \cdot(1-\lambda) \cdot T
$$

Speedup:

$$
\begin{aligned}
S_{p} & =\frac{W_{s}+p \cdot W_{p}}{W_{s}+W_{p}}=p \cdot(1-\lambda)+\lambda \\
& =p-\lambda(p-1)
\end{aligned}
$$

Illustration Gustafson's Law

Amdahl vs. Gustafson

Amdahl vs. Gustafson

The laws of Amdahl and Gustafson are models of speedup for parallelization.
Amdahl assumes a fixed relative sequential portion, Gustafson assumes a fixed absolute sequential part (that is expressed as portion of the work W_{1} and that does not increase with increasing work).
The two models do not contradict each other but describe the runtime speedup of different problems and algorithms.

Parallel Programming Paradigms

■ Task Parallel: Programmer explicitly defines parallel tasks.
■ Data Parallel: Operations applied simulatenously to an aggregate of individual items.

30.6 Task- and Data-Parallelism

Example Data Parallel (OMP)

```
double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
    sum += A[i];
return sum;
```


Example Task Parallel (C++11 Threads/Futures)

```
double sum(Iterator from, Iterator to)
{
    auto len = from - to;
    if (len > threshold){
        auto future = std::async(sum, from, from + len / 2);
        return sumS(from + len / 2, to) + future.get();
    }
    else
        return sumS(from, to);
}
```


Example: Fibonacci P-Fib

```
if n\leq1 then
    return n
else
    x\leftarrow spawn P-Fib}(n-1
    y\leftarrow spawn P-Fib}(n-2
    sync
    return }x+y
```


Work Partitioning and Scheduling

- Partitioning of the work into parallel task (programmer or system)
- One task provides a unit of work

■ Granularity?

- Scheduling (Runtime System)
- Assignment of tasks to processors

■ Goal: full resource usage with little overhead

P-Fib Task Graph

P-Fib Task Graph

Performance Model

- p processors
- Dynamic scheduling
- T_{p} : Execution time on p processors

Question

■ Each Node (task) takes 1 time unit.

- Arrows depict dependencies.
- Minimal execution time when number of processors $=\infty$?

Performance Model

■ T_{p} : Execution time on p processors

- T_{1} : work: time for executing total work on one processor
- T_{1} / T_{p} : Speedup

Performance Model

- T_{∞} : span: critical path, execution time on ∞ processors. Longest path from root to sink.
■ T_{1} / T_{∞} : Parallelism: wider is better
■ Lower bounds:

$$
\begin{aligned}
& T_{p} \geq T_{1} / p \quad \text { Work law } \\
& T_{p} \geq T_{\infty} \quad \text { Span law }
\end{aligned}
$$

Proof of the Theorem

Assume that all tasks provide the same amount of work.
■ Complete step: p tasks are available.
■ incomplete step: less than p steps available
Assume that number of complete steps larger than $\left\lfloor T_{1} / p\right\rfloor$. Executed work $\geq\left\lfloor T_{1} / p\right\rfloor \cdot p+p=T_{1}-T_{1} \bmod p+p>T_{1}$. Contradiction. Therefore maximally $\left\lfloor T_{1} / p\right\rfloor$ complete steps.
We now consider the graph of tasks to be done. Any maximal (critical) path starts with a node t with $\mathrm{deg}^{-}(t)=0$. An incomplete step executes all available tasks t with $\mathrm{deg}^{-}(t)=0$ and thus decreases the length of the span. Number incomplete steps thus limited by T_{∞}.

Consequence

$$
\text { if } p \ll T_{1} / T_{\infty} \text {, i.e. } T_{\infty} \ll T_{1} / p \text {, then } T_{p} \approx T_{1} / p \text {. }
$$

Fibonacci

$T_{1}(n) / T_{\infty}(n)=\Theta\left(\phi^{n} / n\right)$. For moderate sizes of n we can use a lot of processors yielding linear speedup.

Granularity: how many tasks?

■ \#Tasks = Maximum?
■ Example: 9 units of work. 3 cores. Scheduling of 9 sequential tasks.

Exclusive utilization:

P1	s1	s4	s7
P2	s2	s5	s8
P3	s3	s6	s9

Execution Time: $3+\varepsilon$ Units

Foreign thread disturbing:

P1	s1			
P2	s2	s4	s5	s8
P3	s3	s6	s7	s9

Execution Time: 4 Units. Full utilization.

Granularity: how many tasks?

■ \#Tasks = \#Cores?
■ Problem if a core cannot be fully used

- Example: 9 units of work. 3 core.

Scheduling of 3 sequential tasks.

P1	s1
P2	s2
P3	s3

Execution Time: 3 Units

Execution Time: 5 Units

Granularity: how many tasks?

- \#Tasks = Maximum?
- Example: 10^{6} tiny units of work.

Execution time: dominiert vom Overhead.

Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that the overhead can be neglected.

31. Parallel Programming II

Shared Memory, Concurrency, Excursion: lock algorithm (Peterson), Mutual Exclusion Race Conditions [C++ Threads: Williams, Kap. 2.1-2.2], [C++ Race Conditions: Williams, Kap. 3.1] [C++ Mutexes: Williams, Kap. 3.2.1, 3.3.3]

Example: Parallelism of Mergesort

■ Work (sequential runtime) of Mergesort $T_{1}(n)=\Theta(n \log n)$.

- Span $T_{\infty}(n)=\Theta(n)$
- Parallelism $T_{1}(n) / T_{\infty}(n)=\Theta(\log n)$ (Maximally achievable speedup with $p=\infty$ processors)

31.1 Shared Memory, Concurrency

Sharing Resources (Memory)

■ Up to now: fork-join algorithms: data parallel or divide-and-conquer

- Simple structure (data independence of the threads) to avoid race conditions- Does not work any more when threads access shared memory.

Protect the shared state

■ Method 1: locks, guarantee exclusive access to shared data.
■ Method 2: lock-free data structures, exclusive access with a much finer granularity.
■ Method 3: transactional memory (not treated in class)

Managing state

Managing state: Main challenge of concurrent programming.
Approaches:

- Immutability, for example constants.

■ Isolated Mutability, for example thread-local variables, stack.

- Shared mutable data, for example references to shared memory, global variables

Canonical Example

```
class BankAccount {
    int balance = 0;
public:
    int getBalance(){ return balance; }
    void setBalance(int x) { balance = x; }
    void withdraw(int amount) {
        int b = getBalance();
        setBalance(b - amount);
    }
    // deposit etc.
};
(correct in a single-threaded world)
```


Bad Interleaving

Parallel call to widthdraw(100) on the same account

```
Thread }
int b = getBalance();
int b = getBalance();
setBalance(b-amount);
```

setBalance(b-amount);

Tempting Traps

```
also WRONG:
void withdraw(int amount) {
    setBalance(getBalance() - amount);
}
```

Assumptions about atomicity of operations are almost always wrong

Tempting Traps

```
WRONG:
void withdraw(int amount) {
    int b = getBalance();
    if (b==getBalance())
        setBalance(b - amount);
}
Bad interleavings cannot be solved with a repeated reading
```


Mutual Exclusion

We need a concept for mutual exclusion
Only one thread may execute the operation withdraw on the same account at a time.
The programmer has to make sure that mutual exclusion is used.

More Tempting Traps

```
class BankAccount {
    int balance = 0;
    bool busy = false;
public:
    void withdraw(int amount) {
        while (busy); // spin wait
        busy = true;
        int b = getBalance();
        setBalance(b - amount);
        busy = false;
    }
    // deposit would spin on the same boolean
```

\};

How ist this correctly implemented?

- We use locks (mutexes) from libraries
- They use hardware primitives, Read-Modify-Write (RMW) operations that can, in an atomic way, read and write depending on the read result.
- Without RMW Operations the algorithm is non-trivial and requires at least atomic access to variable of primitive type.

Just moved the problem!

Thread 1
while (busy); //spin
busy = true;
int $\mathrm{b}=$ getBalance();
setBalance(b - amount);

Thread 2

```
while (busy); //spin
busy = true;
int b = getBalance();
setBalance(b - amount);
```


Critical Sections and Mutual Exclusion

Critical Section

Piece of code that may be executed by at most one process (thread) at a time.

Mutual Exclusion

Algorithm to implement a critical section

acquire_mutex();	// entry algorithm $\backslash \backslash$
\ldots	// critical section
release_mutex();	// exit algorithm

Almost Correct

```
class BankAccount {
    int balance = 0;
    std::mutex m; // requires #include <mutex>
public:
    void withdraw(int amount) {
        m.lock();
        int b = getBalance();
        setBalance(b - amount);
        m.unlock();
    }
};
What if an exception occurs?
```


Required Properties of Mutual Exclusion

Correctness (Safety)

- At most one process executes the critical section code

Liveness

- Acquiring the mutex must terminate in finite time when no process executes in the critical section

RAll Approach

```
class BankAccount {
    int balance = 0;
    std::mutex m;
public:
    void withdraw(int amount) {
        std::lock_guard<std::mutex> guard(m);
        int b = getBalance();
        setBalance(b - amount);
    } // Destruction of guard leads to unlocking m
};
What about getBalance / setBalance?
```


Reentrant Locks

Reentrant Lock (recursive lock)
■ remembers the currently affected thread;

- provides a counter

■ Call of lock: counter incremented
■ Call of unlock: counter is decremented. If counter = 0 the lock is released.

31.3 Race Conditions

Account with reentrant lock

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    int getBalance(){ guard g(m); return balance;
    }
    void setBalance(int x) { guard g(m); balance = x;
    }
    void withdraw(int amount) { guard g(m);
        int b = getBalance();
        setBalance(b - amount);
    }
};
```


Race Condition

- A race condition occurs when the result of a computation depends on scheduling.
- We make a distinction between bad interleavings and data races
- Bad interleavings can occur even when a mutex is used.

Example: Stack

Stack with correctly synchronized access:

```
template <typename T>
class stack{
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    bool isEmpty(){ guard g(m); ... }
    void push(T value){ guard g(m); ... }
    T pop(){ guard g(m); ...}
};
```


Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.
Thread 1 pushes a value and checks that the stack is then non-empty. Thread 2 reads the topmost value using peek().

Thread 1	Thread 2
s.push (5);	
assert (!s.isEmpty ());	int value $=$ s.pop ();
	s.push (value);

Forgot to implement peek. Like this?
template <typename T>
T peek (stack<T> \&s) \{ T value = s.pop(); s.push(value);
return value;
\}

Despite its questionable style the code is correct in a sequential world Not so in concurrent programming.

The fix

Peek must be protected with the same lock as the other access methods

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of abstraction

In the following we consider a different form of race condition: data race.

Why wrong?

It looks like nothing can go wrong because the update of count happens in a "tiny step".
But this code is still wrong and depends on language-implementation details you cannot assume.
This problem is called Data-Race
Moral: Do not introduce a data race, even if every interleaving you can think of is correct. Don't make assumptions on the memory order.

How about this?

```
class counter{
    int count = 0;
    std::recursive_mutex m
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    int increase(){
        guard g(m); return ++count;
    }
    int get(){
        return count;
    }
}
```


A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior caused by insufficiently synchronized accesses of a shared resource by multiple threads, e.g. Simultaneous read/write or write/write of the same memory location
Bad Interleaving (High Level Race Condition) Erroneous program behavior caused by an unfavorable execution order of a multithreaded algorithm, even if that makes use of otherwise well synchronized resources.

We look deeper

```
class C {
public:
    void f() {
(A) }\textrm{x}=1\mathrm{ ;
(B) y = 1;
    }
    void g() {
(C) int a = y;
(D) int b = x;
        assert(b >= a);<
    }
}
```


int $\mathrm{x}=0$;

int $y=0 ;$
void $f()$ \{

$\mathrm{y}=1$;

int $\mathrm{a}=\mathrm{y}$
int $\mathrm{b}=\mathrm{x}$
assert (b >= a);
\}
int $\mathbf{x}=0$; There is no interleaving of f and g that
int $\mathrm{y}=0$; would cause the assertion to fail:

There is no interleaving of f and g that would cause the assertion to fail:

- ABCD
- $A C B D \checkmark$
- ACDB
- CABD
- CCDB \checkmark
- CDAB

It can nevertheless fail!

From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of memory accesses is provided as in the sourcecode:

- Some memory accesses may be even optimized away completely!
- Huge potential for optimizations - and for errors, when you make the wrong assumptions

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes that do not affect the semantics of a sequentially executed program

```
void f() {
    x = 1;
    y = x+1;
    z = x+1;
}
```

void $f()$ \{
$\mathrm{x}=1$;
$\mathrm{z}=\mathrm{x}+1$; $y=x+1 ;$ \}

Example: Self-made Rendevouz

```
int x; // shared
void wait(){
    x = 1;
    while(x == 1);
}
void arrive(){
    x = 2;
}
```

Assume thread 1 calls wait, later thread 2 calls arrive. What happens?

Compilation

Source	Without optimisation	With optimisation
int x; // shared		
	wait:	wait:
void wait()\{	movl \$0x1, x	movl \$0x1, x
$\mathrm{x}=1$;	test:	test: \longleftarrow
while($\mathrm{x}==1$;	mov x, \%eax if equa	jmp test ${ }^{\text {always }}$
\}	cmp \$0x1, \%eax	
void arrive() \{	arrive:	arrive
$\mathrm{x}=2$;	movl \$0x2, x	movl \$0x2, x
\}		

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all instructions for performance reasons:

- Most processors have a pipelined architecture and can execute (parts of) multiple instructions simultaneously. They can even reorder instructions internally.
- Each processor has a local cache, and thus loads/stores to shared memory can become visible to other processors at different times

Memory Hierarchy

Registers

L1 Cache

L2 Cache

System Memory
slow,high latency,low cost,high capacity

An Analogy

Schematic

Memory Models

When and if effects of memory operations become visible for threads, depends on hardware, runtime system and programming language.
A memory model (e.g. that of C^{++}) provides minimal guarantees for the effect of memory operations

- leaving open possibilities for optimisation
- containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a mutex is used.

Atomic

Here also possible:

```
class C {
    std::atomic_int x{0}; // requires #include <atomic>
    std::atomic_int y{0};
public:
    void f() {
        x = 1;
        y = 1;
    }
    void g() {
        int a = y;
        int b = x;
        assert(b >= a); // cannot fail
    }
};
```


Alice's Cat vs. Bob's Dog

31.4 Appendix / Excursion: lock algorithm
not relevant for an exam

Required: Mutual Exclusion

Required: No Lockout When Free

Communication Types

■ Transient: Parties participate at the same time

■ Persistent: Parties participate at different times

Mutual exclusion: persistent communication

Access Protocol

Communication Idea 1

Problem!

Communication Idea 2

Different Scenario

Problem: No Mutual Exclusion

Checking Flags Twice: Deadlock

Access Protocol 2.2:provably correct

Access Protocol 2.2

Weniger schwerwiegend: Starvation

Final Solution

Peterson's Algorithm (not relevant for the exam)

for two processes is provable correct and free from starvation non-critical section
flag[me] = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first: while (flag[you] \&\& victim == me) \{\};
critical section
flag[me] = false The code assumes that the access to flag / victim is atomic and particularly linearizable or sequential consistent. An assumption that - as we will see below - is not necessarily given for normal variables. The Peterson-lock is not used on modern hardware.

General Problem of Locking remains

32. Parallel Programming III

Deadlock and Starvation Producer-Consumer, The concept of the monitor, Condition Variables [Deadlocks : Williams, Kap. 3.2.4-3.2.5] [Condition Variables: Williams, Kap. 4.1]

Deadlock Motivation

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
        guard g(m);
        withdraw(amount);
        to.deposit(amount);
    }
};
```


Deadlock

Deadlock: two or more processes are mutually blocked because each process waits for another of these processes to proceed.

Deadlock Motivation

Suppose BankAccount instances \mathbf{x} and y

Threads and Resources

- Grafically t and Resources (Locks)Thread t attempts to acquire resource a :
- Resource b is held by thread q : $s \longleftarrow b$

Deadlock - Detection

A deadlock for threads t_{1}, \ldots, t_{n} occurs when the graph describing the relation of the n threads and resources r_{1}, \ldots, r_{m} contains a cycle.

Back to the Example

```
class BankAccount {
    int id; // account number, also used for locking order
    std::recursive_mutex m; ...
public:
    void transfer(int amount, BankAccount& to){
        if (id < to.id){
            guard g(m); guard h(to.m);
            withdraw(amount); to.deposit(amount);
            } else {
            guard g(to.m); guard h(m);
            withdraw(amount); to.deposit(amount);
        }
    }
};
```


Techniques

- Deadlock detection detects cycles in the dependency graph. Deadlocks can in general not be healed: releasing locks generally leads to inconsistent state
- Deadlock avoidance amounts to techniques to ensure a cycle can never arise

■ Coarser granularity "one lock for all"

- Two-phase locking with retry mechanism

■ Lock Hierarchies
■ ..
■ Resource Ordering

C++11 Style

```
class BankAccount {
    std::recursive mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void transfer(int amount, BankAccount& to){
        std::lock(m,to.m); // lock order done by C++
        // tell the guards that the lock is already taken:
        guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
        withdraw(amount);
        to.deposit(amount);
    }
};
```


By the way...

```
class BankAccount {
    int balance = 0;
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
public:
    void withdraw(int amount) { guard g(m); ... }
    void deposit(int amount){ guard g(m); ... }
    void transfer(int amount, BankAccount& to){
withdraw (amount);
to.deposit(amount);
    }
};
This would have worked here also. But then for a very short amount of time, money disappears, which does not seem acceptable (transient inconsistency!)
```

Livelock: competing processes are able to detect a potential deadlock but make no progress while trying to resolve it
Starvation: the repeated but unsuccessful attempt to acquire a resource that was recently (transiently) free.

Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should become decoupled by some data structure.
Fundamental Data structure for building pipelines in software.

Sequential implementation (unbounded buffer)

```
class BufferS {
    std::queue<int> buf;
public:
    void put(int x){
        buf.push(x);
    }
    int get(){
        while (buf.empty()){} // wait until data arrive
        int x = buf.front();
        buf.pop();
        return x;
    }
```

\};

Well, then this?

```
void put(int x){
    guard g(m);
    buf.push(x);
}
int get(){
    m.lock();
    while (buf.empty()){
        m.unlock();
        m.lock();
    }
    int x = buf.front();
    buf.pop();
    m.unlock();
    return x;
}
```


How about this?

```
class Buffer {
    std::recursive_mutex m;
    using guard = std::lock_guard<std::recursive_mutex>;
    std::queue<int> buf;
public:
        void put(int x) { guard g(m);
            buf.push(x);
    }
    int get(){ guard g(m);
        while (buf.empty()){}
        int x = buf.front();
        buf.pop();
        return x;
    }
```

\};
void put(int x)\{
guard $g(m)$;
buf.push(x);
\}
int get()\{
m.lock();
while (buf.empty())\{
m.unlock();

Ok a little bit better, limits reactivity though.
std::this_thread::sleep_for(std::chrono::milliseconds(10)) m.lock();
\}
int $x=$ buf.front(); buf.pop();
m.unlock();
return x ;
\}

Moral

We do not want to implement waiting on a condition ourselves. There already is a mechanism for this: condition variables. The underlying concept is called Monitor.

Monitors vs. Locks

Monitor

Monitor abstract data structure equipped with a set of operations that run in mutual exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch Hansen (cf. Monitors - An Operating System Structuring Concept, C.A.R. Hoare 1974)

C.A.R. Hoare,

Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following mechanism:

Waiting on conditions: If a condition does not hold, then
■ Release the monitor lock

- Wait for the condition to become true
- Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

- Send signal to potentially waiting threads

Condition Variables

```
#include <mutex>
#include <condition_variable>
class Buffer {
    std::queue<int> buf;
    std::mutex m;
    // need unique_lock guard for conditions
    using guard = std::unique_lock<std::mutex>;
    std::condition_variable cond;
public:
    .
```


Technical Details

■ A thread that waits using cond. wait runs at most for a short time on a core. After that it does not utilize compute power and "sleeps".
■ The notify (or signal-) mechanism wakes up sleeping threads that subsequently check their conditions.

■ cond.notify_one signals one waiting thread

- cond.notify_all signals all waiting threads. Required when waiting thrads wait potentially on different conditions.

Condition Variables

```
class Buffer {
public:
    void put(int x){
        guard g(m);
        buf.push(x);
        cond.notify_one();
    }
    int get(){
        guard g(m);
        cond.wait(g, [&]{return !buf.empty();});
        int x = buf.front(); buf.pop();
        return x;
    }
```

\};

Technical Details

■ Many other programming langauges offer the same kind of mechanism. The checking of conditions (in a loop!) has to be usually implemented by the programmer.

```
Java Example
synchronized long get() {
    long x;
    while (isEmpty())
        try {
            wait ();
            } catch (InterruptedException e)
    x = doGet();
    return x;
}
synchronized put(long x){
    doPut(x);
    notify ();
}
```


By the way, using a bounded buffer..

```
class Buffer {
    CircularBuffer<int,128> buf; // from lecture 6
public:
    void put(int x){ guard g(m);
            cond.wait(g, [&]{return !buf.full();});
            buf.put(x);
            cond.notify_all();
    }
    int get(){ guard g(m);
        cond.wait(g, [&]{return !buf.empty();});
        cond.notify_all();
        return buf.get();
    }
};
```


Futures: Motivation

Up to this point, threads have been functions without a result: void action(some parameters)\{
$\}$
std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref-parameters

33. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of lock-free programming
[C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4, 5.2.7] [C++ Lockfree: Williams, Kap. 7.1.-7.2.1]

Futures: Motivation

Now we would like to have the following

```
T action(some parameters){
        return value;
}
std::thread t(action, parameters);
value = get_value_from_thread();
```

```
\}
```


We can do this already!

■ We make use of the producer/consumer pattern, implemented with condition variables
■ Start the thread with reference to a buffer

- We get the result from the buffer.

■ Synchronisation is already implemented

Reminder

```
template <typename T>
class Buffer {
    std::queue<T> buf;
    std::mutex m;
    std::condition_variable cond;
public:
    void put(T x){ std::unique_lock<std::mutex> g(m);
        buf.push(x);
        cond.notify_one();
    }
    T get(){ std::unique_lock<std::mutex> g(m);
        cond.wait(g, [&]{return (!buf.empty());});
        T x = buf.front(); buf.pop(); return x;
    }
};
```


Application

```
void action(Buffer<int>& c){
    // some long lasting operation ...
    c.put(42);
}
int main(){
    Buffer<int> c;
    std::thread t(action, std::ref(c));
    t.detach(); // no join required for free running thread
    // can do some more work here in parallel
    int val = c.get();
    // use result
    return 0;
}
```


Simpler: only one value

```
template <typename T>
```

template <typename T>
class Buffer {
class Buffer {
T value; bool received = false;
T value; bool received = false;
std::mutex m;
std::mutex m;
std::condition_variable cond;
std::condition_variable cond;
public:
public:
void put(T x){ std::unique_lockstd::mutex g(m);
void put(T x){ std::unique_lockstd::mutex g(m);
value = x; received = true;
value = x; received = true;
cond.notify_one();
cond.notify_one();
}
}
T get(){ std::unique_lockstd::mutex g(m);
T get(){ std::unique_lockstd::mutex g(m);
cond.wait(g, [\&]{return received;});
cond.wait(g, [\&]{return received;});
return value;
return value;
}
}
};

```
};
```


With features of $\mathrm{C}++11$

```
int action(){
    // some long lasting operation
    return 42;
}
int main(){
    std::future<int> f = std::async(action);
    // can do some work here in parallel
    int val = f.get();
    // use result
    return 0;
}
```


Disclaimer

The explanations above are simplified. The real implementation of a Future can deal with timeouts, exceptions, memory allocators and is generally written more closely to the unerlying operating system.

Example: Atomic Operations in Hardware

Read-Modify-Write

Concept of Read-Modify-Write: The effect of reading, modifying and writing back becomes visible at one point in time (happens atomically).

Application example CAS in C++11

```
We build our own (spin-)lock:
    std::atomic<bool> taken {false};
public:
    void lock(){
        bool old = false
        while (!taken.compare_exchange_strong(old=false, true)){}
    }
    void unlock(){
        bool old = true;
        assert(taken.compare_exchange_strong(old, false));
    }
};
```

```
class Spinlock{
```

```
class Spinlock{
```


Psudocode for CAS - Compare-And-Swap

```
```

bool CAS(int\& variable, int\& expected, int desired){

```
```

bool CAS(int\& variable, int\& expected, int desired){
if (variable == expected){
if (variable == expected){
variable = desired;
variable = desired;
return true;
return true;
@ }
@ }
O else{
O else{
expected = variable;
expected = variable;
return false;
return false;
}
}
}

```
}
```

```
    }
```

 }
 }

```
}
```


33.3 Lock-Free Programming

Ideas

Lock-free programming

Data structure is called
■ lock-free: at least one thread always makes progress in bounded time even if other algorithms run concurrently. Implies system-wide progress but not freedom from starvation.
■ wait-free: all threads eventually make progress in bounded time. Implies freedom from starvation.

Implication

- Programming with locks: each thread can block other threads indefinitely.
- Lock-free: failure or suspension of one thread cannot cause failure or suspension of another thread!

Progress Conditions

	Non-Blocking	Blocking
Everyone makes progress	Wait-free	Starvation-free
Someone makes progress	Lock-free	Deadlock-free

Lock-free programming: how?

Beobachtung:

- RMW-operations are implemented wait-free by hardware.

■ Every thread sees his result of a CAS or TAS in bounded time.
Idea of lock-free programming: read the state of a data sructure and change the data structure atomically if and only if the previously read state remained unchanged meanwhile.

Example: lock-free stack

Simplified variant of a stack in the following

- pop prüft nicht, ob der Stack leer ist
- pop gibt nichts zurück

(Blocking Version)

template <typename T>
class Stack \{
Node<T> *top=nullptr;
std::mutex m;
public:
void push(T val) \{ guard $g(m)$;
top $=$ new Node $\langle T>$ (val, top);
\}
void pop()\{ guard $g(m)$;
Node<T>* old_top = top;
top $=$ top->next;
delete old_top;
$\}$
(Node)

Lock-Free

template <typename T>
class Stack \{
std::atomic<Node<T>*> top \{nullptr\};
public:
void push(T val)\{
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));
\}
void pop()\{
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top->next)); delete old_top;
\}
\};

Push

void push(T val)\{

Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node->next, new_node));

\}

2 Threads:

Pop

```
void pop(){
    Node<T>* old_top = top;
    while (!top.compare_exchange_weak(old_top, old_top->next));
    delete old_top;
}
2 Threads:
```


Lock-Free Programming - Limits

■ Lock-Free Programming is complicated.
■ If more than one value has to be changed in an algorithm (example: queue), it is becoming even more complicated: threads have to "help each other" in order to make an algorithm lock-free.
■ The ABA problem can occur if memory is reused in an algorithm. A solution of this problem can be quite expensive.

[^0]: Algorithm
 Well-defined procedure to compute output data from input data

[^1]: ${ }^{2}$ Number fundamental operations

[^2]: ${ }^{4}$ In March 2019, David Harvey and Joris van der Hoeven have shown an $\mathcal{O}(n \log n)$ algorithm that is practically irrelevent yet. It is conjectured, but yet unproven that this is the best lower bound we can get.

[^3]: Would you always prefer interpolation search?
 No: worst case number of comparisons $\Omega(n)$.

[^4]: Special cases
 $k=1$: Minimum: Algorithm with n comparison operations trivial.
 $k=n$: Maximum: Algorithm with n comparison operations trivial.
 $k=\lfloor n / 2\rfloor$: Median.

[^5]: ${ }^{6}$ It will turn out in the induction step that the base case has to hold of some fixed $n_{0}>0$. Because an arbitrarily large value can be chosen for c and because there is a limited number of terms, this is a simple extension of the base case for $n=1$

[^6]: ${ }^{7}$ Analogously so for the copy-constructor and the move constructor

[^7]: ${ }^{42}$ There are slight variations of this problem. It is equivalent to the jealous husbands problem.

[^8]: ${ }^{43}$ For lazy deletion a pair of egde (or target node) and distance is required.

[^9]: ${ }^{44}$ like for the algorithm of the reflexive transitive closure of Warshall

[^10]: ${ }^{45}$ For a δ-graph the maximum number of relaxing steps before R contains only nodes with $\hat{f}(s)>\delta(s, t)$ is limited as well. The exact argument can be found in the seminal article Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost Paths".

[^11]: ${ }^{46}$ Such a cycle contains at least one node in S and one node in $V \backslash S$ and therefore at lease to edges between S and $V \backslash S$.

[^12]: ${ }^{49}$ because G is connected: $|V| \leq|E| \leq|V|^{2}$

[^13]: ${ }^{48}$ We do not go into details here.

