Datenstrukturen und Algorithmen

Exercise 9

FS 2020

Program of today

Feedback of last exercises
Recap Theory

In-Class Exercise

1. Feedback of last exercises

Levenshtein Distance

// D[n,m] = distance between x and y

// D[i,j] = distance between strings x[1..i] and y[1..j]
vector<vector<unsigned>> D(n+1,vector<unsigned>(m+1,0));
for (unsigned j = 0; j <=m; ++j)

Dol [3] = j;
for (unsigned i = 1; i <= n; ++i){
D[i] [0] = i;

for (unsigned j = 1; j <=m; ++j){
unsigned q = D[i-1]1[j-1] + (x[i-1]1!=y[j-11);
q = std::min(q,D[i] [j-1]+1);
q = std::min(q,D[i-1] [j1+1);
D[il [j] = q;
}
}

return D[n] [m];

Traveling Salesman

see master solution with detailed comments

Huffman Code- Frequencies: Hashmap!

std: :map<char, int> m;

char x; int n = O;

while (in.get(x)){
++m[x]; ++n;

}

std::cout << "n = " << n << " characters" << std::endl;

Huffman Code - Nodes: SharedPointers on a Heap

struct comparator {

bool operator() (const SharedNode a, const SharedNode b) const {
return a->frequency > b->frequency;

}

IE

// build heap
std: :priority_queue<SharedNode, std::vector<SharedNode>, comparator>
for (auto y: m){
q.push(std: :make_shared<Node>(y.first, y.second));
}

-

Huffman Code - Tree: SharedPointers in Tree

SharedNode left;
while (!q.empty()){
left = q.top();q.pop(Q);
if ('q.empty()){
auto right = q.top();q.popQ);
q.push(std: :make_shared<Node>(left, right));

2. Recap Theory

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V/
find v € V without neighbour/successor
(u,v) € E 7

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V/ ©(n)
find v € V without neighbour/successor

(u,v) € E 7

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor

(u,v) € E 7

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?)

(u,v) € E 7

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1)

Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1) ©O(deg™v)
Insert edge

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1) ©O(deg™v)
Insert edge O(1)

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1) ©O(deg™v)
Insert edge O(1) ©6(1)

Delete edge

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1) ©O(deg™v)
Insert edge O(1) ©6(1)
Delete edge O(1)

Quiz: Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg®v)
find v € V without neighbour/successor ©(n?) ©O(n)
(u,v) € E 7 O(1) ©O(deg™v)
Insert edge O(1) ©6(1)
Delete edge O(1) O(deg™v)

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
D (D (D (a) i

\I \b/ \I/ \2) distance 0
N D)

@ & L

D D D

& &) &)

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

/g;\ c a distance 0
d e E G @ e distance 1
O

Breadth-First-Search BFS

BFS starting from a:

BFS-Tree: Distances and Parents

c a distance 0

f b Q e distance 1

@ @ distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
0 c distance 0

\e> f distance 1

distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

0 c distance 0
z distance 1
O, &

@ @ @ distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
e distance 0

f distance 1

@ @ @ ° @ distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
e distance 0

distance 1

@ @ @ ° e distance 2

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically
sorted each?

N
©—D C—0O

number sortings number sortings number sortings

Quiz: Topological Sorting

In how many ways can the following directed graphs be topologically
sorted each?

N
©—D C—0O

number sortings number sortings number sortings

Shortest Paths: General Algorithm

Initialise ds and 7y ds[v] = oo, ms[v] = null for each v € V'
Set d[s] < 0
Choose an edge (u,v) € E
Relaxiere (u,v):
if ds[v] > d[u] + c¢(u, v) then
ds[v] < ds[u] + c(u,v)
Tsv] < u
Repeat 3 until nothing can be relaxed any more.
(until ds[v] < dslu] + c(u,v) VY(u,v) € E)

Dijkstra ShortestPath Basic Idea

Set V' of nodes is partitioned into

m the set)/ of nodes for which a shortest
path from s is already known,

m the set R = Uyens V7 (v) \ M of nodes
where a shortest path is not yet known
but that are accessible directly from M,

m the set of nodes that
have not yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V,
Output: Minimal weights d of the shortest paths and corresponding
predecessor node for each node.

foreach u € V do
ds[u] < o0o; ms[u] < null

ds[s] < 0; R < {s}
while R # () do
u < ExtractMin(R)
foreach v € N*(u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u,v)
Ts[v] < u
R+ RU{v}

General Weighted Graphs

Relax(u,v) (u,v € V, (u,v) € E)
if ds(v) > ds(u) + c(u,v) then

ds(v) + dg(u) + c(u,v)

return true

return false

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally 7 edges.

ds[i,v] = min{ds[i — 1,v], min (ds[i — 1, u] + c(u,v))

(uw)EE

ds[0, s] = 0,d,[0,v] = oo Vv # s.

Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

foreach v € V do

ds[u] < oo; ms[u] < null
ds[s] < 0;
fori < 1to |V]| do

f + false

foreach (u,v) € £ do

f <+ [V Relax(u, v)
if f = false then return true

return false;

3. In-Class Exercise

Maze Solver (BFS, DFS, Dijkstra) on code-expert

Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal /
being processed.

m black: node was discovered and entirely processed.

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge
m Grey node: Zyklus (“back-egde")
m Black node: forward- / cross edge

Questions?

	Feedback of last exercises
	Recap Theory
	In-Class Exercise

