Datenstrukturen und Algorithmen

Exercise 8

FS 2020



No exercise session

Even if no exercise sessions take place this week, we did not want to
deny you the exercise slides.



Program of today

Quiz

Feedback of last exercise



1. Quiz



Quiz: Stacking Boxes

m Given: n boxes with sizes w; X d; X h;
m Wanted: maximal height of a permitted stack

m Permitted stack: the base area of stacked
boxes must become strictly smaller in both
directions (width and depth)




Boxen Stapeln

We assume that there are enough boxes of a kind
such that each box is available in all orientations
(right hand side of the figure below).

Sa—

w

Box | 1 2 3 4 5 6
[wxdxh] | Ix2x3] [Ix3x2] [2x3x1] [3x4x5 [Bx5x4 [4x5x3




Boxen Stapeln

We assume that there are enough boxes of a kind
such that each box is available in all orientations
(right hand side of the figure below).

Design a DP Algorithm to find the maximum

height of a permitted stack @
h d

w

Box | 1 2 3 4 5 6
[wxdxh] | Ix2x3] [Ix3x2] [2x3x1] [3x4x5 [Bx5x4 [4x5x3




Solution Idea

m n xXn lable

m Entry at row ¢ and column j: height of highest possible stack
formed from maximally ¢ boxes and basement box ;.

[wxd [1x2] [1x3] [2x3] [3x4] [3x5] [4x5]
h 3 2 1 5! 4 3
1 3 2 1 5 4 3
2 3 2 4 8 8 8
3 3 2 4 9 8 11
4 3 2 4 9 8 12

Determination of the table: ©(n?), for each entry all entries in the row above must be considered. Computation of

the optimal solution by traversing back, worst case ©(n?)



Alternative Solution Idea

m 1 x n Table, topologically sorted! according to half-order stackability

m Entry at index j: height of highest possible stack with basement
box j.

[wxd [1x2] [1x3] [2x3] [3x4] [3x5] [4x5]
h 3 2 1 ) 4 3
3 2 4 9 8 12

Topological sort in ©(n?). Traverse from left to right in ©(n), overal ©(n2). Traversing back also ©(n?)



2. Feedback of last exercise



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ >iel Ui



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ >iel Ui
= prefixsum v



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ e U
= prefixsum v/
m Efficient computing er) = Zf;gl(yz‘ — /~L[l,r))2



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ Siel Vi
= prefixsum v

m Efficient computing enr) = Zf;zl(yi _ /i[l,r))Q
r— r— 2
= ey = S v — 75 (S0 w) " v



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ >iel Ui
= prefixsum v

m Efficient computing e ,) = Sy — u[m)Q
_ 12
= eun = Sin Y — o (S w)
m Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution



Piecewise Constant Approximation

Hyy:P =P+ > > (y— 1)’

IePicl

m As in exercise 1 efficient computation of mean: p; = ﬁ >iel Ui
= prefixsum v

m Efficient computing e ,) = Sy — u[m)Q
_ 12
= eun = Sin Y — o (S w)
m Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution = ?



Dynamic programming

m Definition of the DP table: two tables: B and V' with each
n+ 1 x 1 entries, B[k] contains the pointer to the end of the
best previous interval, V'[k]| contains the corresponding attainable
minimum of H,.

m Computation of an entry: for computing new entry in
Bk + 1] compute H for all partitions from 0 to k + 1 .

m Calculation order: from left to right

m Extracting the solution: construct intervals with B[n] going
from right to left, Minimum is given by V'[n]



Sums

Given a data vector of length n € N: (v;)i=1., € R"
Sum my, = X% Y = = My /N
Sum of Squares s,, := X% ; y?
. N2 L2 Yy 2
€n = Z(yz Nn) — Z yz’ ,unyz —|— Mn
; i=1

n
i=1

2 2
=S, — N[, =S, —my/n



Statistics

// post: return mean of datalfrom,to)

double mean(unsigned int from, unsigned int to) const{
assert (from < to && to <= n);
return getsum(vsum,from,to) / (to—from);

3

// post: return err of constant approximation in interval [from,to)
double err(unsigned int from, unsigned int to) const{

assert (from < to && to <= n);

double m = getsum(vsum,from,to);

return getsum(vssq,from,to) — m+m / (to—from);



DP - Setup and Base Case

double MinimizeH(double gamma,const Statistics& s,
std :: vector<double>& result){
int n = s.size Q;
// Blk] contains the pointer to the end of the best previous interval
// i.e. best possible approximation is given by
// best possible approximation of [0,B[k]), [B[k], k)
std :: vector<int> B(n+1);
// V (k) contains the corresponsing attainable minimum of H_ gamma
std :: vector<double> V(n+1);
// base case: empty interval
BI[0] = 0;
Vo] = 0;



DP - Construct Table

// now consider all combinations of Partition ([0, left )) + [left ,right)
for (int right=1; right <= n; ++right){
// interval [0, right)
int best = 0;
double min = gamma + s.err(0,right);
// intervals [left ,right), left > 0
for (int left = 1; left < right; ++left){
double h = V[left] + gamma + s.err(left,right);
if (h < min){
min = h; best = left;

}
}
Blright] = best;
Vlright] = min;



DP - Reconstruct Solution

// reconstruct solution

unsigned int right=n;

while (right != 0){
unsigned int left = B[right];
fill (result,s.mean(left,right ), left ,right );
right = left;

}

return Vin];



Questions?



	Quiz
	Feedback of last exercise

