
Datenstrukturen und Algorithmen

Exercise 6

FS 2020

1

Program of today

1 Feedback of last exercise

2 Repetition theory
Binary Trees

3 Repetition Theory
AVL Condition
AVL Insert
Quadtrees

2

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q

→ not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0

s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p

→ not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1

s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1

→ not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Coocoo hashing

h1(k) = k mod 5, h2(k) = bk/5c mod 5
add 27, 2, 32

T_1: __, __, 27, __, __ T_2: __, __, __, __, __

T_1: __, __, 2, __, __ T_2: 27, __, __, __, __

T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __

4

Feedback

Coocoo hashing

h1(k) = k mod 5, h2(k) = bk/5c mod 5
add 7: infinite loop

T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __
7: T_1: __, __, 7, __, __ T_2: 27, 32, __, __, __
2: T_1: __, __, 2, __, __ T_2: 27, 7, __, __, __

32: T_1: __, __, 32, __, __ T_2: 2, 7, __, __, __
27: T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __
7: ...

5

Feedback

Finding a Sub-Array
// calculating hash_a, hash_b, c_to_k
It1 window_end = from;
for(It2 current = begin; current != end;

++current, ++window_end) {
if(window_end == to) return to;
hash_b = (C * hash_b % M + *current) % M;
hash_a = (C * hash_a % M + *window_end) % M;
c_to_k = c_to_k * C % M;

}

6

Feedback
Finding a Sub-Array
// looking for b and updating hash_a
for(It1 window_begin = from; ;

++window_begin, ++window_end) {
if(hash_a == hash_b)

if(std::equal(window_begin, window_end, begin, end))
return window_begin;

if(window_end == to) return to;
hash_a = (C * hash_a % M + *window_end

+ (M - c_to_k) * *window_begin % M) % M;
}

7

2. Repetition theory

8

Comparison of binary Trees
Search trees Heaps

Min- / Max-
Heap

Balanced trees
AVL, red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion Θ(h(T)) Θ(log n) Θ(log n)
Search Θ(h(T)) Θ(n) (!!) Θ(log n)

Deletion Θ(h(T)) Search + Θ(log n) Θ(log n)

Recall: Θ(log n)≤ Θ(h(T))≤ Θ(n)

9

https://en.cppreference.com/w/cpp/algorithm/make_heap
https://en.cppreference.com/w/cpp/container/map

Comparison of binary Trees
Search trees Heaps

Min- / Max-
Heap

Balanced trees
AVL, red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion Θ(h(T)) Θ(log n) Θ(log n)
Search Θ(h(T)) Θ(n) (!!) Θ(log n)

Deletion Θ(h(T)) Search + Θ(log n) Θ(log n)
Recall: Θ(log n)≤ Θ(h(T))≤ Θ(n)

9

https://en.cppreference.com/w/cpp/algorithm/make_heap
https://en.cppreference.com/w/cpp/container/map

Repetition: Binary Trees, Inserting a Key
Binary Search Trees

Search for Key.
Insert at the reached
empty leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very back of the Array.
Restore Heap-Condition: siftUp
(climb successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

10

Repetition: Binary Trees, Inserting a Key
Binary Search Trees

Search for Key.
Insert at the reached
empty leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very back of the Array.
Restore Heap-Condition: siftUp
(climb successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

10

Repetition: Binary Trees, Inserting a Key
Binary Search Trees

Search for Key.
Insert at the reached
empty leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very back of the Array.
Restore Heap-Condition: siftUp
(climb successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

10

Repetition: Binary Trees, Inserting a Key
Binary Search Trees

Search for Key.
Insert at the reached
empty leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very back of the Array.
Restore Heap-Condition: siftUp
(climb successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

10

Repetition: Binary Trees, Deleting a Key
Binary Search Trees

Replace key k by
symmetric successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the
array.
Restore Heap-Condition: siftDown
or siftUp.

1

6

8 16

7Exercise: Delete 4 from Example Tree/Heap.

11

Repetition: Binary Trees, Deleting a Key
Binary Search Trees

Replace key k by
symmetric successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the
array.
Restore Heap-Condition: siftDown
or siftUp.

1

6

8 16

7

Exercise: Delete 4 from Example Tree/Heap.

11

Repetition: Binary Trees, Deleting a Key
Binary Search Trees

Replace key k by
symmetric successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the
array.
Restore Heap-Condition: siftDown
or siftUp.

1

6

8 16

7

Exercise: Delete 4 from Example Tree/Heap.

11

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19

postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

12

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

12

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

12

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

12

Quiz

Draw a binary search tree each that represents the following
traversals. Is the tree unique?
inorder 1 2 3 4 5 6 7 8
preorder 4 3 1 2 8 6 5 7
postorder 1 3 2 5 6 8 7 4
Provide for each order a sequence of numbers from {1, . . . , 4} such
that it cannot result from a valid binary search tree

13

Answers

inorder: any binary search tree with numbers {1, . . . , 8} is valid.
The tree is not unique
There is no search tree for any non-sorted sequence. Counterexample
1 2 4 3

14

Answers
preorder 4 3 1 2 8 6 5 7

4

3

1

2

8

6

5 7

Tree is unique
It mus hold recursively that first there is a group of numbers with lower and then
with higher number than the first value. Counterexample: 3 1 4 2

15

Answers
postorder 1 3 2 5 6 8 7 4

4

2

1 3

7

6

5

8

Tree is unique
Construction here: https://www.techiedelight.com/
build-binary-search-tree-from-postorder-sequence/, similar argument as
before, but backwards. Counterexample 4 2 1 3

16

https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/
https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/

Heap

On the following Min-Heap, perform an extract-min operation,
including re-establishing the heap-condition, as shown in class. What
does the heap look like after the operation?

2

5

13

21 42

7

14 8

9

10

11 88

15

17

Solution

5

7

13

21 42

8

14 88

9

10

11

15

18

Number of MaxHeaps on n distinct keys

Let N(n) denote the number of distinct Max-Heaps which can be
built from all the keys 1, 2, . . . , n. For example we have
N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 3 und N(5) = 8.
Find the values N(6) and N(7).

4

2

1

3

4

3

1

2

4

3

2

1

19

Number of MaxHeaps on n distinct keys
A MaxHeap containing the elements 1, 2, 3, 4, 5, 6 has the structure:

6

?

? ?

?

?

Number of combinations to choose elements for the left subtree:
(5

3
)
.

⇒ N(6) =
5

3

 ·N(3) ·N(2)10 · 2 · 1 = 20.

and N(7) =
6

3

 ·N(3) ·N(3) = 20 · 2 · 2 = 80.
20

AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

21

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

22

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

23

upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}

24

upin(p)

Assumption: p is left son of pp1

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

1If p is a right son: symmetric cases with exchange of +1 and −1
25

upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated
the AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

26

Rotations
case 1.1 bal(p) = −1. 2

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h + 2 h

=⇒
rotation
right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h + 1 h + 1

2p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
27

Rotations
case 1.1 bal(p) = −1. 3

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/ + 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h + 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h + 1

3p right son ⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
28

Quiz

In the following AVL tree, insert key 12 and rebalance (as shown in
class). What does the AVL tree look like after the operation that has
been shown in class?

30

10

3

1

17

14 19

50

40 60

29

Solution

17

10

3

1

14

12

30

19 50

40 60

30

Minimization of a functional for signal segmentation

P Partition γ ≥ 0 regularization parameter
fP approxmation z image = ‘data’

Goal: Efficient mimization of the functional

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖2
2.

Result (P̂ , f̂P̂) ∈ argmin(P,fP)Hγ,z can be interpreted as optimal
compromise between regularity and fidelity to data.

31

Minimization of a Functional using Quadtrees

Separation of a two-dimensional range into 4 equally seized parts.

32

Algorithmus: Minimize(z,r,γ)
Input: Image data z ∈ RS, rectangle r ⊂ S, regularization γ > 0
Output: minT γ|L(T)|+ ‖z − µL(T)‖2

2

if |r| = 0 then return 0
m← γ +∑

s∈r (zs − µr)2

if |r| > 1 then
Split r into rll,rlr,rul,rur

m1 ← Minimize(z, rll, γ); m2 ← Minimize(z, rlr, γ)
m3 ← Minimize(z, rul, γ); m4 ← Minimize(z, rur, γ)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m

33

Minimization of a Functional using Quadtrees

34

Questions?

35

	Feedback of last exercise
	Repetition theory
	Binary Trees

	Repetition Theory
	AVL Condition
	AVL Insert
	Quadtrees

