
Datenstrukturen und Algorithmen

Exercise 4

FS 2020

1



Program of today

1 Feedback of last exercise

2 Repetition theory
Amortized Analysis
Skip Lists

3 Programming Task

2



Sorting

Bubblesort min max
Comparisons O(n2) O(n2)
Sequence any any
Swaps 0 O(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1

3



Sorting

InsertionSort min max
Comparisons O(n) O(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1
Swaps 0 O(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1
SelectionSort min max
Comparisons O(n2) O(n2)
Sequence any any
Swaps 0 O(n)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1

4



Sorting

QuickSort min max
Comparisons O(n log n) O(n2)
Sequence complex 1, 2, . . . , n
Swaps O(n) O(n log n)
Sequence 1, 2, . . . , n complex
complex: Sequence must be made such that the pivot halves the
sorting range. For example (n = 7): 4, 5, 7, 6, 2, 1, 3

5



2. Repetition theory

6



Amortized Analysis

Three Methods

Aggregate Analysis
Account Method
Potential Method

7



Example: simple dictionary
Supports operations insert and find. Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items
in a sorted order
Between the arrays there is no further relationship

data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11
A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

8



Example: simple dictionary
data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find:

Run through all arrays and make a binary search each
Worst-case Runtime : Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑
i=0

log2 2i = k · (k + 1)
2 ∈ Θ(log2 n).

(k = blog2 nc)

9



Example: simple dictionary
data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime :

Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑
i=0

log2 2i = k · (k + 1)
2 ∈ Θ(log2 n).

(k = blog2 nc)

9



Example: simple dictionary
data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime : Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑
i=0

log2 2i = k · (k + 1)
2 ∈ Θ(log2 n).

(k = blog2 nc)
9



Example: simple dictionary

Algorithm Insert(x):

New array A′0 ← [x], i← 0

while Ai 6= ∅, set A′i+1 =Merge(Ai, A
′
i), Ai ← ∅, i← i+ 1

Set Ai ← A′i

Insert(11)
A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, . . . , 75]

A′0: [11]
A′1: [11, 50]
A′2: [8, 11, 50, 99] ⇒

A0: ∅
A1: ∅
A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

10



Example: simple dictionary

Algorithm Insert(x):

New array A′0 ← [x], i← 0
while Ai 6= ∅, set A′i+1 =Merge(Ai, A

′
i), Ai ← ∅, i← i+ 1

Set Ai ← A′i

Insert(11)
A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, . . . , 75]

A′0: [11]
A′1: [11, 50]
A′2: [8, 11, 50, 99] ⇒

A0: ∅
A1: ∅
A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

10



Costs Insert

Notation in the following n = 2k, k = log2 n

Assumption: creating new array A′i with length 2i (and, for i > 0
subsequent merge of A′i−1 and Ai−1) has costs Θ(2i)
In the worst case inserting an element into the data structure provides
log2 n such operations. ⇒ Worst-case Costs Insert:

k∑
i=0

2i = 2k+1 − 1 ∈ Θ(n).

11



Aggregate Analysis
Level Costs Example Array
0 1 [∗]
1 2 [∗, ∗]
2 4 [∗, ∗, ∗, ∗]
3 8 ∅
4 16 [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]
Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with
costs 8) every eighth time etc.

Total costs: 1 · n
1 + 2 · n

2 + 4 · n
4 + · · ·+ 2k · n

2k = (k+ 1)n ∈ Θ(n log n).
Amortized cost per operation: Θ((n log n)/n) = Θ(log n).

12



Aggregate Analysis
Level Costs Example Array
0 1 [∗]
1 2 [∗, ∗]
2 4 [∗, ∗, ∗, ∗]
3 8 ∅
4 16 [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]
Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with
costs 8) every eighth time etc.
Total costs: 1 · n

1 + 2 · n
2 + 4 · n

4 + · · ·+ 2k · n
2k = (k+ 1)n ∈ Θ(n log n).

Amortized cost per operation: Θ((n log n)/n) = Θ(log n).
12



Account Method

Every element i (1 ≤ i ≤ n) pays ai = log2 n coins when it is inserted
into the data structure. The element pays the allocation of the first
array and every subsequent merge-step that can occur until the
element has reached array Ak+1 (k = blog2cn). The account provides
enough credit to pay for all Merge operations of the n elements.
⇒ Amortized costs for insertion O(log n)

13



Potential Method

We know from the account method that each element on the way to
higher levels requires log n coins, i.e. that an element on level i still
needs to posess k − i coins. We use the potential

Φi =
∑

0≤i≤k:Ai 6=∅
(k − i) · 2i

14



Potential Method
For the change of the potential Φi − Φi−1 we only have to consider
the lower l levels that are occupied at time point i− 1 (in analogy to
the binary counter). Let l be the smallest index such that array Al is
empty. After merging array A0 . . . Al−1 arrays Ai, 0 ≤ i < l are now
empty and array Al is now full. Therefore:

Φi − Φi−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

Real costs:

ti =
l∑

i=0
2i = 2l+1 − 1

15



Potential Method

Φi − Φi−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

= (k − l) · 2l − k · (2l − 1) +
l−1∑
i=0

i · 2i

= (k − l) · 2l − k · (2l − 1) + l · 2l − 2l+1 + 2
= k − 2l+1 + 2

Φi − Φi−1 + ti = k − 2l+1 + 2 + 2l+1 − 1 = k + 1 ∈ Θ(log n)

16



∑ i · λi
Always the same trick:

λ ·
n∑

i=0

i · λi −
n∑

i=0

i · λi =
n∑

i=0

i · λi+1 −
n∑

i=0

i · λi =
n+1∑
i=1

(i− 1) · λi −
n∑

i=0

i · λi

= n · λn+1 +
n∑

i=1

(i− 1) · λi − i · λ = n · λn+1 −
n∑

i=1

λi

= n · λn+1 −
λn+1 − 1
λ− 1

+ 1

(λ− 1) ·
n∑

i=0

i · λi = n · λn+1 −
λn+1 − 1
λ− 1

+ 1

Für λ = 2:
n∑

i=0

i · 2i = n · 2n+1 − 2n+1 + 1 + 1 = (n− 1) · 2n+1 + 2

17



Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

18



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0

1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1

2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2

3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

19



Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();
~SkipList();

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...
};

20



Partially implemented:

A class Node saves an element value of type T and a
std::vector called forward with pointers to successive nodes.
First Node (without value): head.
forward[0] points to the following element in the list.
We use this in an already implemented iterator.

21



Types as Template Parameters
template <typename ElementType>
class vector{

size_t size;
T* elem;

public:
...
vector(size_t s):
size{s},
elem{new ElementType[s]}{}
...
ElementType& operator[](size_t pos){

return elem[pos];
}
...

}
22



Function Templates
template <typename T> // square number
T sq(T x){

return x*x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c

for(auto& x: c)
x = f(x);

}
int main(){

std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9

}
23



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

24



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

24



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

24



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

25



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

25



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

25



Questions?

26


	Feedback of last exercise
	Repetition theory
	Amortized Analysis
	Skip Lists

	Programming Task

