Datenstrukturen und Algorithmen

Exercise 4

FS 2020

Program of today

Feedback of last exercise

Repetition theory
m Amortized Analysis
m Skip Lists

Programming Task

Sorting

Bubblesort min max
Comparisons O(n?) O(n?)
Sequence any any

Swaps 0 O(n?)
Sequence 1,2,....n n,n—1,...,1

Sorting

InsertionSort min max
Comparisons O(n) O(n?)
Sequence 1,2,....,n n,n—1,...
Swaps 0 O(n?)
Sequence 1,2,...,n n,n—1,...
SelectionSort min max
Comparisons O(n?) O(n?)
Sequence any any

Swaps 0 O(n)
Sequence 1,2,....n n,n—1,...

Sorting

QuickSort min max
Comparisons O(nlogn) O(n?)
Sequence complex 1,2,....,n
Swaps O(n) O(nlogn)
Sequence 1,2,....,n complex

complex: Sequence must be made such that the pivot halves the
sorting range. For example (n =7): 4,5,7,6,2,1,3

2. Repetition theory

Amortized Analysis

Three Methods

m Aggregate Analysis
m Account Method
m Potential Method

Example: simple dictionary

Supports operations insert and find. ldea:

m Collection of arrays A; with Length 2¢

m Every array is either entirely empty or entirely full and stores items
in a sorted order

m Between the arrays there is no further relationship

data {1,8, 10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

AO: [50]
Ap: [8,99]
AQZ @

As: [1,10,18, 20, 24, 36, 48, 75]

Example: simple dictionary

data {1,8, 10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

Aol [50]

A [8,99]

AQ: Q)

As: [1,10, 18,20, 24, 36, 48, 75]

Algorithm Find:

Example: simple dictionary

data {1,8, 10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

Aoi [50]

A [8,99]

AQ: Q)

As: [1,10,18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime :

Example: simple dictionary

data {1,8, 10, 18, 20, 24, 36, 48, 50, 75,99}, n = 11

Aoi [50]

A [8,99]

AQ: Q)

As: [1,10,18, 20, 24, 36, 48, 75]

Algorithm Find: Run through all arrays and make a binary search each
Worst-case Runtime : ©(log” n),

k-(k+1)

> € O(log®n).

k
log1 +log2+log4+ --- +log2* :Zlong =
i=0

(k = [logy n])

Example: simple dictionary

Algorithm Insert(x):

Example: simple dictionary

Algorithm Insert (x):

m New array Aj < [z], i < 0
m while A; # 0, set Al | =Merge(4;, 4}), A; 0, i+ i+1
m Set A; + A]

Ap: [50] Ay [11] Ap: 0

Ali [8,99] All [11,50] A1: @

Ay A [8,11,50,99] T A, [8,11,50,99]
As [1,10,18,...,75] As: [1,10,18,...,75]

Costs Insert

Notation in the following n = 2*, k = logy n

Assumption: creating new array A’ with length 2° (and, for i > 0
subsequent merge of A’ ; and A; ;) has costs ©(2')

In the worst case inserting an element into the data structure provides
log, n such operations. = Worst-case Costs Insert:

ko
S 2l =21 _1€c0M).
1=0

Aggregate Analysis

Level Costs Example Array

0 1 [+]

1 2 [*, %]

2 4 [, %, %, *]

3 8 0

4 16 [, sk, o, ok, sk ok ok sk sk ok k) kK sk k]

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with
costs 8) every eighth time etc.

Aggregate Analysis

Level Costs Example Array

)) Y))) Y >)) Y >)))

0 1 [+]

1 2 [*, %]

2 4 [, %, %, *]

3 8 0

4 16 [, sk, o, ok, sk ok ok sk sk ok k) kK sk k]

Observation: when you start with an empty container, an insertion
sequence merges reaches level 0 each time, level 1 (with costs 2) every
second time, level 2 (with costs 4) every fourth time, level 3 (with
costs 8) every eighth time etc.

Total costs: 1-2+2-244-2+...4+2F. % = (k+1)n € O(nlogn).
Amortized cost per operation: O((nlogn)/n) = O(logn).

Account Method

Every element ¢ (1 < i < n) pays a; = log, n coins when it is inserted
into the data structure. The element pays the allocation of the first
array and every subsequent merge-step that can occur until the
element has reached array Ay (kK = |logy| n). The account provides
enough credit to pay for all Merge operations of the n elements.

= Amortized costs for insertion O(logn)

Potential Method

We know from the account method that each element on the way to
higher levels requires log n coins, i.e. that an element on level 7 still
needs to posess k — ¢ coins. We use the potential

D= > (k—i)-2

0<i<k:A;#0

Potential Method

For the change of the potential ®; — &, ;| we only have to consider
the lower [levels that are occupied at time point ¢ — 1 (in analogy to
the binary counter). Let [be the smallest index such that array A; is
empty. After merging array Ay... A; 1 arrays A;,0 < i <[are now
empty and array A; is now full. Therefore:

-1

O -0 1 =(—-10-2—S(k—1i)- 2

1=0

Real costs:

L
=Y 2=2"_1
1=0

Potential Method

-1)
O — D1 =(k—=1) -2 =3 (k—1)- 2

1=0
-1)
—k-0-22—k- 22—+ -2
1=0
—(k-0-2"—k-(2—1)+1-2" -2 42
=k—2"1 42

®i_®i—1+ti:k_2l+1+2+2l+1_1:k+1E@(logn)

S\

Always the same trick:

n n n n n+1 n
. -y S C il - . B N
)\Zz)\ Zz)\ ZZA Zz)\ Z(z 1A ZZA
1=0 =0 1=0 1=0 =1 i=0
n n
= A3 1) A A=At S Y
i=1 =1
Antl — 1
— ‘>\n+1_7 1
" o1
n
; At —1
A—1)- i N=n- AP 4
(=1 i-ai=n ——
=0

Fir A = 2:

n
2=t ot = (n-1) 27 42
=0

Randomized Skip List

|dea: insert a key with random height H with P(H = i)

- 21+1 a
3 e ®
2 e L °
1 ® ® @ ® @
0 ® @ ® ® @ @ ® ® @
I i) s T4 Ty i Ty Ts

Randomized Skip List: finding element

L7

Randomized Skip List: finding element

Randomized Skip List: finding element

1 ® ® @ ® @
® ® ® ® ® ® ® ® ®
i d0g) X3 Ty T Tg W xTs

Randomized Skip List: finding element

2 e [O
1 e ° ° ° °
° ° ° ° ° ° ° ° °

Randomized Skip List: finding element

3 e °
2 e ® °
1 ® ® @ ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 e »
2 e ® °
1 ® ® @ ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 ® .
1 ® ® @ ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 >0 .
1 ® ® @ ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 o -9
1 ® ® @ ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2)I -9
1 ® ® ® @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2)I -®
1 ® ® -9 @
0 ® ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 -®
1 ® ® } -9 @
0 ® ® ® ® ® ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 -®
1 ® ® } -9 @
0 ® ® ® ® >@ ® ® ®

1) X3 T4 Ty Tg T7 IS

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Randomized Skip List: finding element

3 I »
2 -®
1 ® ® } -9 @
0 ® ® ® ® > =@ ® ®
1) X3 T4 Ty Tg T7 IS ©9)

1 S x2S x3 < -0 < .
Example: search for a key x with z5 < = < xg.

Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();

~SkipList () ;

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...

20

Partially implemented:

m A class Node saves an element value of type T and a
std: :vector called forward with pointers to successive nodes.

m First Node (without value): head.
m forward[0] points to the following element in the list.
m We use this in an already implemented iterator.

Types as Template Parameters

template <typename ElementType>
class vector{

size_t size;

T* elem;
public:

vector(size_t s):
size{s},
elem{new ElementType[s]}{}

ElementType& operator[](size_t pos){
return elem[pos];

¥

Function Templates

template <typename T> // square number
T sq(T x){
return XxX*Xx;
}
template <typename Container, typename F>
void apply(Container& c, F £){ // x <- f(x) forall x in c
for(auto& x: c)
x = £(x);
}
int main(){
std: :vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9

23

Implementing insert and erase

insert(const T& value)
m create new node

m choose random number of
levels

m for each level, find the
first smaller node

m set pointers from previous
nodes and new node

Implementing insert and erase

insert(const T& value) erase(const T& value)
m create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the m set pointers accordingly
first smaller node m delete node if necessary

m set pointers from previous
nodes and new node

Implementing insert and erase

insert(const T& value) erase(const T& value)
m create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the m set pointers accordingly
first smaller node m delete node if necessary
m set pointers from previous Warning: The same value can

nodes and new node appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Therefore “Rule of three":
m constructor
m copy constructor

m destructor

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Therefore “Rule of three": being lazy “ Rule of two™:
m constructor m never copy (unsure)
m copy constructor m make copy constructor

m destructor private (save)

Questions?

	Feedback of last exercise
	Repetition theory
	Amortized Analysis
	Skip Lists

	Programming Task

