Datenstrukturen und Algorithmen

Exercise 4

FS 2020

Program of today

- 1 Feedback of last exercise
- 2 Repetition theory
 - Amortized Analysis
 - Skip Lists

3 Programming Task

Bubblesort	min	max
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Sequence	any	any
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1,2,\ldots,n$	$n, n-1, \ldots, 1$

Sorting

InsertionSort	min	max
Comparisons	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
Sequence	$1,2,\ldots,n$	$n,n-1,\ldots,1$
Swaps	0	$\mathcal{O}(n^2)$
Sequence	$1,2,\ldots,n$	$n,n-1,\ldots,1$
SelectionSort	min	max
Comparisons	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Comparisons Sequence	$\mathcal{O}(n^2)$ any	$\mathcal{O}(n^2)$ any
•		

QuickSort	min	max
Comparisons	$\mathcal{O}(n\log n)$	$\mathcal{O}(n^2)$
Sequence	complex	$1,2,\ldots,n$
Swaps	$\mathcal{O}(n)$	$\mathcal{O}(n\log n)$
Sequence	$1,2,\ldots,n$	complex

complex: Sequence must be made such that the pivot halves the sorting range. For example (n = 7): 4, 5, 7, 6, 2, 1, 3

2. Repetition theory

Amortized Analysis

Three Methods

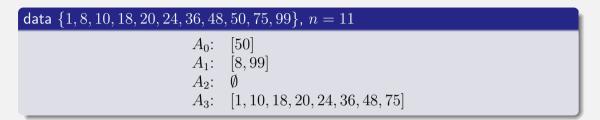
- Aggregate Analysis
- Account Method
- Potential Method

Supports operations insert and find. Idea:

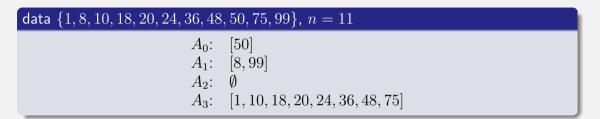
- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order
- Between the arrays there is no further relationship

data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

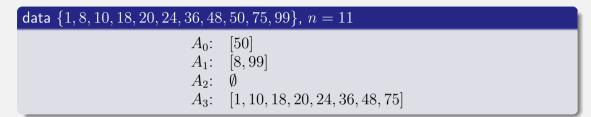
$$\begin{array}{lll}
A_0: & [50] \\
A_1: & [8,99] \\
A_2: & \emptyset \\
A_3: & [1,10,18,20,24,36,48,75]
\end{array}$$



Algorithm Find:



Algorithm **Find**: Run through all arrays and make a binary search each Worst-case Runtime :



Algorithm Find: Run through all arrays and make a binary search each Worst-case Runtime : $\Theta(\log^2 n)$,

$$\log 1 + \log 2 + \log 4 + \dots + \log 2^k = \sum_{i=0}^k \log_2 2^i = \frac{k \cdot (k+1)}{2} \in \Theta(\log^2 n).$$

 $(k = \lfloor \log_2 n \rfloor)$

Algorithm Insert(x):

Algorithm Insert(x):

New array
$$A'_0 \leftarrow [x]$$
, $i \leftarrow 0$
while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
Set $A_i \leftarrow A'_i$

Insert(11)

A_0 :	[50]	A'_0 :	[11]		A_0 :	Ø
A_1 :	[8, 99]	A'_1 :	[11, 50]	\rightarrow	A_1 :	Ø
A_2 :	Ø	A'_2 :	[8, 11, 50, 99]	\rightarrow	A_2 :	\emptyset [8, 11, 50, 99]
A_3 :	$[1, 10, 18, \dots, 75]$				A_3 :	$[1, 10, 18, \ldots, 75]$

Costs Insert

Notation in the following $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A'_i with length 2^i (and, for i > 0 subsequent merge of A'_{i-1} and A_{i-1}) has costs $\Theta(2^i)$

In the worst case inserting an element into the data structure provides $\log_2 n$ such operations. \Rightarrow Worst-case Costs Insert:

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1 \in \Theta(n).$$

Aggregate Analysis

Level	Costs	Example Array
0	1	[*]
1	2	[*, *]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Aggregate Analysis

Level	Costs	Example Array
0	1	[*]
1	2	[*, *]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: when you start with an empty container, an insertion sequence merges reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, level 3 (with costs 8) every eighth time etc.

Total costs: $1 \cdot \frac{n}{1} + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + \dots + 2^k \cdot \frac{n}{2^k} = (k+1)n \in \Theta(n \log n).$ Amortized cost per operation: $\Theta((n \log n)/n) = \Theta(\log n).$ Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure. The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} $(k = \lfloor \log_2 \rfloor n)$. The account provides enough credit to pay for all Merge operations of the n elements.

 \Rightarrow Amortized costs for insertion $\mathcal{O}(\log n)$

We know from the account method that each element on the way to higher levels requires $\log n$ coins, i.e. that an element on level *i* still needs to posess k - i coins. We use the potential

$$\Phi_i = \sum_{0 \le i \le k: A_i \ne \emptyset} (k - i) \cdot 2^i$$

Potential Method

For the change of the potential $\Phi_i - \Phi_{i-1}$ we only have to consider the lower l levels that are occupied at time point i-1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty. After merging array $A_0 \dots A_{l-1}$ arrays $A_i, 0 \le i < l$ are now empty and array A_l is now full. Therefore:

$$\Phi_i - \Phi_{i-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

Real costs:

$$t_i = \sum_{i=0}^{l} 2^i = 2^{l+1} - 1$$

Potential Method

 Φ_{i}

$$\begin{split} \Phi_i - \Phi_{i-1} &= (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i \\ &= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i \\ &= (k-l) \cdot 2^l - k \cdot (2^l-1) + l \cdot 2^l - 2^{l+1} + 2 \\ &= k - 2^{l+1} + 2 \\ &= k - 2^{l+1} + 2 + 2^{l+1} - 1 = k + 1 \in \Theta(\log n) \end{split}$$

$$\Sigma i \cdot \lambda^i$$

Always the same trick:

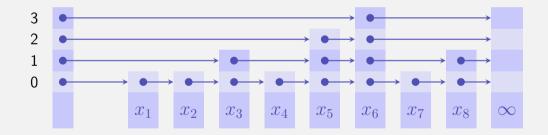
$$\lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i}$$
$$= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i}$$
$$= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1$$
$$(\lambda - 1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} = n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1$$

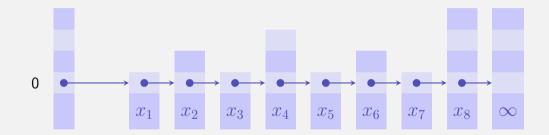
Für $\lambda = 2$:

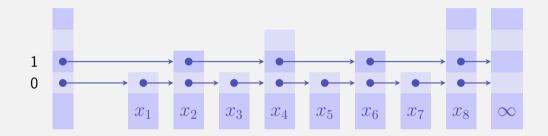
$$\sum_{i=0}^{n} i \cdot 2^{i} = n \cdot 2^{n+1} - 2^{n+1} + 1 + 1 = (n-1) \cdot 2^{n+1} + 2$$

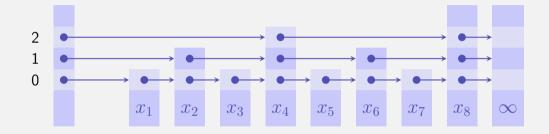
Randomized Skip List

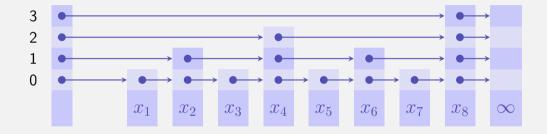
Idea: insert a key with random height H with $\mathbb{P}(H = i) = \frac{1}{2^{i+1}}$.

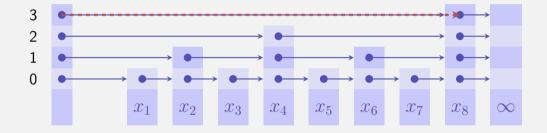


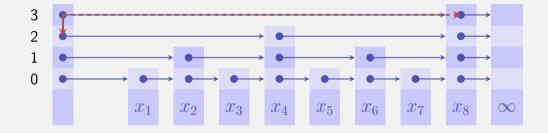


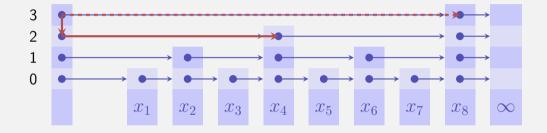


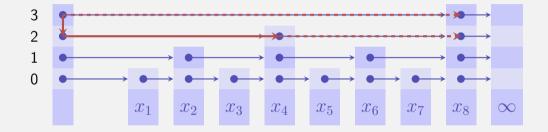


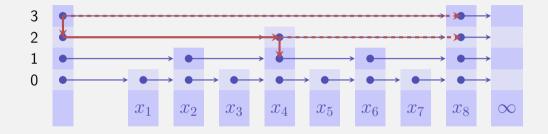


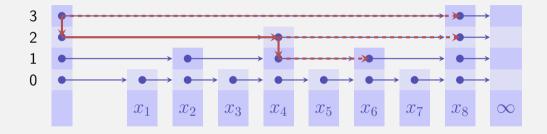


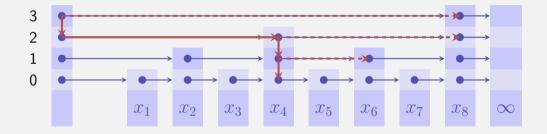


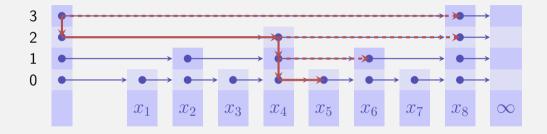


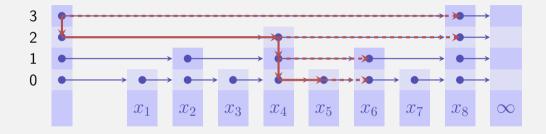












```
template<typename T> class SkipList {
public:
   SkipList();
   ~SkipList();
```

void insert(const T& value); void erase(const T& value);

```
// iterator implementation ...
};
```

- A class Node saves an element value of type T and a std::vector called forward with pointers to successive nodes.
- First Node (without value): head.
- forward[0] points to the following element in the list.
- We use this in an already implemented iterator.

Types as Template Parameters

```
template <typename ElementType>
class vector{
       size t size;
       T* elem:
public:
        . . .
       vector(size t s):
       size{s}.
       elem{new ElementType[s]}{}
        . . .
       ElementType& operator[](size_t pos){
               return elem[pos];
       }
        . . .
```

Function Templates

```
template <typename T> // square number
T sq(T x)
       return x*x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c</pre>
       for(auto& x: c)
       x = f(x):
}
int main(){
       std::vector<int> v={1.2.3}:
       apply(v,sq<int>);
       output(v); // 1 4 9
```

}

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Warning: The same value can appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor

destructor

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor

destructor

being lazy "Rule of two":
never copy (unsure)
make copy constructor private (save)

Questions?