Datenstrukturen und Algorithmen

Exercise 3

FS 2020

Program of today

1 Feedback of last exercise

2 Repetition theory

What would be your strategy if you would have an arbitrary number of eggs?

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search**. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search**. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.

Throwing Eggs

Strategy using two eggs

First approach: intervals of equal length: partition n into k intervals: maximum number of trials

Throwing Eggs

Strategy using two eggs

First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k - 1Minimize maximum number of trials:

Throwing Eggs

Strategy using two eggs

■ First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k - 1 Minimize maximum number of trials:

$$f'(k) = 1 - n/k^2 = 0 \Rightarrow k = \sqrt{n}$$

 $n = 100 \Rightarrow 19$ Trials. $\Theta(\sqrt{n})$

• Second approach: take first throw trial into account by considering decreasing interval sizes. Choose smallest s such that $s + s - 1 + s - 2 + ... + 1 = s(s + 1)/2 \ge 100 \Rightarrow s = 14$. Maximum number of trials: $s \in \Theta(\sqrt{n})$

Asymptotically both approaches are equally good. Practically the second way is better.

- What happens if many elements are equal?
- $99, 99, \ldots, 99$, Pivot 99, smaller partition is empty, larger n-1 times 99
- \blacksquare May degrade runtime to n^2
- Solution?

Selection algorithm

On equality with pivot, alternate between partitions

On equality with pivot, alternate between partitionsModify algorithm to return number of elements equal to pivot

2. Repetition theory

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2		5	4	1	3	2		5	4	1	3	2	
1	4	5	3	2		4	1	3	2	5		4	5	1	3	2	
1	2	5	3	4		1	3	2	4	5		1	4	5	3	2	
1	2	3	5	4		1	2	3	4	5		1	3	4	5	2	
1	2	3	4	5								1	2	3	4	5	

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2		5	4	1	3	2		5	4	1	3	2	
1	4	5	3	2		4	1	3	2	5		4	5	1	3	2	
1	2	5	3	4		1	3	2	4	5		1	4	5	3	2	
1	2	3	5	4		1	2	3	4	5		1	3	4	5	2	
1	2	3	4	5								1	2	3	4	5	

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

	5	4	1	3	2			5	4	1	3	2		5	4	1	3	2	
	1	4	5	3	2			4	1	3	2	5		4	5	1	3	2	-
	1	2	5	3	4			1	3	2	4	5		1	4	5	3	2	-
	1	2	3	5	4			1	2	3	4	5		1	3	4	5	2	-
	1	2	3	4	5	-								1	2	3	4	5	-
se	lect	tion					I	oubb	lesc	ort			ir	iser	tion				

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13
2	7	5	6	3	<u>8</u>	<u>9</u>	15	10	13
2	3	5	6	7	<u>8</u>	<u>9</u>	13	10	<u>1</u> 5

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & n > 1\\ f(1) & n = 1 \end{cases} \quad (a, b \in \mathbb{N}^+)$$

1
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0 \Longrightarrow T(n) = \Theta(n^{\log_b a})$
2 $f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) = \Theta(n^{\log_b a} \log n)$

3 $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large $n \Longrightarrow T(n) = \Theta(f(n))$

Maximum Subarray / Mergesort

$$T(n) = 2T(n/2) + \Theta(n)$$

Maximum Subarray / Mergesort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$a = 2, b = 2, f(n) = cn = cn^1 = cn^{\log_2 2} \xrightarrow{[2]} T(n) = \Theta(n \log n)$$

Naive Matrix Multiplication Divide & Conquer¹

$$T(n) = 8T(n/2) + \Theta(n^2)$$

 $^{^{1}\}mbox{Treated}$ in the course later on

Naive Matrix Multiplication Divide & Conquer¹

$$T(n) = 8T(n/2) + \Theta(n^2)$$
$$a = 8, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 8 - 1}) \stackrel{[1]}{\Longrightarrow} T(n) \in \Theta(n^3)$$

 $^{^1\}mathrm{Treated}$ in the course later on

Strassens Matrix Multiplication Divide & Conquer²

$$T(n) = 7T(n/2) + \Theta(n^2)$$

 $^{^{2}\}mbox{Treated}$ in the course later on

Strassens Matrix Multiplication Divide & Conquer²

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$a = 7, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 7 - \epsilon}) \stackrel{[1]}{\Longrightarrow}$$
$$T(n) \in \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$

 $^{^{2}\}mbox{Treated}$ in the course later on

$$T(n) = 2T(n/4) + \Theta(n)$$

$$T(n) = 2T(n/4) + \Theta(n)$$

 $a = 2, b = 4, f(n) = cn \in \Omega(n^{\log_4 2 + 0.5}), 2f(n/4) = c\frac{n}{2} \le \frac{c}{2}n^1 \stackrel{[3]}{\Longrightarrow}$
 $T(n) \in \Theta(n)$

$$T(n) = 2T(n/4) + \Theta(n^2)$$

$$T(n) = 2T(n/4) + \Theta(n^2)$$

 $a = 2, b = 4, f(n) = cn^2 \in \Omega(n^{\log_4 2 + 1.5}), 2f(n/4) = \frac{n^2}{8} \le \frac{1}{8}n^2 \stackrel{[3]}{\Longrightarrow} T(n) \in \Theta(n^2)$

Algorithm NaturalMergesort(A)

```
Array A with length n > 0
Input:
Output: Array A sorted
repeat
    r \leftarrow 0
    while r < n do
         l \leftarrow r+1
         m \leftarrow l; while m < n and A[m+1] > A[m] do m \leftarrow m+1
         if m < n then
             r \leftarrow m+1; while r < n and A[r+1] > A[r] do r \leftarrow r+1
             Merge(A, l, m, r):
         else
          \_ r \leftarrow n
until l = 1
```

Quicksort with logarithmic memory consumption

```
Input: Array A with length n. 1 \le l \le r \le n.
Output: Array A, sorted between l and r.
while l < r do
    Choose pivot p \in A[l, \ldots, r]
    k \leftarrow \mathsf{Partition}(A[l, \ldots, r], p)
    if k - l < r - k then
         Quicksort(A[l, \ldots, k-1])
         l \leftarrow k+1
    else
    Quicksort(A[k+1,\ldots,r])
r \leftarrow k-1
```

The call of Quicksort(A[l,...,r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

Stable and in-situ sorting algorithms

• Stable sorting algorithms don't change the relative position of two elements.

Stable and in-situ sorting algorithms

• Stable sorting algorithms don't change the relative position of two elements.

ble

Stable and in-situ sorting algorithms

• Stable sorting algorithms don't change the relative position of two elements.

In-situ algorithms require only a constant amount of additional memory.
 Which of the sorting algorithms are stable? Which are in-situ? (How) can we make them stable / in-situ?

Questions?