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Program of today

1 Feedback of last exercise

2 Repetition theory
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Throwing eggs

What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.
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Throwing Eggs
Strategy using two eggs

First approach: intervals of equal length: partition n into k
intervals: maximum number of trials

f(k) = k + n/k − 1
Minimize maximum number of trials:
f ′(k) = 1− n/k2 = 0 ⇒ k =

√
n.

n = 100⇒ 19 Trials. Θ(
√
n)

Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s+ s− 1 + s− 2 + ...+ 1 = s(s+ 1)/2 ≥ 100⇒ s = 14.
Maximum number of trials: s ∈ Θ(

√
n)

Asymptotically both approaches are equally good. Practically the second way is
better.
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Selection algorithm

What happens if many elements are equal?
99, 99, . . . , 99, Pivot 99, smaller partition is empty, larger n− 1
times 99
May degrade runtime to n2

Solution?
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Selection algorithm

On equality with pivot, alternate between partitions

Modify algorithm to return number of elements equal to pivot
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Selection algorithm

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot
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2. Repetition theory
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Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion
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Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 15 10 13

2 7 5 6 3 8 9 15 10 13
2 3 5 6 7 8 9 13 10 15
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Master Method

T (n) =
aT (nb ) + f(n) n > 1
f(1) n = 1

(a, b ∈ N+)

1 f(n) = O(nlogb a−ε) for some constant ε > 0 =⇒ T (n) = Θ(nlogb a)

2 f(n) = Θ(nlogb a) =⇒ T (n) = Θ(nlogb a log n)

3 f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n
b
) ≤ cf(n) for some

constant c < 1 and all sufficiently large n =⇒ T (n) = Θ(f(n))
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Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + Θ(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=⇒ T (n) = Θ(n log n)
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Examples

Naive Matrix Multiplication Divide & Conquer1

T (n) = 8T (n/2) + Θ(n2)

a = 8, b = 2, f(n) = cn2 ∈ O(nlog2 8−1) [1]=⇒ T (n) ∈ Θ(n3)

1Treated in the course later on
12
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Examples

Strassens Matrix Multiplication Divide & Conquer2

T (n) = 7T (n/2) + Θ(n2)

a = 7, b = 2, f(n) = cn2 ∈ O(nlog2 7−ε) [1]=⇒
T (n) ∈ Θ(nlog2 7) ≈ Θ(n2.8)

2Treated in the course later on
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Examples

T (n) = 2T (n/4) + Θ(n)

a = 2, b = 4, f(n) = cn ∈ Ω(nlog4 2+0.5), 2f(n/4) = cn2 ≤
c
2n

1 [3]=⇒
T (n) ∈ Θ(n)
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Examples

T (n) = 2T (n/4) + Θ(n2)

a = 2, b = 4, f(n) = cn2 ∈ Ω(nlog4 2+1.5), 2f(n/4) = n2

8 ≤
1
8n

2 [3]=⇒
T (n) ∈ Θ(n2)
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Algorithm NaturalMergesort(A)
Input: Array A with length n > 0
Output: Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r ] do r ← r + 1
Merge(A, l,m, r);

else
r ← n

until l = 1
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Quicksort with logarithmic memory consumption
Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement
became a while-statement.
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Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two elements.
5 2 6 6 8 4

not stable
2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?
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Questions?
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