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Program of today

Feedback of last exercise

Repetition theory
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Throwing eggs

m What would be your strategy if you would have an arbitrary number
of eggs?

m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

m Start from the bottom. n tries.
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Throwing Eggs

Strategy using two eggs

m First approach: intervals of equal length: partition n into £
intervals: maximum number of trials f(k) =k +n/k —1
Minimize maximum number of trials:
fllk)=1-n/k*=0 = k= +/n.

n =100 = 19 Trials. ©(y/n)

m Second approach: take first throw trial into account by
considering decreasing interval sizes. Choose smallest s such that
s+s—1+s—2+..+1=5(s+1)/2>100= s = 14.
Maximum number of trials: s € O(y/n)

Asymptotically both approaches are equally good. Practically the second way is
better.



Selection algorithm

m What happens if many elements are equal?

m 99,99,...,99, Pivot 99, smaller partition is empty, larger n — 1
times 99

m May degrade runtime to n?
m Solution?



Selection algorithm
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Selection algorithm

m On equality with pivot, alternate between partitions
m Modify algorithm to return number of elements equal to pivot



2. Repetition theory



Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

541 3 2 5 41 3 2 541 3 2
1 45 3 2 4 1 3 25 4 51 3 2
1 25 3 4 1 3 2 45 1 45 3 2
1 2 35 4 1 2 3 45 1 3 45 2
1 2 3 45 1 2 3 45
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Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

541 3 2 5 41 3 2 541 3 2
1 45 3 2 4 1 3 25 4 51 3 2
1 25 3 4 1 3 2 45 1 45 3 2
1 2 35 4 1 2 3 45 1 3 45 2
1 2 3 45 1 2 3 45

selection bubblesort insertion




Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

10 15| 3 | 6 | 9 | b | 2 |13
2 7516 3,89 151013
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Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The
first element of the (sub-)array serves as the pivot.

g | 7 10|15 3 6 9|5 | 2|13
2 | 7 389 |15 1013
2 | 7 389 15|10 13
2 | 3 7 8|9 1310 15




Master Method

1) S (a,b € NT)

n) = O(n'°82=¢) for some constant € > 0 = T'(n) = O(n'°&:2)

I
(n) = O(n'°8%) = T'(n) = O(n'°%*logn)
(

n) = Q(n'°# ¢+<) for some constant ¢ > 0, and |f> af(y) < cf(n) for some

O(f(n))

nstant ¢ < 1 and all sufficiently large n — T'(



Examples

Maximum Subarray / Mergesort

T(n) =2T(n/2) + O(n)



Examples

Maximum Subarray / Mergesort

T(n) =2T(n/2) + O(n)

a=2b=2, f(n) =cn=cn! = cnloe? N



Examples

Naive Matrix Multiplication Divide & Conquer!

T(n) = 8T (n/2) + O(n?)

!Treated in the course later on



Examples

Naive Matrix Multiplication Divide & Conquer!

T(n) = 8T (n/2) + O(n?)

a=80b=2, f(n)=cn?e€ O(n°=81) HUN T(n) € ©(n?)

!Treated in the course later on



Examples

Strassens Matrix Multiplication Divide & Conquer?

T(n) =TT (n/2) + O(n?)

2 .
“Treated in the course later on



Examples

Strassens Matrix Multiplication Divide & Conquer?

T(n) =TT (n/2) + O(n?)

a="T7b=2, f(n)=cn?ec Onoe"- )%
T(n) € ©(n®7) = O(n*?)

2 .
“Treated in the course later on
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Examples

T(n)=2T(n/4) + O(n)

a=2b=4, f(n)=cn € Qn*812t05) 2f(n/4) = c
T(n) € ©(n)

<
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Examples

T(n) = 2T (n/4) + O(n?)

a=20b=4, f(n) =cn? e Q(noea2t5) 2f(n/4) =
T(n) € ©(n?)



Algorithm NaturalMergesort(A)

Input: Array A with length n > 0
Output: Array A sorted
repeat
r <0
while » < n do
[<r+1
m < [; while m < n and A[m + 1] > A[m] do m < m + 1
if m <n then
r< m+1; while r <nand A[r+1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
r<n

until [ =1



Quicksort with logarithmic memory consumption

Input: Array A with length n. 1 <[ <r <n.
Output: Array A, sorted between [ and r.
while [ < r do
Choose pivot p € AL, ..., ]
k < Partition(A[l,...,7],p)
if k—1<r—Fkthen
Quicksort(A[l, ...,k —1])

[+ k+1
else
Quicksort(Alk +1,...,7])
r—k—1
The call of Quicksort(A[l, ..., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement

became a while-statement.



Stable and in-situ sorting algorithms
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Stable and in-situ sorting algorithms

m Stable sorting algorithms don’t change the relative position of two elements.

N E ‘e

S~ not stable
2 4 5 6 6 8

N E N C

S~ stable
2 4 5 6 6 8

m In-situ algorithms require only a constant amount of additional memory.

Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?



Questions?
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