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FS 2020



Program of today

Feedback of last exercise

Repetition theory
m Induction
m Analysis of programs

m Solving Simple Recurrence Equations



Landau Notation

m Give a correct definition of the set ©(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).
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mO(f)={g:N—>R|3Jc>0, nOEIN:%-f(n)gg(n)S
c- f(n) Vn > ng}



Landau Notation

Prove or disprove the following statements, where f,g: N — R™.
(a) f € O(g) if and only if g € Q(f).

(e) log,(n) € ©(log,(n)) for all constants a,b € N\ {1}

(g) If fi,f2 € O(g) and f(n) := fi(n) - fa(n), then f € O(9g).



Landau Notation

Sorting functions: if function f is left to function g, then f € O(g).
216 log(n'), log®(n), v/, nlogn, (3), n®+n, %, nl, n"



Sum of elements in two-dimensional array

Problems / Questions?



2. Repetition theory
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Induction: what is required?

m Prove statements, for example 3" i = ”<”2+1).

m Base clause:
m The given (in)equality holds for one or more base cases.

meg Y i=1= w

m Induction hypothesis: we assume that the statement holds for some
n

m Induction step (n — n + 1):

m From the validity of the statement for n (induction hypothesis) it follows

the one for n + 1.
m eg.: ZnJrl 1=n-+1-+ Zn ,=n-+ 1+ n(n+l) (n+2)2(n+1).




Induction: Example

1_,rn+1

n T
m Show > 7' = 5.
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Induction: Example

no a . 1—r"tt
m Show Z’L’:OT = 1 -

m Base clause:
° ol
n=0: Y r'=1= 1177; :

m Induction step (n — n + 1):

n+1 n
Z rl = T,n+1 + Z rl
=0 =0

1 — Tn—i—l Tn+1 . Tn+2 € 1 + TH—H

n+1 _

1—r



[Besides..]

It can be shown easily in a direct manner

rn+1

r—1 _gr
(7“—1)-27“1=Z7“2+1—Zri
i=0 ‘
n+1 . ) n+1

—Zr —Zr —Zr'—l—Zr

=0
— 7’L+1_1

1=



Analysis

How many calls to £()7?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

£0;



Analysis

How many calls to £()7?

for(unsigned i =
for (unsigned j

£O;

1; i <= n/3; i += 3)
=1; j <= 1; ++j)

The code fragment implies ©(n?) calls to £(): the outer loop is
executed n/9 times and the inner loop contains ¢ calls to £ ()



How many calls to £ () ?
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for(unsigned j
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How many calls to £ () ?

for(unsigned i =
for(unsigned j
£0;
for(unsigned k = 1; k <= n; k *= 2)
£0;
}

0; i < n; ++i) {
= 100; j*j >= 1; --j)

We can ignore the first inner loop because it contains only a constant

number of calls to £ ()
The second inner loop contains |logy(n)| + 1 calls to £(). Summing

up yields ©(nlog(n)) calls.



How many calls to £ () ?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0O;
}
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How many calls to £ () ?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
£0O;
}
T(0) =1 n|0 1 2 3
T(n) =1+ X"y T(3) T(n)|1 2 4 8

Hypothesis: T'(n) = 2™.



Induction

Hypothesis: T'(n) = 2".
Induction step:

n—1
T(n)=1+ ;}22
=1+2"-1=2"



How many calls to £ () ?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
£0;
}
You can also see it directly:
n—1
T(n)=1+ > T(i)
i=0
n—2
=Tn—-1)=1+4+ > T(>)
i=0

= T(n)=T(n—1)+T(n—1) = 2T(n — 1)



Recurrence Equation

2I'(2)+ 241, n>1
3 n=1

T(n) = {

Specify a closed (non-recursive), simple formula for T'(n) and prove it
using mathematical induction. Assume that n is a power of 2.



Recurrence Equation

T2 =272 ) + 2 /2 + 1
=22(T(2F )+ 2124+ )+ 2F /241 = ...
= PP (2F Ry ok /o 4ok /2 41 424+ 28]
k
n
:3n+§10g2n+n—1

= Assumption T'(n) = 4n + 5 logyn — 1



Induction

B Hypothesis T'(n) = f(n) := 4n + 5 logyn — 1

B Base Case T'(1) =3 = f(1 )—4—1

B Step T(n) = f(n) — T(2-n) = f(2n) (n = 2* for some
k e N):

T(2n)=2T(n)+n+1
Z.':h'2(4n+;L10g271—1)+714—1
=8n+nlog,n —2+n-+1
=8n+nlogyn+nlogy2 —1
=8n +nlog,2n — 1
= f(2n).



Questions or Suggestions?
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