Datenstrukturen und Algorithmen

Exercise 2

FS 2020

Program of today

1 Feedback of last exercise

- 2 Repetition theory
 - Induction
 - Analysis of programs
 - Solving Simple Recurrence Equations

■ Give a correct definition of the set Θ(f) as compact as possible analogously to the definitions for sets O(f) and Ω(f).

■ Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0\}$$

■ Give a correct definition of the set Θ(f) as compact as possible analogously to the definitions for sets O(f) and Ω(f).

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0\}$$

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists c > 0, \ n_0 \in \mathbb{N} : \frac{1}{c} \cdot f(n) \le g(n) \le c \cdot f(n) \ \forall n \ge n_0\}$$

Prove or disprove the following statements, where $f, g : \mathbb{N} \to \mathbb{R}^+$. (a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$. (e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$ (g) If $f_1, f_2 \in \mathcal{O}(g)$ and $f(n) := f_1(n) \cdot f_2(n)$, then $f \in \mathcal{O}(g)$. Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$. $2^{16}, \log(n^4), \log^8(n), \sqrt{n}, n \log n, \binom{n}{3}, n^5 + n, \frac{2^n}{n^2}, n!, n^n$.

Sum of elements in two-dimensional array

Problems / Questions?

2. Repetition theory

Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:
 - The given (in)equality holds for one or more base cases.
 e.g. ∑¹_{i=1} i = 1 = ¹⁽¹⁺¹⁾/₂.

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:

The given (in)equality holds for one or more base cases.
 e.g. ∑¹_{i=1} i = 1 = ¹⁽¹⁺¹⁾/₂.

 \blacksquare Induction hypothesis: we assume that the statement holds for some n

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:

The given (in)equality holds for one or more base cases.
 e.g. ∑¹_{i=1} i = 1 = ¹⁽¹⁺¹⁾/₂.

- \blacksquare Induction hypothesis: we assume that the statement holds for some n
- Induction step $(n \rightarrow n+1)$:
 - From the validity of the statement for n (induction hypothesis) it follows the one for n + 1.

• e.g.:
$$\sum_{i=1}^{n+1} i = n + 1 + \sum_{i=1}^{n} = n + 1 + \frac{n(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$
.

Induction: Example

• Show
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$
.

Induction: Example

• Show
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$

Base clause: n = 0: $\sum_{i=0}^{0} r^{i} = 1 = \frac{1-r^{1}}{1-r}$.

Induction: Example

• Show
$$\sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$$

Base clause: $n = 0: \sum_{i=0}^{0} r^{i} = 1 = \frac{1-r^{1}}{1-r}.$

Induction step $(n \rightarrow n+1)$:

$$\sum_{i=0}^{n+1} r^i = r^{n+1} + \sum_{i=0}^n r^i$$
$$= r^{n+1} + \frac{1 - r^{n+1}}{1 - r} = \frac{r^{n+1} - r^{n+2} + 1 + r^{n+1}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$

It can be shown easily in a direct manner

$$\frac{r^{n+1}-1}{r-1} \stackrel{!}{=} \sum_{i=0}^{n} r^{i}$$

$$(r-1) \cdot \sum_{i=0}^{n} r^{i} = \sum_{i=0}^{n} r^{i+1} - \sum_{i=0}^{n} r^{i}$$

$$= \sum_{i=1}^{n+1} r^{i} - \sum_{i=0}^{n} r^{i} = \sum_{i=0}^{n+1} r^{i} - 1 - \sum_{i=0}^{n} r^{i}$$

$$= r^{n+1} - 1$$

```
How many calls to f()?
```

```
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

```
How many calls to f()?
```

```
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

The code fragment implies $\Theta(n^2)$ calls to f(): the outer loop is executed n/9 times and the inner loop contains i calls to f()

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

The second inner loop contains $\lfloor \log_2(n) \rfloor + 1$ calls to f(). Summing up yields $\Theta(n \log(n))$ calls.

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1</pre>
```

```
void g(unsigned n) {
  for (unsigned i = 0; i < n; ++i) {
   g(i)
  }
  f();
}
T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
void g(unsigned n) {
 for (unsigned i = 0; i < n; ++i) {
  g(i)
 }
 f();
}
                               T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
void g(unsigned n) {
 for (unsigned i = 0; i < n; ++i) {
  g(i)
 }
 f();
}
                               T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

Hypothesis: $T(n) = 2^n$.

Induction

Hypothesis: $T(n) = 2^n$. Induction step:

$$T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}$$

= 1 + 2ⁿ - 1 = 2^r

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

You can also see it directly:

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i)$$

$$\Rightarrow T(n-1) = 1 + \sum_{i=0}^{n-2} T(i)$$

$$\Rightarrow T(n) = T(n-1) + T(n-1) = 2T(n-1)$$

Recurrence Equation

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \frac{n}{2} + 1, & n > 1\\ 3 & n = 1 \end{cases}$$

Specify a closed (non-recursive), simple formula for T(n) and prove it using mathematical induction. Assume that n is a power of 2.

Recurrence Equation

$$T(2^{k}) = 2T(2^{k-1}) + 2^{k}/2 + 1$$

= 2(2(T(2^{k-2}) + 2^{k-1}/2 + 1) + 2^{k}/2 + 1 = ...
= 2^{k}T(2^{k-k}) + \underbrace{2^{k}/2 + ... + 2^{k}/2}_{k} + 1 + 2 + ... + 2^{k-1}
= 3n + $\frac{n}{2}\log_{2} n + n - 1$

 \Rightarrow Assumption $T(n) = 4n + \frac{n}{2}\log_2 n - 1$

Induction

1 Hypothesis $T(n) = f(n) := 4n + \frac{n}{2}\log_2 n - 1$ 2 Base Case T(1) = 3 = f(1) = 4 - 1.
3 Step $T(n) = f(n) \longrightarrow T(2 \cdot n) = f(2n)$ ($n = 2^k$ for some $k \in \mathbb{N}$):

$$T(2n) = 2T(n) + n + 1$$

$$\stackrel{i.h.}{=} 2(4n + \frac{n}{2}\log_2 n - 1) + n + 1$$

$$= 8n + n\log_2 n - 2 + n + 1$$

$$= 8n + n\log_2 n + n\log_2 2 - 1$$

$$= 8n + n\log_2 2n - 1$$

$$= f(2n).$$

Questions or Suggestions?