
Datenstrukturen und Algorithmen

Exercise 14 - Discussion Exercise 13

FS 2020

1

Program of today

1 Feedback of last exercise

2

1. Feedback of last exercise

3

Exercise 13.1: Race conditions

Make functions of Item class thread safe.
Simple approach: Get lock at beginning of function, release at the
end.

4

Ratings
class Item {
private:

int rating_sum = 0;
int rating_count = 0;
std::recursive_mutex mtx; // re-entrant lock for out_rating

public:
Item() {};

/* Returns average rating. 0 if no rating occured */
double get_rating() {

// minimal requirement: do not forget the lock
std::lock_guard<std::recursive_mutex> lock(mtx);
if(rating_count == 0) return 0.0; // some forgot this
return (double)rating_sum / rating_count;

}
5

Ratings

void add_rating(int stars){
assert(1 <= stars && stars <= 5);
std::lock_guard<std::recursive_mutex> lock(mtx);
// some put the computation of the rating here,
// which is quite clever
rating_sum += stars;
rating_count++;

}

6

Ratings

// when you do not protect this, you might run into two kind of problems:
// 1.) Inconsistent result
// when call to add_rating between rating_count and get_rating
// 2.) scrumbled output when threads call out_rating in parallel
void out_rating(){

std :: lock_guard<std::recursive_mutex> lock(mtx); // required!
std :: cout << "ratings :" << rating_count << ", " ;
std :: cout << "score :" << get_rating() << "\n";

}
};

7

Exercise 13.2: Concurrent linked list

Coarse-grained: Analogous to first exercise
Fine-grained: Multiple locks, one per list element.

8

Concurrent Linked List – coarse lock
class LinkedList {
...
Node ∗ head ; // the head is a sentinel !!
std :: recursive_mutex mtx; // does not necessarily have to be recursive here
...

void insert (T el){
std :: lock_guard<std::recursive_mutex> lock(mtx); // minimal requirement
...

};
void remove(const T val){
std :: lock_guard<std::recursive_mutex> lock(mtx); // minimal requirement
...

}
9

Concurrent Linked List – fine grained lock

template<class T>
class LinkedList {
private :
struct Node {
std :: mutex mutex;
Node ∗next = nullptr ;
T val ;
Node(T v) : val (v) {};

};
...

10

Concurrent Linked List – insert
void insert (T el){

Node ∗ prev = head; // guaranteed to be non−null
prev−>mutex.lock(); // lock first element
while(prev−>next != nullptr && prev−>next−>val < el){

Node∗ next = prev−>next;
next−>mutex.lock(); // lock next −− now holding two locks
prev−>mutex.unlock(); // unlock prev −− now holding one lock again
prev = next;

}
Node ∗ next = prev−>next; // still holding the prev lock , next cannot be deleted
Node ∗ new_node = new Node(el);
new_node−>next = next;
prev−>next = new_node; // insert
prev−>mutex.unlock(); // release the lock

};
11

Concurrent Linked List – remove
void remove(const T val){
Node∗ prev = head; prev−>mutex.lock();
while (prev−>next != nullptr){
Node∗ next = prev−>next; // prev is locked
next−>mutex.lock(); // next is locked
if (next−>val == val){ // prev and next both locked
prev−>next = next−>next; // remove
next−>mutex.unlock(); // unlock both
prev−>mutex.unlock(); delete next; return ;

}
prev−>mutex.unlock(); // prev is unlocked
prev = next; // now prev is next (and locked)

}
prev−>mutex.unlock();

}
12

What is the advantage?

Performance loss!
Threads still block each other because a thread cannot traverse the
list when items are locked in between.
Other option: Optimistic and lazy-locking (not covered here).

13

13.3. Dining Philosophers

To avoid deadlocks, break cyclic dependency. As discussed last time.
Max/Min numbers of philosophers eating concurrently?
It’s possible that only one philosopher eats.

14

Bundle forks! Then always two can eat.

15

13.4. Bridge

Ensure that at most three cars or one truck is on the bridge
Use condition variable and a counter

16

Bridge

class Bridge {
public:

std::mutex mtx;
std::condition_variable cv;

int car_count = 0;

void check_bridge(){
if(car_count > 3){

std::cout << "Bridge collapsed!" << std::endl;
exit(0);

}
}

17

Bridge

void enter_car(){
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{return car_count < 3;});
car_count++;
check_bridge();

}

void leave_car(){
std::lock_guard<std::mutex> lock(mtx);
car_count--;
cv.notify_all();

}

18

Bridge

void enter_truck(){
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{return car_count == 0;});
car_count += 3;
check_bridge();

}

void leave_truck(){
std::lock_guard<std::mutex> lock(mtx);
car_count -= 3;
cv.notify_all();

}
};

19

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?

The trucks do not make progress because cars.
Solution? Prohibt convoys: Admit cars only if there is no truck
waiting and less than 3 cars (and no truck) on the bridge or there are
no cars on the bridge.
The fairness is reduced to the fairness of scheduling by the runtime
system.

20

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.

Solution? Prohibt convoys: Admit cars only if there is no truck
waiting and less than 3 cars (and no truck) on the bridge or there are
no cars on the bridge.
The fairness is reduced to the fairness of scheduling by the runtime
system.

20

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.
Solution?

Prohibt convoys: Admit cars only if there is no truck
waiting and less than 3 cars (and no truck) on the bridge or there are
no cars on the bridge.
The fairness is reduced to the fairness of scheduling by the runtime
system.

20

Problem with this Approach?

What happens if there are cars and trucks waiting at the bridge?
The trucks do not make progress because cars.
Solution? Prohibt convoys: Admit cars only if there is no truck
waiting and less than 3 cars (and no truck) on the bridge or there are
no cars on the bridge.
The fairness is reduced to the fairness of scheduling by the runtime
system.

20

Fairness

class Bridge {
std::mutex mtx;
std::condition_variable cv;

int car_count = 0; // count car equivalence
int trucks_waiting = 0; // count trucks waiting

public:

21

Fairness
void enter_car(){

std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]{

return (car_count < 3)
&& (trucks_waiting == 0 || car_count == 0);}

);
car_count++;
check_bridge();

}

void leave_car(){
std::lock_guard<std::mutex> lock(mtx);
car_count--;
cv.notify_all();

}
22

Fairness
void enter_truck(){

std::unique_lock<std::mutex> lock(mtx);
trucks_waiting++;
cv.wait(lock, [&]{return car_count = 0;});
trucks_waiting--;
car_count += 3;
check_bridge();

}

void leave_truck(){
std::lock_guard<std::mutex> lock(mtx);
car_count -= 3;
cv.notify_all();

}
};

23

	Feedback of last exercise

