Datenstrukturen und Algorithmen

Exercise 12

FS 2020

Program of today

1 Feedback of last exercise

2 Parallel Programming

3 C++ Threads

4 In-Class Exercise: Image Segmentation

1. Feedback of last exercise

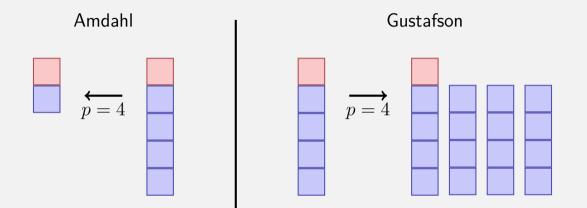
2. Parallel Programming

Given

- fixed amount of computing work W (number computing steps)
- Sequential execution time T_1
- \blacksquare Parallel execution time on p CPUs

	runtime	speedup	efficiency
perfection (linear)	$T_p = T_1/p$	$S_p = p$	$E_p = 1$
loss (sublinear)	$T_p > T_1/p$	$S_p < p$	$E_p < 1$
sorcery (superlinear)	$T_p < T_1/p$	$S_p > p$	$E_p > 1$

Amdahl vs. Gustafson



Amdahl vs. Gustafson, or why do we care?

AmdahlGustafsonpessimistoptimiststrong scalingweak scaling

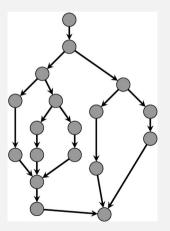
Amdahl vs. Gustafson, or why do we care?

AmdahlGustafsonpessimistoptimiststrong scalingweak scaling

 \Rightarrow need to develop methods with small sequential protion as possible.

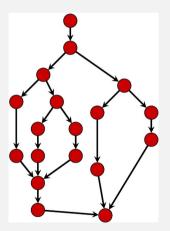
Task Parallelism: Performance Model

- p processors
- Dynamic scheduling
- T_p : Execution time on p processors



Performance Model

- T_p: Execution time on p processors
 T₁: work: time for executing total work on one processor
- T_1/T_p : Speedup

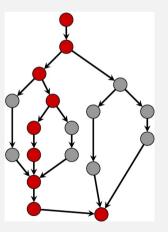


Performance Model

- T_∞: span: critical path, execution time on ∞ processors. Longest path from root to sink.
- T_1/T_∞ : *Parallelism:* wider is better

Lower bounds:

$$T_p \ge T_1/p$$
 Work law $T_p \ge T_\infty$ Span law



Greedy scheduler: at each time it schedules as many as availbale tasks.

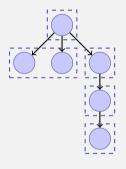
Theorem

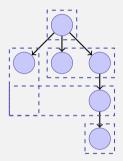
On an ideal parallel computer with p processors, a greedy scheduler executes a multi-threaded computation with work T_1 and span T_∞ in time

 $T_p \le T_1/p + T_\infty$

Beispiel

Assume
$$p = 2$$
.





$$T_p = 5$$

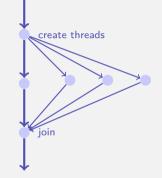
 $T_p = 4$

3. C++ Threads

C++11 Threads

```
void hello(int id){
  std::cout << "hello from " << id << "\n";
}</pre>
```

```
int main(){
 std::vector<std::thread> tv(3):
 int id = 0:
 for (auto & t:tv)
   t = std::thread(hello, ++id);
 std::cout << "hello from main \n";</pre>
 for (auto & t:tv)
       t.join();
 return 0;
```



Nondeterministic Execution!

One execution:

hello from main hello from 2 hello from 1 hello from 0

Other execution:

hello from 1 hello from main hello from 0 hello from 2

Other execution:

hello from main hello from 0 hello from hello from 1 2

Technical Details I

With allocating a thread, reference parameters are copied, except explicitly std::ref is provided at the construction.

Technical Details I

With allocating a thread, reference parameters are copied, except explicitly std::ref is provided at the construction.

```
void calc( std::vector<int>& very_long_vector ){
 // doing funky stuff with very long vector
3
int main(){
 std::vector<int> v( 100000000 );
 std::thread t1( calc. v );
                            // bad idea, v is copied
 // here v is unchanged
 std::thread t2( calc, std::ref(v) ); // good idea, v is not copied
 // here v is modified
 std::thread t2( [&v]{calc(v)}; } ); // also good idea
 // here v is modified
 // . . .
```

Technical Details II

Threads cannot be copied.

Technical Details II

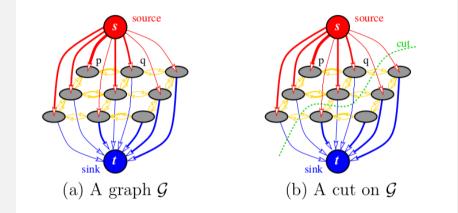
Threads cannot be copied.

```
Ł
 std::thread t1(hello);
 std::thread t2;
 t2 = t1; // compiler error
 t1.join();
}
Ł
 std::thread t1(hello):
 std::thread t2;
 t2 = std::move(t1); // ok
 t2.join();
3
```

4. In-Class Exercise: Image Segmentation

Max Flow / Edmonds-Karp / Push-Relabel

Idea: Max-Flow/Min-Cut



Source: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, Y.Boykov and V.Kolmogorov, IEEE Transactions on PAMI, Vol. 26, No. 9, pp. 1124-1137, Sept. 2004

- Capacities source-pixel/pixel-sink between neighbouring pixels?
 - Similarity to foreground/background color
 - Similarity of color values
 - \Rightarrow Heuristics / experience (=literature)
- Edmonds-Karp algorithm too slow ⇒ Push-Relabel Algorithm

Implementation Push-Relabel?

Input: Flow graph G = (V, E, c), with source s and sink t n := |v| $h(s) \leftarrow n$ foreach $v \neq s$ do $h(v) \leftarrow 0$ foreach $(u, v) \in E$ do $f(u, v) \leftarrow 0$ foreach $(s, v) \in E$ do $f(s, v) \leftarrow c(s, v)$ while $\exists u \in V \setminus \{s, t\} : \alpha_f(u) > 0$ do choose u with $\alpha_f(u) > 0$ and maximal $h(u) \leftarrow \text{ in } \mathcal{O}(1)$? if $\exists v \in V : c_f(u, v) > 0 \land h(v) = h(u) - 1$ then $push(u, v) \leftarrow Efficient way to find edges?$ push else $h(u) \leftarrow h(u) + 1$ / relabel

Possibilities

Management of the nodes:

- Maximal height $2n 1 \Rightarrow$ Node lists by height Algorithm Running Time $O(n^2 \sqrt{m})$
- Weaken the order: use FIFO list or relabel-to-front heuristics for nodes with excess.

Algorithm Running Time $\mathcal{O}(n^3)$

Management of the edges:

- Memorize the most recently used edge (=iterator) per node.
- Unnecessary for image segmentation, because only few edges per node

Questions?