
Datenstrukturen und Algorithmen

Exercise 12

FS 2020

1

Program of today

1 Feedback of last exercise

2 Parallel Programming

3 C++ Threads

4 In-Class Exercise: Image Segmentation

2

1. Feedback of last exercise

3

2. Parallel Programming

4

Parallel Performance

Given

fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs
runtime speedup efficiency

perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1

5

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

6

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

7

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

7

Task Parallelism: Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

8

Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

9

Performance Model

T∞: span: critical path, execution time
on ∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

10

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

11

Beispiel
Assume p = 2.

Tp = 5 Tp = 4

12

3. C++ Threads

13

C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

14

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

15

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

16

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

16

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}

17

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}
17

4. In-Class Exercise: Image Segmentation

Max Flow / Edmonds-Karp / Push-Relabel

18

Idea: Max-Flow/Min-Cut

Source: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,
Y.Boykov and V.Kolmogorov, IEEE Transactions on PAMI, Vol. 26, No. 9, pp. 1124-1137, Sept. 2004

19

Challenges

Capacities source-pixel/pixel-sink between neighbouring pixels?
Similarity to foreground/background color
Similarity of color values

⇒ Heuristics / experience (=literature)
Edmonds-Karp algorithm too slow
⇒ Push-Relabel Algorithm

20

Implementation Push-Relabel?

Input: Flow graph G = (V,E, c), with source s and sink t n := |v|
h(s)← n
foreach v 6= s do h(v)← 0
foreach (u, v) ∈ E do f(u, v)← 0
foreach (s, v) ∈ E do f(s, v)← c(s, v)

while ∃u ∈ V \ {s, t} : αf (u) > 0 do
choose u with αf (u) > 0 and maximal h(u) ← in O(1)?
if ∃v ∈ V : cf (u, v) > 0 ∧ h(v) = h(u)− 1 then

push(u, v) ←Efficient way to find edges? // push
else

h(u)← h(u) + 1 // relabel

21

Possibilities
Management of the nodes:

Maximal height 2n− 1 ⇒ Node lists by height
Algorithm Running Time O(n2√m)
Weaken the order: use FIFO list or relabel-to-front heuristics for
nodes with excess.
Algorithm Running Time O(n3)

Management of the edges:

Memorize the most recently used edge (=iterator) per node.
Unnecessary for image segmentation, because only few edges per
node

22

Questions?

23

	Feedback of last exercise
	Parallel Programming
	C++ Threads
	In-Class Exercise: Image Segmentation

