Datenstrukturen und Algorithmen

Exercise 11

FS 2020

Program of today

Feedback of last exercise
Repetition theory
MaxFlow

Two Quizzes

1. Feedback of last exercise

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.
m Output: the closeness centrality C'(v) of every vertex v.

Clo)= > d(v,u)

ueV\{v}

m Intuition: If many connected vertices are close to v, then C'(v) is
small.

m “How central is the vertex in its connected component?”

All Pairs Shortest Paths

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){
for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {
for(unsigned j = i + 1; j < n; ++j) {
if(k ==1i || k == j)
continue;
if(m[il k] == 0 || m[k][j] == 0)
continue; // no connection via k
if(m[il [j] == 0 || m[il[k] + m[k][j] < m[i] (1)
m[i] [j] = m[jl1[i] = m[i][k] + m[k][j];
}
}
}
}

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
/] ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {
cout << names[i] << ": "; unsigned centrality = O0;
for(unsigned j = 0; j < n; ++j) {
if(j == i) continue;
centrality += adjacencies[i] [j];
}
cout << centrality << endl;

}

Exercise Union-Find

class UnionFind{
std::vector<size_t> parents_;
public:
UnionFind(size_t size) : parents_(size, size) { };

size_t find(size_t index){
while(parents_[index] != parents_.size())
index = parents_[index];
return index;

}

void unite(size_t a, size_t b){
parents_[find(a)] = b;
}
I8

Exercise Kruskal

class Edge{
public:
size_ t u_, v_;
int c_;
Edge(size_t u, int v, int ¢) : u_(u), v_(v), c_(c) {}

bool operator<(const Edge& other) const {
return c_ < other.c_;

}
};

Exercise Kruskal

std: :vector<Edge> edges;

UnionFind uf(n_ + 1);
sort(edges.begin(), edges.end());
for(auto e : edges){
size_t i=uf.find(e.u_);
size_t j=uf.find(e.v_);
if (i 1= A
out.addEdge (e) ;
uf .unite(i, j);

2. Repetition theory

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, z): Add x to H
Minimum(H): return a pointer to element m with minimal key

ExtractMin(H): return and remove (from H) pointer to the
element m

m Union(Hy, Hs): return a heap merged from H; and H,
m DecreaseKey(H, z, k): decrease the key of z in H to k
m Delete (H,x): remove element x from H

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

n=14
min

|
N >

23 7 17 24

184512(5381 IO Zg\(—,}460

AR Ll
0 0 0

P S L 3 S L

Simple Operations

MakeHeap (trivial)
m Minimum (trivial)
Insert(H, e)

Insert new element into root-list
If key is smaller than minimum, reset min-pointer.

m Union (Hy, Hy)

Concatenate root-lists of H; and Hs
Reset min-pointer.

m Delete(H, e)

DecreaseKey(H, e, —o0)
ExtractMin(H)

ExtractMin

Remove minimal node m from the root list
Insert children of m into the root list

Merge heap-ordered trees with the same degrees until all trees

have a different degree:
Array of degrees a[l,...,n| of elements, empty at beginning. For

each element e of the root list:

B Let g be the degree of e

B If alg] = nil: alg] < e.

If €' := ag] # nil: Merge e with €’ resutling in €’ and set alg] < nil.
Set ¢’ unmarked. Re-iterate with e < ¢’ having degree g + 1.

DecreaseKey (1, e, k)

Remove e from its parent node p (if existing) and decrease the
degree of p by one.
Insert(H, e)
Avoid too thin trees:
B If p = nil then done.
B If p is unmarked: mark p and done.

If p marked: unmark p and cut p from its parent pp. Insert (H, p).
Iterate with p < pp.

Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap O(1) O(1)
Insert O(logn) O(1)
Minimum O(1) O(1)
ExtractMin O©(logn) O©(logn)
Union O(n) O(1)
DecreaseKey O(logn) O(1)

Delete O(logn) O(logn)

3. MaxFlow

Flow

A Flow f :V xV — R fulfills the follow-

ing conditions:
m Bounded Capacity:

For all u,v € V: f(u,v) < c(u,v).

m Skew Symmetry:

For all u,v € V: f(u,v) = —f(v,u).

m Conservation of flow:
For all u € V'\ {s,t}:

> flu,v) =0.

veV

12/12
vl_)vg

s 4/4‘ o }/(; t

Value of the flow:

1= Zuev f(s5,0)-
Here |f| = 18.

4/4

(%) _)U4

14/10

Rest Network

Rest network Gy provided by the edges with positive rest capacity:

1

s 4/4

13/10

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network G/.

Rest capacity cf(p) = min{cy(u,v) : (u,v) edge in p}

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and sink
t. The following statementsa are equivalent:

f is a maximal flow in G

The rest network Gy does not provide any expansion paths

It holds that |f| = ¢(S,T) for a cut (S,T) of G.

21

Algorithm Ford-Fulkerson((, s, t)

Input: Flow network G = (V, E, ¢)
Output: Maximal flow f.

for (u,v) € £ do
flu,v) «0
while Exists path p : s ~~ t in rest network G do
cs(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do
if (u,v) € E then
f(u,v) < f(u,v) + c¢(p)
else

f(v,u) < f(u,v) —cs(p)

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G; the
expansion path of shortest possible length (e.g. with BFS)

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of

flow increases applied by the algorithm is in O(|V'| - | E|)
= Overal asymptotic runtime: O(|V| - |E|?)

23

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, F).

M: M C FE such that [{m € M :v € m}| <1 for all
veV.

Maximal Matching M: Matching M, such that |M| > |M’| for each

matching M'.
\ \
/ /

4. Two Quizzes

[Exam 2018.01], Tasks 4 and 5

http://lec.inf.ethz.ch/DA/2019/downloads/exams/2018/Exam_DA_2018_01.pdf

Shortest Path Question

e

Most important question: What is the corresponding state space?

26

Max Flow Question

Most important question: How to map this to a max-flow (matching)
setup?

27

Questions?

	Feedback of last exercise
	Repetition theory
	MaxFlow
	Two Quizzes

