
Datenstrukturen und Algorithmen

Exercise 11

FS 2020

1

Program of today

1 Feedback of last exercise

2 Repetition theory

3 MaxFlow

4 Two Quizzes

2

1. Feedback of last exercise

3

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

4

All Pairs Shortest Paths
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){

for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = i + 1; j < n; ++j) {
if(k == i || k == j)

continue;
if(m[i][k] == 0 || m[k][j] == 0)

continue; // no connection via k
if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])

m[i][j] = m[j][i] = m[i][k] + m[k][j];
}

}
}

}
5

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": "; unsigned centrality = 0;
for(unsigned j = 0; j < n; ++j) {

if(j == i) continue;
centrality += adjacencies[i][j];

}
cout << centrality << endl;

}

6

Exercise Union-Find
class UnionFind{

std::vector<size_t> parents_;
public:

UnionFind(size_t size) : parents_(size, size) { };

size_t find(size_t index){
while(parents_[index] != parents_.size())

index = parents_[index];
return index;

}

void unite(size_t a, size_t b){
parents_[find(a)] = b;

}
};

7

Exercise Kruskal

class Edge{
public:

size_t u_, v_;
int c_;
Edge(size_t u, int v, int c) : u_(u), v_(v), c_(c) {}

bool operator<(const Edge& other) const {
return c_ < other.c_;

}
};

8

Exercise Kruskal
std::vector<Edge> edges;

...

UnionFind uf(n_ + 1);
sort(edges.begin(), edges.end());
for(auto e : edges){

size_t i=uf.find(e.u_);
size_t j=uf.find(e.v_);
if(i != j){

out.addEdge(e);
uf.unite(i, j);

}
}

9

2. Repetition theory

10

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H

Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the
element m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k

Delete (H, x): remove element x from H

11

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0

12

Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2
2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)

13

ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees
have a different degree:
Array of degrees a[1, . . . , n] of elements, empty at beginning. For
each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil.

Set e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.

14

DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p).

Iterate with p← pp.

15

Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)

16

3. MaxFlow

17

Flow

A Flow f : V × V → R fulfills the follow-
ing conditions:
Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:

∑
v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | = ∑

v∈V f(s, v).
Here |f | = 18.

18

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

19

Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}

20

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, c) with source s and sink
t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T) for a cut (S, T) of G.

21

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)

22

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
Theorem
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇒ Overal asymptotic runtime: O(|V | · |E|2)

23

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all
v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

24

4. Two Quizzes

[Exam 2018.01], Tasks 4 and 5

25

http://lec.inf.ethz.ch/DA/2019/downloads/exams/2018/Exam_DA_2018_01.pdf

Shortest Path Question

s

t

s

t

Most important question: What is the corresponding state space?
26

Max Flow Question

Most important question: How to map this to a max-flow (matching)
setup?

27

Questions?

28

	Feedback of last exercise
	Repetition theory
	MaxFlow
	Two Quizzes

