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Program of today

1 Feedback of last exercise

2 Repetition theory

3 MaxFlow

4 Two Quizzes
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1. Feedback of last exercise
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Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”
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All Pairs Shortest Paths
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){

for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = i + 1; j < n; ++j) {
if(k == i || k == j)

continue;
if(m[i][k] == 0 || m[k][j] == 0)

continue; // no connection via k
if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])

m[i][j] = m[j][i] = m[i][k] + m[k][j];
}

}
}

}
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Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": "; unsigned centrality = 0;
for(unsigned j = 0; j < n; ++j) {

if(j == i) continue;
centrality += adjacencies[i][j];

}
cout << centrality << endl;

}
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Exercise Union-Find
class UnionFind{

std::vector<size_t> parents_;
public:

UnionFind(size_t size) : parents_(size, size) { };

size_t find(size_t index){
while(parents_[index] != parents_.size())

index = parents_[index];
return index;

}

void unite(size_t a, size_t b){
parents_[find(a)] = b;

}
};
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Exercise Kruskal

class Edge{
public:

size_t u_, v_;
int c_;
Edge(size_t u, int v, int c) : u_(u), v_(v), c_(c) {}

bool operator<(const Edge& other) const {
return c_ < other.c_;

}
};
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Exercise Kruskal
std::vector<Edge> edges;

...

UnionFind uf(n_ + 1);
sort(edges.begin(), edges.end());
for(auto e : edges){

size_t i=uf.find(e.u_);
size_t j=uf.find(e.v_);
if(i != j){

out.addEdge(e);
uf.unite(i, j);

}
}
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2. Repetition theory
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Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H

Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the
element m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k

Delete (H, x): remove element x from H
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Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.
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Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2
2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)
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ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees
have a different degree:
Array of degrees a[1, . . . , n] of elements, empty at beginning. For
each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil.

Set e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.
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DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p).

Iterate with p← pp.
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Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)
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3. MaxFlow
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Flow

A Flow f : V × V → R fulfills the follow-
ing conditions:
Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:

∑
v∈V

f(u, v) = 0.
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Value of the flow:
|f | = ∑

v∈V f(s, v).
Here |f | = 18.
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Rest Network

Rest network Gf provided by the edges with positive rest capacity:
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Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges
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Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}
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Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, c) with source s and sink
t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T ) for a cut (S, T ) of G.
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
Theorem
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇒ Overal asymptotic runtime: O(|V | · |E|2)

23



Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all
v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

24



4. Two Quizzes

[Exam 2018.01], Tasks 4 and 5
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http://lec.inf.ethz.ch/DA/2019/downloads/exams/2018/Exam_DA_2018_01.pdf


Shortest Path Question

s

t

s

t

Most important question: What is the corresponding state space?
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Max Flow Question

Most important question: How to map this to a max-flow (matching)
setup?
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Questions?
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