# **Datenstrukturen und Algorithmen**

**Exercise 11** 

FS 2020

#### **Program of today**

1 Feedback of last exercise

2 Repetition theory

#### 3 MaxFlow

#### 4 Two Quizzes

## 1. Feedback of last exercise

- Given: an adjacency matrix for an *undirected* graph on *n* vertices.
- Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuition: If many connected vertices are close to v, then C(v) is small.
- "How central is the vertex in its connected component?"

#### **All Pairs Shortest Paths**

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){
 for (unsigned k = 0; k < n; ++k) {
   for(unsigned i = 0; i < n; ++i) {</pre>
     for(unsigned j = i + 1; j < n; ++j) {</pre>
       if(k == i || k == j)
         continue:
       if(m[i][k] == 0 || m[k][j] == 0)
         continue; // no connection via k
       if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])
         m[i][j] = m[j][i] = m[i][k] + m[k][j];
     }
   }
 }
```

## **Closeness Centrality**

```
vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {
 cout << names[i] << ": "; unsigned centrality = 0;</pre>
 for(unsigned j = 0; j < n; ++j) {
   if(j == i) continue:
   centrality += adjacencies[i][j]:
 }
 cout << centrality << endl:</pre>
}
```

#### **Exercise Union-Find**

```
class UnionFind{
   std::vector<size t> parents ;
public:
   UnionFind(size_t size) : parents_(size, size) { };
   size t find(size t index){
       while(parents_[index] != parents_.size())
           index = parents [index];
       return index:
   }
   void unite(size_t a, size_t b){
       parents [find(a)] = b;
   }
}:
```

```
class Edge{
public:
   size_t u_, v_;
    int c ;
   Edge(size_t u, int v, int c) : u_(u), v_(v), c_(c) {}
    bool operator<(const Edge& other) const {</pre>
        return c_ < other.c_;</pre>
    }
};
```

#### **Exercise Kruskal**

. . .

```
std::vector<Edge> edges;
```

```
UnionFind uf(n + 1);
sort(edges.begin(), edges.end());
for(auto e : edges){
       size t i=uf.find(e.u );
       size t j=uf.find(e.v );
       if(i != j){
              out.addEdge(e);
              uf.unite(i, j);
       }
```

# 2. Repetition theory

## Fibonacci Heaps

Data structure for elements with key with operations

- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- Minimum(H): return a pointer to element m with minimal key
- ExtractMin(H): return and remove (from H) pointer to the element m
- Union $(H_1, H_2)$ : return a heap merged from  $H_1$  and  $H_2$
- **DecreaseKey**(H, x, k): decrease the key of x in H to k
- **Delete** (H, x): remove element x from H

#### Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.



## **Simple Operations**

- MakeHeap (trivial)
- Minimum (trivial)
- Insert(H, e)
  - 1 Insert new element into root-list
  - 2 If key is smaller than minimum, reset min-pointer.
- Union  $(H_1, H_2)$ 
  - **1** Concatenate root-lists of  $H_1$  and  $H_2$
  - 2 Reset min-pointer.
- Delete(*H*, *e*)
  - **1** DecreaseKey $(H, e, -\infty)$
  - ExtractMin(H)

#### **ExtractMin**

- $\hfill\blacksquare$  Remove minimal node m from the root list
- $\hfill 2$  Insert children of m into the root list
- <sup>3</sup> Merge heap-ordered trees with the same degrees until all trees have a different degree: Array of degrees  $a[1, \ldots, n]$  of elements, empty at beginning. For each element e of the root list:
  - a Let g be the degree of e
    b If a[g] = nil: a[g] ← e.
    c If e' := a[g] ≠ nil: Merge e with e' resulting in e" and set a[g] ← nil. Set e" unmarked. Re-iterate with e ← e" having degree g + 1.

- **1** Remove e from its parent node p (if existing) and decrease the degree of p by one.
- **2**  $\mathsf{Insert}(H, e)$
- 3 Avoid too thin trees:
  - a If p = nil then done.
  - **b** If p is unmarked: mark p and done.
  - **c** If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate with  $p \leftarrow pp$ .

## **Runtimes**

|             | Binary Heap      | Fibonacci Heap   |
|-------------|------------------|------------------|
|             | (worst-Case)     | (amortized)      |
| MakeHeap    | $\Theta(1)$      | $\Theta(1)$      |
| Insert      | $\Theta(\log n)$ | $\Theta(1)$      |
| Minimum     | $\Theta(1)$      | $\Theta(1)$      |
| ExtractMin  | $\Theta(\log n)$ | $\Theta(\log n)$ |
| Union       | $\Theta(n)$      | $\Theta(1)$      |
| DecreaseKey | $\Theta(\log n)$ | $\Theta(1)$      |
| Delete      | $\Theta(\log n)$ | $\Theta(\log n)$ |

# 3. MaxFlow

#### Flow

A *Flow*  $f: V \times V \rightarrow \mathbb{R}$  fulfills the following conditions:

- Bounded Capacity: For all  $u, v \in V$ :  $f(u, v) \le c(u, v)$ .
- Skew Symmetry: For all  $u, v \in V$ : f(u, v) = -f(v, u).
- Conservation of flow: For all  $u \in V \setminus \{s, t\}$ :

$$\sum_{v \in V} f(u, v) = 0.$$



Value of the flow:  $|f| = \sum_{v \in V} f(s, v).$ Here |f| = 18.

#### **Rest Network**

*Rest network*  $G_f$  provided by the edges with positive rest capacity:



Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

expansion path p: simple path from s to t in the rest network  $G_f$ . Rest capacity  $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$ 

#### **Max-Flow Min-Cut Theorem**

#### Theorem

Let f be a flow in a flow network G = (V, E, c) with source s and sink

- t. The following statementsa are equivalent:
  - $\blacksquare f is a maximal flow in G$
  - **2** The rest network  $G_f$  does not provide any expansion paths
  - 3 It holds that |f| = c(S,T) for a cut (S,T) of G.

## Algorithm Ford-Fulkerson(G, s, t)

```
Input: Flow network G = (V, E, c)
Output: Maximal flow f.
```

for  $(u, v) \in E$  do  $\[ \int f(u, v) \leftarrow 0 \]$ 

```
while Exists path p: s \rightsquigarrow t in rest network G_f do
```

```
c_{f}(p) \leftarrow \min\{c_{f}(u, v) : (u, v) \in p\}
foreach (u, v) \in p do
if (u, v) \in E then
\mid f(u, v) \leftarrow f(u, v) + c_{f}(p)
else
\mid f(v, u) \leftarrow f(u, v) - c_{f}(p)
```

Choose in the Ford-Fulkerson-Method for finding a path in  $G_f$  the expansion path of shortest possible length (e.g. with BFS)

#### Theorem

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in  $\mathcal{O}(|V| \cdot |E|)$  $\Rightarrow$  Overal asymptotic runtime:  $\mathcal{O}(|V| \cdot |E|^2)$ 

## **Application: maximal bipartite matching**

Given: bipartite undirected graph G = (V, E). Matching M:  $M \subseteq E$  such that  $|\{m \in M : v \in m\}| \le 1$  for all  $v \in V$ .

Maximal Matching M: Matching M, such that  $|M| \ge |M'|$  for each matching M'.

# 4. Two Quizzes

[Exam 2018.01], Tasks 4 and 5

#### **Shortest Path Question**



Most important question: What is the corresponding state space?

#### **Max Flow Question**



Most important question: How to map this to a max-flow (matching) setup?

# Questions?