
Datenstrukturen und Algorithmen

Exercise 10

FS 2020

1

No exercise session

Even if no exercise sessions take place this week, we did not want to
deny you the exercise slides.

2

Program of today

1 Feedback of last exercises

2 Recap Lecture Material
Algorithm Jarnik, Prim, Dijkstra

3 Programming Task

3

1. Feedback of last exercises

4

Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A,B,C,D,E, F,H,G
BFS: A,B, F, C,H,D,G,E

There is no starting vertex where the DFS ordering equals the BFS
ordering.

5

Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A,B,C,D,E, F,H,G
BFS: A,B, F, C,H,D,G,E
There is no starting vertex where the DFS ordering equals the BFS
ordering.

5

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A,B,C,D,E
BFS: A,B,C,D,E

Starting at C
DFS: C,A,B,D,E
BFS: C,A,B,D,E

6

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A,B,C,D,E
BFS: A,B,C,D,E

Starting at C
DFS: C,A,B,D,E
BFS: C,A,B,D,E

6

Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge

Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free

Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

A Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

A B
Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

A B

C

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Topological Sorting

A B

C

D

E

A B

C E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0

7

Exercise : Labyrinth

Robot has to stop to change direction
Interpret as shortest path problem

8

Exercise : Labyrinth
position × direction × speed

2

2 2

2

2 2

2

2

3

3

3

3

Runtime?
9

Exercise Labyrinth

Let n be the number of squares. Graph has |V | = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E|+ |V | log |V |) has runtime O(n log n)

10

2. Recap Lecture Material

11

A*-Algorithm(G, s, t, ĥ)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V , end

point t ∈ V , estimate ĥ(v) ≤ δ(v, t)
Output: Existence and value of a shortest path from s to t

foreach u ∈ V do

d[u]←∞; f̂ [u]←∞; π[u]← null

d[s]← 0; f̂ [s]← ĥ(s); R← {s}; M ← {}
while R 6= ∅ do

u← ExtractMin
f̂
(R); M ←M ∪ {u}

if u = t then return success
foreach v ∈ N+(u) with d[v] > d[u] + c(u, v) do

d[v]← d[u] + c(u, v); f̂ [v]← d[v] + ĥ(v); π[v]← u
R← R ∪ {v}; M ←M − {v}

return failure
12

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V,E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

13

Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)

14

Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗
Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized

Johnson is better than Floyd-Warshall for sparse graphs (|E| ≈ Θ(|V |)).

15

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to m do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v)) // conceptual: A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V,A, c)

16

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Operations:

Make-Set(i): p[i]← i; return i

Find(i): while (p[i] 6= i) do i← p[i]
; return i

Union(i, j): p[j]← i; return i

17

MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some v ∈ V and grow the spanning tree from here by
the acceptance rule.

S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
// conceptual A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

18

Running time

Trivially O(|V | · |E|).
Improvements (like with Dijkstra’s ShortestPath)

Memorize cheapest edge to S: for each v ∈ V \ S. deg+(v) many
updates for each new v ∈ S. Costs: |V | many minima and updates:
O(|V |2 + ∑

v∈V deg+(v)) = O(|V |2 + |E|)
With Minheap: costs |V | many minima = O(|V | log |V |), |E|
Updates: O(|E| log |V |), Initialization O(|V |): O(|E| · log |V |.)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).

19

3. Programming Task

20

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

21

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

21

All Pairs Shortest Paths

We require d(u, v) for all vertex pairs (u, v).
=⇒ compute all shortest paths using Floyd-Warshall.
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{

// your code here

Simply overwrite m with the distance values.
Attention: initially 0 means “no edge”.
Undirected graph: m[i][j] == m[j][i]

22

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));

vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": ";
unsigned centrality = 0;
// your code here
cout << centrality << endl;

}

23

Closeness Centrality: Input Data

A graph that stems from collaborations on scientific papers.
The vertices of the graph are the co-authors of the
mathematician Paul Erdős.
There is an edge between them if the authors have jointly
published a paper.
Source: https://oakland.edu/enp/thedata/

24

https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0
ALAVI, YOUSEF : 1561
...

Where does the 0 come from?
25

Task Union Find

Input: union operations to be performed, followed by queries if they
are located in the same set.
Output: For each query, answer if they are in the same set.
Make sure you can re-use your code in the next task.

26

Task Kruskal’s MST algorithm

Edges have to be sorted.

Create an Edge class that implements the comparison operator.
Then use std::sort.

27

Task Kruskal’s MST algorithm

Edges have to be sorted.
Create an Edge class that implements the comparison operator.
Then use std::sort.

27

Questions?

28

	Feedback of last exercises
	Recap Lecture Material
	Algorithm Jarnik, Prim, Dijkstra

	Programming Task

