
Datenstrukturen und Algorithmen

Exercise 10

FS 2020
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No exercise session

Even if no exercise sessions take place this week, we did not want to
deny you the exercise slides.
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Program of today

1 Feedback of last exercises

2 Recap Lecture Material
Algorithm Jarnik, Prim, Dijkstra

3 Programming Task
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1. Feedback of last exercises
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Depth-first-search and Breadth-first-search
A

B

C D

E

FG

H

Starting at A
DFS: A,B,C,D,E, F,H,G
BFS: A,B, F, C,H,D,G,E

There is no starting vertex where the DFS ordering equals the BFS
ordering.
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Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B

C D

E

Starting at A
DFS: A,B,C,D,E
BFS: A,B,C,D,E

Starting at C
DFS: C,A,B,D,E
BFS: C,A,B,D,E
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Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =⇒ cycle-free
Topological Sorting by
“removing” elements with
in-degree 0
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Topological Sorting
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Topological Sorting
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Exercise : Labyrinth

Robot has to stop to change direction
Interpret as shortest path problem
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Exercise : Labyrinth
position × direction × speed
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Runtime?
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Exercise Labyrinth

Let n be the number of squares. Graph has |V | = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E|+ |V | log |V |) has runtime O(n log n)

10



2. Recap Lecture Material
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A*-Algorithm(G, s, t, ĥ)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V , end

point t ∈ V , estimate ĥ(v) ≤ δ(v, t)
Output: Existence and value of a shortest path from s to t

foreach u ∈ V do

d[u]←∞; f̂ [u]←∞; π[u]← null

d[s]← 0; f̂ [s]← ĥ(s); R← {s}; M ← {}
while R 6= ∅ do

u← ExtractMin
f̂
(R); M ←M ∪ {u}

if u = t then return success
foreach v ∈ N+(u) with d[v] > d[u] + c(u, v) do

d[v]← d[u] + c(u, v); f̂ [v]← d[v] + ĥ(v); π[v]← u
R← R ∪ {v}; M ←M − {v}

return failure
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DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V,E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).
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Algorithm Johnson(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)
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Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗
Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized

Johnson is better than Floyd-Warshall for sparse graphs (|E| ≈ Θ(|V |)).
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Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to m do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v)) // conceptual: A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V,A, c)
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Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Operations:

Make-Set(i): p[i]← i; return i

Find(i): while (p[i] 6= i) do i← p[i]
; return i

Union(i, j): p[j]← i; return i
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MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some v ∈ V and grow the spanning tree from here by
the acceptance rule.

S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
// conceptual A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.
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Running time

Trivially O(|V | · |E|).
Improvements (like with Dijkstra’s ShortestPath)

Memorize cheapest edge to S: for each v ∈ V \ S. deg+(v) many
updates for each new v ∈ S. Costs: |V | many minima and updates:
O(|V |2 + ∑

v∈V deg+(v)) = O(|V |2 + |E|)
With Minheap: costs |V | many minima = O(|V | log |V |), |E|
Updates: O(|E| log |V |), Initialization O(|V |): O(|E| · log |V |.)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).
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3. Programming Task
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Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”
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All Pairs Shortest Paths

We require d(u, v) for all vertex pairs (u, v).
=⇒ compute all shortest paths using Floyd-Warshall.
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{

// your code here

Simply overwrite m with the distance values.
Attention: initially 0 means “no edge”.
Undirected graph: m[i][j] == m[j][i]
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Closeness Centrality

vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));

vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": ";
unsigned centrality = 0;
// your code here
cout << centrality << endl;

}
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Closeness Centrality: Input Data

A graph that stems from collaborations on scientific papers.
The vertices of the graph are the co-authors of the
mathematician Paul Erdős.
There is an edge between them if the authors have jointly
published a paper.
Source: https://oakland.edu/enp/thedata/
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Closeness Centrality: Output

vertices: 511
ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0
ALAVI, YOUSEF : 1561
...

Where does the 0 come from?
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Task Union Find

Input: union operations to be performed, followed by queries if they
are located in the same set.
Output: For each query, answer if they are in the same set.
Make sure you can re-use your code in the next task.
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Task Kruskal’s MST algorithm

Edges have to be sorted.

Create an Edge class that implements the comparison operator.
Then use std::sort.
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Questions?
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