Datenstrukturen und Algorithmen

Exercise 10

FS 2020

Even if no exercise sessions take place this week, we did not want to deny you the exercise slides.

Program of today

1 Feedback of last exercises

- 2 Recap Lecture Material
 - Algorithm Jarnik, Prim, Dijkstra

3 Programming Task

1. Feedback of last exercises

Starting at A (C) DFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

Starting at A (C) DFS: A, B, C, D, E, F, H, GBFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E

Star: DFS ordering equals BFS ordering

Starting at ADFS: A, B, C, D, EBFS: A, B, C, D, E Starting at CDFS: C, A, B, D, EBFS: C, A, B, D, E

Graph with cycles

Graph with cyclesTwo minimal cycles sharing an edge

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Graph with cycles
- Two minimal cycles sharing an edge
- $\blacksquare Remove edge \implies cycle-free$
- Topological Sorting by "removing" elements with in-degree 0

- Robot has to stop to change direction
- Interpret as shortest path problem

Exercise : Labyrinth

position \times direction \times speed

Let n be the number of squares. Graph has |V| = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E| + |V| log |V|) has runtime O(n log n)

2. Recap Lecture Material

A*-Algorithm(G, s, t, \hat{h})

Input: Positively weighted Graph G = (V, E, c), starting point $s \in V$, end point $t \in V$, estimate $\hat{h}(v) \leq \delta(v, t)$ **Output:** Existence and value of a shortest path from s to t

foreach $u \in V$ do $d[u] \leftarrow \infty; \ \widehat{f}[u] \leftarrow \infty; \ \pi[u] \leftarrow \mathsf{null}$ $d[s] \leftarrow 0; \ \widehat{f}[s] \leftarrow \widehat{h}(s); \ R \leftarrow \{s\}; \ M \leftarrow \{\}$ while $R \neq \emptyset$ do $u \leftarrow \mathsf{ExtractMin}_{\widehat{f}}(R); M \leftarrow M \cup \{u\}$ if u = t then return success foreach $v \in N^+(u)$ with d[v] > d[u] + c(u, v) do $d[v] \leftarrow d[u] + c(u, v); \ \widehat{f}[v] \leftarrow d[v] + \widehat{h}(v); \ \pi[v] \leftarrow u$ $R \leftarrow R \cup \{v\}; M \leftarrow M - \{v\}$

return failure

DP Algorithm Floyd-Warshall(*G***)**

```
Input: Acyclic Graph G = (V, E, c)

Output: Minimal weights of all paths d

d^0 \leftarrow c

for k \leftarrow 1 to |V| do

for i \leftarrow 1 to |V| do

d^k(v_i, v_j) = \min\{d^{k-1}(v_i, v_j), d^{k-1}(v_i, v_k) + d^{k-1}(v_k, v_j)\}
```

Runtime: $\Theta(|V|^3)$

Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(G)

Input: Weighted Graph G = (V, E, c)**Output:** Minimal weights of all paths D.

New node *s*. Compute G' = (V', E', c')if BellmanFord(G', s) = false then return "graph has negative cycles" foreach $v \in V'$ do $\lfloor h(v) \leftarrow d(s, v) // d$ aus BellmanFord Algorithmus foreach $(u, v) \in E'$ do $\lfloor \tilde{c}(u, v) \leftarrow c(u, v) + h(u) - h(v)$ foreach $u \in V$ do

Comparison of the approaches

Algorithm			Runtime
Dijkstra (Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E \log V)$
Dijkstra (Fibonacci-Heap)	$c_v \ge 0$	1:n	$\mathcal{O}(E + V \log V)^*$
Bellman-Ford		1:n	$\mathcal{O}(E \cdot V)$
Floyd-Warshall		n:n	$\Theta(V ^3)$
Johnson		n:n	$\mathcal{O}(V \cdot E \cdot \log V)$
Johnson (Fibonacci-Heap)		n:n	$\mathcal{O}(V ^2 \log V + V \cdot E) *$

* amortized

Johnson is better than Floyd-Warshall for sparse graphs ($|E| \approx \Theta(|V|)$).

Union-Find Algorithm MST-Kruskal(*G***)**

Input: Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) < ... < c(e_m)
A \leftarrow \emptyset
for k = 1 to m do
    MakeSet(k)
for k = 1 to m do
    (u, v) \leftarrow e_k
    if Find(u) \neq Find(v) then
         Union(Find(u), Find(v))
    else
```

return (V, A, c)

// conceptual: $A \leftarrow A \cup e_k$ // conceptual: $R \leftarrow R \cup e_k$

Implementation Union-Find

Operations:

- Make-Set(i): $p[i] \leftarrow i$; return i
- Find(*i*): while $(p[i] \neq i)$ do $i \leftarrow p[i]$; return *i*
- Union(i, j): $p[j] \leftarrow i$; return i

MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some $v \in V$ and grow the spanning tree from here by the acceptance rule.

```
\begin{array}{l} S \leftarrow \{v_0\} \\ \text{for } i \leftarrow 1 \text{ to } |V| \text{ do} \\ \\ | \begin{array}{c} \text{Choose cheapest } (u,v) \text{ mit } u \in S, v \notin S \\ // \text{ conceptual } A \leftarrow A \cup \{(u,v)\} \\ S \leftarrow S \cup \{v\} \ // \text{ (Coloring)} \end{array} \end{array}
```


Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to S.

Running time

Trivially $\mathcal{O}(|V| \cdot |E|)$.

Improvements (like with Dijkstra's ShortestPath)

- Memorize cheapest edge to S: for each $v \in V \setminus S$. $\deg^+(v)$ many updates for each new $v \in S$. Costs: |V| many minima and updates: $\mathcal{O}(|V|^2 + \sum_{v \in V} \deg^+(v)) = \mathcal{O}(|V|^2 + |E|)$
- With Minheap: costs |V| many minima = $\mathcal{O}(|V| \log |V|)$, |E|Updates: $\mathcal{O}(|E| \log |V|)$, Initialization $\mathcal{O}(|V|)$: $\mathcal{O}(|E| \cdot \log |V|)$.
- With a Fibonacci-Heap: $\mathcal{O}(|E| + |V| \cdot \log |V|)$.

3. Programming Task

Given: an adjacency matrix for an *undirected* graph on n vertices.
Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Given: an adjacency matrix for an *undirected* graph on *n* vertices.
- Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuition: If many connected vertices are close to v, then C(v) is small.
- "How central is the vertex in its connected component?"

All Pairs Shortest Paths

- We require d(u, v) for all vertex pairs (u, v).
- $\blacksquare \implies$ compute all shortest paths using Floyd-Warshall.

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)
{
 // your code here

- Simply overwrite m with the distance values.
- Attention: initially 0 means "no edge".
- Undirected graph: m[i][j] == m[j][i]

Closeness Centrality

```
vector<vector<unsigned> > adjacencies(n,
                  vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {</pre>
  cout << names[i] << ": ";</pre>
 unsigned centrality = 0;
 // your code here
  cout << centrality << endl;</pre>
}
```

Closeness Centrality: Input Data

- A graph that stems from collaborations on scientific papers.
- The vertices of the graph are the co-authors of the mathematician Paul Erdős.
- There is an edge between them if the authors have jointly published a paper.
- Source: https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511 ABBOTT, HARVEY LESLIE : 1625 ACZEL, JANOS D. : 1681 AGOH, TAKASHI : 2132 : 1578 AHARONI, RON AIGNER. MARTIN S. : 1589 AJTAI, MIKLOS : 1492 ALAOGLU, LEONIDAS* : 0 ALAVI, YOUSEF : 1561

• • •

Where does the 0 come from?

- Input: union operations to be performed, followed by queries if they are located in the same set.
- Output: For each query, answer if they are in the same set.
- Make sure you can re-use your code in the next task.

Task Kruskal's MST algorithm

Edges have to be sorted.

Task Kruskal's MST algorithm

- Edges have to be sorted.
- Create an *Edge* class that implements the comparison operator.
- Then use *std::sort*.

Questions?