
14. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using
Chaining, Simple Uniform Hashing, Popular Hash Functions,
Table-Doubling, Open Addressing: Probing, Uniform Hashing,
Universal Hashing, Perfect Hashing [Ottman/Widmayer, Kap.
4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

375

Motivating Example

Gloal: Efficient management of a table of all n ETH-students of

Possible Requirement: fast access (insertion, removal, find) of a
dataset by name

376

Dictionary

Abstract Data Type (ADT) D to manage items20 i with keys k ∈ K
with operations

D.insert(i): Insert or replace i in the dictionary D.
D.delete(i): Delete i from the dictionary D. Not existing⇒ error
message.
D.search(k): Returns item with key k if it exists.

20Key-value pairs (k, v), in the following we consider mainly the keys
377

Dictionary in C++

Associative Container std::unordered_map<>

// Create an unordered_map of strings that map to strings
std::unordered_map<std::string, std::string> u = {

{"RED","#FF0000"}, {"GREEN","#00FF00"}
};

u["BLUE"] = "#0000FF"; // Add

std::cout << "The HEX of color RED is: " << u["RED"] << "\n";

for(const auto& n : u) // iterate over key−value pairs
std::cout << n.first << ":" << n.second << "\n";

378

Motivation / Use
Perhaps the most popular data structure.

Supported in many programming languages (C++, Java, Python,
Ruby, Javascript, C# ...)
Obvious use

Databases, Spreadsheets
Symbol tables in compilers and interpreters

Less obvious

Substrin Search (Google, grep)
String commonalities (Document distance, DNA)
File Synchronisation
Cryptography: File-transfer and identification

379

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1 Keys must be non-negative

integers
2 Large key-range⇒ large array

380

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function
ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)

Practically: APIs offer functions for pre-hashing. (Java:
object.hashCode(), C++: std::hash<>, Python:
hash(object))
APIs map the key from the key set to an integer with a restricted
size.21

21Therefore the implication ph(x) = ph(y)⇒ x = y does not hold any more for all x,y.
381

Prehashing Example : String

Mapping Name s = s1s2 . . . sls to key

ph(s) =

(
ls∑

i=1

sls−i+1 · bi
)

mod 2w

b so that different names map to different keys as far as possible.

b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values si.
Anna 7→ 2045632
Jacqueline 7→ 2042089953442505 mod 232 = 507919049

382

Lösung zum zweiten Problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1}
(m ≈ n = number entries of the table)

Collision: h(ki) = h(kj).
383

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.

384

Resolving Collisions: Chaining
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

385

Algorithm for Hashing with Chaining

insert(i) Check if key k of item i is in list at position h(k). If no,
then append i to the end of the list. Otherwise replace element by
i.
find(k) Check if key k is in list at position h(k). If yes, return the
data associated to key k, otherwise return empty element null.
delete(k) Search the list at position h(k) for k. If successful,
remove the list element.

386

Worst-case Analysis

Worst-case: all keys are mapped to the same index.

⇒ Θ(n) per operation in the worst case.

387

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m
available slots

with equal probability (Uniformity)
and independent of where other keys are hashed
(Independence).

388

Simple Uniform Hashing
Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a
hash table with m elements

E(Länge Kette j) = E

(
n−1∑

i=0

1(ki = j)

)
=

n−1∑

i=0

P(ki = j)

=
n∑

i=1

1

m
=
n

m

α = n/m is called load factor of the hash table.
389

Simple Uniform Hashing

Theorem
Let a hash table with chaining be filled with load-factor α = n

m < 1.
Under the assumption of simple uniform hashing, the next operation
has expected costs of ≤ 1 + α.

Consequence: if the number slots m of the hash table is always at
least proportional to the number of elements n of the hash table,
n ∈ O(m)⇒ Expected Running time of Insertion, Search and
Deletion is O(1).

390

Further Analysis (directly chained list)
1 Unsuccesful search. The average list lenght is α = n

m . The list
has to be traversed completely.
⇒ Average number of entries considered

C ′n = α.

2 Successful search Consider the insertion history: key j sees an
average list length of (j − 1)/m.
⇒ Average number of considered entries

Cn =
1

n

n∑

j=1

(1 + (j − 1)/m)) = 1 +
1

n

n(n− 1)

2m
≈ 1 +

α

2
.

391

Advantages and Disadvantages of Chaining

Advantages

Possible to overcommit: α > 1 allowed
Easy to remove keys.

Disadvantages

Memory consumption of the chains-

392

[Variant:Indirect Chaining]
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19 , 43

Indirect chaining the Collisions

15

43

2 12

5

19

55hash table

Colliding entries

0 1 2 3 4 5 6

393

Examples of popular Hash Functions

h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10

But often: m = 2k − 1 (k ∈ N)

394

Examples of popular Hash Functions
Multiplication method

h(k) =
⌊
(a · k mod 2w)/2w−r

⌋
mod m

m = 2r, w = size of the machine word in bits.

Multiplication adds k along all bits of a, integer division with 2w−r and modm
extract the upper r bits.

Written as code a ∗ k >> (w−r)

A good value of a:
⌊√

5−1
2
· 2w
⌋
: Integer that represents the first w bits of the

fractional part of the irrational number.

395

Illustration

k
×

k
a11 1

k

k

k

+

+

= ← r bits→

← r bits→0>> (w − r)

w bits← →

396

Table size increase

We do not know beforehand how large n will be
Require m = Θ(n) at all times.

Table size needs to be adapted. Hash-Function changes⇒
rehashing

Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′.
Costs O(n+m+m′).

How to choose m′?
397

Table size increase

1.Idea n = m⇒ m′ ← m+ 1
Increase for each insertion: Costs Θ(1 + 2 + 3 + · · ·+ n) = Θ(n2)

2.Idea n = m⇒ m′ ← 2m Increase only ifm = 2i:
Θ(1 + 2 + 4 + 8 + · · ·+ n) = Θ(n)
Few insertions cost linear time but on average we have Θ(1)

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten Θ(1).

(⇒ Amortized Analysis)

398

Open Addressing22

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

22Notational clarification: this method uses open addressing(meaning that the positions in the hashtable are not fixed) but
it is a closed hashing procedure (because the entries stay in the hashtable)

399

Algorithms for open addressing

insert(i) Search for kes k of i in the table according to S(k). If k
is not present, insert k at the first free position in the probing
sequence. Otherwise error message.
find(k) Traverse table entries according to S(k). If k is found,
return data associated to k. Otherwise return an empty element
null.
delete(k) Search k in the table according to S(k). If k is found,
replace it with a special key removed.

400

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1)
mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

401

[Analysis linear probing (without proof)]

1 Unsuccessful search. Average number of considered entries

C ′n ≈
1

2

(
1 +

1

(1− α)2

)

2 Successful search. Average number of considered entries

Cn ≈
1

2

(
1 +

1

1− α

)
.

402

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!
(here without derivation).

? Disadvantage of the method?

! Primary clustering: similar hash addresses have similar probing
sequences⇒ long contiguous areas of used entries.

403

Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

404

[Analysis Quadratic Probing (without Proof)]

1 Unsuccessful search. Average number of entries considered

C ′n ≈
1

1− α − α + ln

(
1

1− α

)

2 Successful search. Average number of entries considered

Cn ≈ 1 + ln

(
1

1− α

)
− α

2
.

405

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without
derivation)

? Problems of this method?
! Secondary clustering: Synonyms k and k′ (with h(k) = h(k′))

travers the same probing sequence.

406

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

Example:
m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.
Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

407

Double Hashing

Probing sequence must permute all hash addresses. Thus
h′(k) 6= 0 and h′(k) may not divide m, for example guaranteed
with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence:

P ((h(k) = h(k′)) ∧ (h′(k) = h′(k′))) = P (h(k) = h(k′)) ·P (h′(k) = h′(k′)) .

Independence largely fulfilled by h(k) = k mod m and
h′(k) = 1 + k mod (m− 2) (m prime).

408

[Analysis Double Hashing]

Let h and h′ be independent, then:

1 Unsuccessful search. Average number of considered entries:

C ′n ≈
1

1− α

2 Successful search. Average number of considered entries:

Cn ≈
1

α
ln

(
1

1− α

)

409

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly
likely to be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)

410

Analysis of Uniform Hashing with Open Addressing

Theorem
Let an open-addressing hash table be filled with load-factor
α = n

m < 1. Under the assumption of uniform hashing, the next
operation has expected costs of ≤ 1

1−α .

411

Analysis of Uniform Hashing with Open Addressing
Proof of the Theorem: Random Variable X: Number of probings when searching
without success.

P(X ≥ i)
∗
=

n

m
· n− 1

m− 1
· n− 2

m− 2
· · · n− i+ 2

m− i+ 2
∗∗
≤
(n
m

)i−1
= αi−1. (1 ≤ i ≤ m)

*: Aj :Slot used during step j.
P(A1 ∩ · · · ∩ Ai−1) = P(A1) ·P(A2|A1) · ... ·P(Ai−1|A1 ∩ · · · ∩ Ai−2),
**: n−1

m−1 <
n
m

because23 n < m.

Moreover P(x ≥ i) = 0 for i ≥ m. Therefore

E(X)
Appendix

=
∞∑

i=1

P(X ≥ i) ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi =
1

1− α.

23 n−1
m−1

< n
m
⇔ n−1

n
< m−1

m
⇔ 1− 1

n
< 1− 1

m
⇔ n < m (n > 0,m > 0)

412

[Successful search of Uniform Open Hashing]

Theorem
Let an open-addressing hash table be filled with load-factor
α = n

m < 1. Under the assumption of uniform hashing, the
successful search has expected costs of ≤ 1

α · log 1
1−α .

Proof: Cormen et al, Kap. 11.4

413

Overview

α = 0.50 α = 0.90 α = 0.95

Cn C ′n Cn C ′n Cn C ′n

(Direct) Chaining 1.25 0.50 1.45 0.90 1.48 0.95

Linear Probing 1.50 2.50 5.50 50.50 10.50 200.50

Quadratic Probing 1.44 2.19 2.85 11.40 3.52 22.05

Uniform Hashing 1.39 2.00 2.56 10.00 3.15 20.00

: Cn: Anzahl Schritte erfolgreiche Suche, C′n: Anzahl Schritte erfolglose Suche, Belegungsgrad α.

414

Universal Hashing

|K| > m⇒ Set of “similar keys” can be chosen such that a large
number of collisions occur.
Impossible to select a “best” hash function for all cases.
Possible, however24: randomize!

Universal hash class H ⊆ {h : K → {0, 1, . . . ,m− 1}} is a family of
hash functions such that

∀ k1 6= k2 ∈ K it holds that |{h ∈ H with h(k1) = h(k2)}| ≤
|H|
m
.

24Similar as for quicksort
415

Universal Hashing

Theorem
A function h randomly chosen from a universal class H of hash
functions randomly distributes an arbitrary sequence of keys from K
as uniformly as possible on the available slots.
When using hashing with chaining, the expected chain length for an
element that is not contained in the table is ≤ α = n/m. The
expected chain length for an element contained is ≤ 1 + α.

416

Universal Hashing

Initial remark for the proof of the theorem:

Define with x, y ∈ K, h ∈ H, Y ⊆ K:

δ(h, x, y) =

{
1, if h(x) = h(y)

0, otherwise,
is h(x) = h(y) (0 or 1)?

δ(h, x, Y) =
∑

y∈Y
δ(x, y, h), for how many y ∈ Y is h(x) = h(y)?

δ(H, x, y) =
∑

h∈H
δ(x, y, h) for how many h ∈ H is h(x) = h(y)?.

H is universal if for all x, y ∈ K, x 6= y : δ(H, x, y) ≤ |H|/m.

417

Universal Hashing
Proof of the theorem

S ⊆ K: keys stored up to now. x is added now: (x 6∈ S)

Expected number of collisions of x with S

EH(δ(h, x, S)) =
∑

h∈H
δ(h, x, S)/|H|

=
1

|H|
∑

h∈H

∑

y∈S
δ(h, x, y) =

1

|H|
∑

y∈S

∑

h∈H
δ(h, x, y)

=
1

|H|
∑

y∈S
δ(H, x, y)

≤ 1

|H|
∑

y∈S

|H|
m

=
|S|
m

= α.

�
418

Universal Hashing
S ⊆ K: keys stored up to now, now x ∈ S.

Expected number of collisions of x with S

EH(δ(x, S, h)) =
∑

h∈H
δ(x, S, h)/|H|

=
1

|H|
∑

h∈H

∑

y∈S
δ(h, x, y) =

1

|H|
∑

y∈S

∑

h∈H
δ(h, x, y)

=
1

|H|


δ(H, x, x) +

∑

y∈S−{x}
δ(H, x, y)




≤ 1

|H|


|H|+

∑

y∈S−{x}
|H|/m


 = 1 +

|S| − 1

m
= 1 +

n− 1

m
≤ 1 + α.

�
419

Construction Universal Class of Hashfunctions

Let key set be K = {0, . . . , u− 1} and p ≥ u be prime. With
a ∈ K \ {0}, b ∈ K define

hab : K → {0, . . . ,m− 1}, hab(x) = ((ax+ b) mod p) mod m.

Then the following theorem holds:

Theorem
The class H = {hab|a, b ∈ K, a 6= 0} is a universal class of hash
functions.

(Here without proof, see e.g. Cormen et al, Kap. 11.3.3)

420

Perfect Hashing

If the set of used keys is known up-front, the hash function can be
chosen perfectly, i.e. such that there are no collisions.

Example: table of key words of a compiler.

421

Observation (Birthday Paradox Reversed)
h be chosen at random from universal hashclass H.
n keys S ⊂ K
Random variable X : number collisionsof the n keys fromS

⇒

E(X) = E


∑

i6=j
1(h(ki) = h(kj)


 =

∑

i6=j
E (1(h(ki) = h(kj))

∗
=

(
n

2

)
1

m
≤ n2

2m

* # Unordered Pairs
∑

i 6=j 1 =
∑n−1

i=0

∑n−1
j=i+1 1 =

∑n−1
i=0 (n− 1− i) = n(n− 1)− n(n− 1)/2 = n(n− 1)/2

422

Perfect Hashing with memory space Θ(n2)

if m = n2⇒ E(X) ≤ 1
2 .

Markov-Inequality25
P(X ≥ 1) ≤ E(X)

1 ≤ 1
2

Thus
E(X < 1) = E(no Collision) ≥ 1

2
.

Consequence: for n keys, in expected 2 · n steps, a collision free
hash-table of size m = n2 can be constructed by choosing from a
universal hash class at random.

25Appendix
423

Perfect Hashing Idea

424

Perfect Hashing with Θ(n) memory consumption.

Two-level hashing

1 Choose m = n and h : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 1}
from a universal hash-class. Insert all n keys into the hash table
using chaining. Let li be the length of a chain at index i.
If
∑m−1

i=0 l2i > 4n, then repeat this step 1.
2 For each index i = 1, . . . ,m− 1 with li > 0 construct, for the li

contained keys, hash tables of length l2i using universal hashing
(hash function h2,i) until there are no collisions.

Memory consumption Θ(n).

425

Expected Running times

For Step 1: hash table of size m = n.
We show on the next page that E

(∑m−1
j=0 l

2
j

)
≤ 2n. Consequently

(Markov): P
(∑m−1

j=0 l
2
j ≥ 4n

)
≤ 2n

4n = 1
2 .

⇒ Expected two retries of step 1.
For Step 2:

∑
l2i ≤ 4n. For each i expected two trials with running

time l2i . Overal O(n)

⇒ The perfect hash tables can be constructed in expected O(n)
steps.

426

Expected Memory Space 2nd Level Hash Tables

E

(
m−1∑

j=0

l2j

)
= E

(
m−1∑

j=0

n−1∑

i=0

n−1∑

i′=0

1(h(ki) = h(ki′) = j)

)

= E

(
n−1∑

i=0

n−1∑

i′=0

1(h(ki) = h(ki′))

)

= E

(∑

i=i′

1(h(ki) = h(ki′)) + 2 ·
∑

i 6=i′
1(h(ki) = h(ki′))

)

= n+ 2 ·
∑

i 6=i′
E (1(h(ki) = h(ki′)))

= n+ 2

(
n

2

)
1

m
m=n
= 2n− 1 ≤ 2n.

427

14.9 Appendix

Some mathematical formulas

428

[Birthday Paradox]

Assumption: m urns, n balls (wlog n ≤ m).
n balls are put uniformly distributed into the urns

What is the collision probability?

Birthdayparadox: with how many people (n) the probability that two
of them share the same birthday (m = 365) is larger than 50%?

429

[Birthday Paradox]
P(no collision) = m

m · m−1m · · · · · m−n+1
m = m!

(m−n)!·mm .

Let a� m. With ex = 1 + x+ x2

2! + . . . approximate 1− a
m ≈ e−

a
m .

This yields:

1 ·
(

1− 1

m

)
·
(

1− 2

m

)
· ... ·

(
1− n− 1

m

)
≈ e−

1+···+n−1
m = e−

n(n−1)
2m .

Thus
P(Kollision) = 1− e−n(n−1)

2m .

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived from the slightly more accurate

Stirling formula. n! ≈
√
2πn · nn · e−n

430

[Formula for Expected Value]

X ≥ 0 discrete random variable with E(X) <∞

E(X)
(def)
=

∞∑

x=0

xP(X = x)

Counting
=

∞∑

x=1

∞∑

y=x

P(X = y)

=
∞∑

x=0

P(X ≥ x)

431

[Markov Inequality]
discrete Version

E(X) =
∞∑

x=−∞
xP(X = x)

≥
∞∑

x=a

xP(X = x)

≥ a

∞∑

x=a

P(X = x)

= a ·P(X ≥ a)

⇒

P(X ≥ a) ≤ E(X)

a

432

