
11. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked
lists [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap.
10.1.-10.2]

317

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

318

Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

319

Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

320

Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.

321

Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

322

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

323

Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

324

Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

325

Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.

326

Implementation Variants of Linked Lists
List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)

327

Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail

328

Overview

enqueue delete search concat
(A) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked

329

priority queue

Priority Queue

Operations

insert(x,p,Q): Enter object x with priority p.
extractMax(Q): Remove and return object x with highest priority.

330

Implementation Priority Queue

With a Max Heap

Thus

insert in O(log n) and
extractMax in O(log n).

331

12. Amortized Analyis

Amortized Analysis: Aggregate Analysis, Account-Method,
Potential-Method [Ottman/Widmayer, Kap. 3.3, Cormen et al, Kap.
17]

332

Multistack

Multistack adds to the stack operations push und pop
multipop(s,S): remove the min(size(S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).

333

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?

334

Amortized Analysis

Upper bound: average performance of each considered operation
in the worst case.

1

n

n∑

i=1

cost(opi)

Makes use of the fact that a few expensive operations are
opposed to many cheap operations.
In amortized analysis we search for a credit or a potential function
that captures how the cheap operations can “compensate” for the
expensive ones.

335

Aggregate Analysis

Direct argument: compute a bound for the total number of
elementary operations and divide by the total number of operations.

336

Aggregate Analysis: (Stack)

n∑

i=1

cost(opi) ≤ 2n

amortized cost(opi) ≤ 2 ∈ O(1)

337

Accounting Method

Model

The computer is driven with coins: each elementary operation of
the machine costs a coin.
For each operation opk of a data structure, a number of coins ak
has to be put on an account A: Ak = Ak−1 + ak
Use the coins from the account A to pay the true costs tk of each
operation.
The account A needs to provide enough coins in order to pay
each of the ongoing operations opk: Ak − tk ≥ 0∀k.

⇒ ak are the amortized costs of opk.
338

Accounting Method (Stack)

Each call of push costs 1 CHF and additionally 1 CHF will be
deposited on the account. (ak = 2)
Each call to pop costs 1 CHF and will be paid from the account.
(ak = 0)

Account will never have a negative balance.

ak ≤ 2∀ k, thus: constant amortized costs.

339

Potential Method

Slightly different model

Define a potential Φi that is associated to the state of a data
structure at time i.
The potential shall be used to level out expensive operations und
therefore needs to be chosen such that it is increased during the
(frequent) cheap operations while it decreases for the (rare)
expensive operations.

340

Potential Method (Formal)
Let ti denote the real costs of the operation opi.

Potential function Φi ≥ 0 to the data structure after i operations.
Requirement: Φi ≥ Φ0 ∀i.
of the ith operation:

ai := ti + Φi − Φi−1.

It holds
n∑

i=1

ai =
n∑

i=1

(ti + Φi − Φi−1) =

(
n∑

i=1

ti

)
+ Φn − Φ0 ≥

n∑

i=1

ti.

341

Example stack

Potential function Φi = number element on the stack.

push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs
ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs
ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized
costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time. 16

16Note that we are not talking about the probabilistic mean but the (worst-case) average of the costs.
342

Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally k bitflips. Thus O(n · k) bitflips for counting from
1 to n. Better estimation?

Real costs ti = number bit flips from 0 to 1 plus number of bit-flips
from 1 to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1

343

Binary Counter: Aggregate Analysis

Count the number of bit flips when counting from 0 to n− 1.

Observation

Bit 0 flips for each k − 1→ k

Bit 1 flips for each 2k − 1→ 2k

Bit 2 flips for each 4k − 1→ 4k

Total number bit flips
∑n−1

i=0
n
2i ≤ n ·∑∞i=0

1
2i = 2n

Amortized cost for each increase: O(1) bit flips.

344

Binary Counter: Account Method

Observation: for each increment exactly one bit is incremented to 1,
while many bits may be reset to 0. Only a bit that had previously
been set to 1 can be reset to 0.

ai = 2: 1 CHF real cost for setting 0→ 1 plus 1 CHF to deposit on
the account. Every reset 1→ 0 can be paid from the account.

345

Binary Counter: Potential Method

...0 1111111︸ ︷︷ ︸
l ones

+1 = ...1 0000000︸ ︷︷ ︸
l zeros

potential function Φi: number of 1-bits of xi.

⇒ Φ0 = 0 ≤ Φi ∀i
⇒ Φi − Φi−1 = 1− l,

⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.
346

13. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with
Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et
al, Kap. Problem 17-5]

347

Dictionary

ADT to manage keys from a set K with operations

insert(k,D): Insert k ∈ K to the dictionary D. Already exists⇒
error messsage.
delete(k,D): Delete k from the dictionary D. Not existing⇒
error message.
search(k,D): Returns true if k ∈ D, otherwise false

348

Idea

Implement dictionary as sorted array

Worst case number of fundamental operations

Search O(log n)
Insert O(n)
Delete O(n)

349

Other idea

Implement dictionary as a linked list

Worst case number of fundamental operations

Search O(n)
Insert O(1)17

Delete O(n)

17Provided that we do not have to check existence.
350

13.1 Skip Lists

351

Sorted Linked List

2 5 8 18 22 23 31

Search for element / insertion position: worst-case n Steps.

352

Sorted Linked List with two Levels

l2

l1

l0

Number elements: n0 := n

Stepsize on level 1: n1

Stepsize on level 2: n2 = 1

⇒ Search for element / insertion position: worst-case n0

n1
+ n1

n2
.

⇒ Best Choice for18 n1: n1 = n0

n1
=
√
n0.

Search for element / insertion position: worst-case 2
√
n steps.

18Differentiate and set to zero, cf. appendix
353

Sorted Linked List with two Levels

l3

l2

l1

l0

Number elements: n0 := n

Stepsizes on levels 0 < i < 3: ni

Stepsize on level 3: n3 = 1

⇒ Best Choice for (n1, n2): n2 = n0

n1
= n1

n2
= 3
√
n0.

Search for element / insertion position: worst-case 3 · 3
√
n steps.

354

Sorted Linked List with k Levels (Skiplist)

Number elements: n0 := n

Stepsizes on levels 0 < i < k: ni

Stepsize on level k: nk = 1

⇒ Best Choice for (n1, . . . , nk): nk−1 = n0

n1
= n1

n2
= · · · = k

√
n0.

Search for element / insertion position: worst-case k · k
√
n

steps19(Derivation: Appendix).

Assumption n = 2k

⇒ worst case log2 n · 2 steps and ni

ni+1
= 2∀ 0 ≤ i < log2 n.

19(Herleitung: Anhang)
355

Search in a Skiplist

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

356

Analysis perfect skip list (worst cases)

Search in O(log n). Insert in O(n).

357

Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

358

Analysis Randomized Skip List

Theorem
The expected number of fundamental operations for Search, Insert
and Delete of an element in a randomized skip list is O(log n).

The lengthy proof that will not be presented in this courseobserves the length of a
path from a searched node back to the starting point in the highest level.

359

13.2 [Self Ordering]

not covered in class

360

Self Ordered Lists

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example

Transpose: For each access to a key, the key is moved one
position closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.

361

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 knkn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.
Runtime: Θ(n2)

362

Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

363

Analysis

Compare MTF with the best-possible competitor (algorithm) A. How
much better can A be?

Assumptions:

MTF and A may only move the accessed element.
MTF and A start with the same list.

Let Mk and Ak designate the lists after the kth step. M0 = A0.

364

Analysis
Costs:

Access to x: position p of x in the list.
No further costs, if x is moved before p

Further costs q for each element that x is moved back starting
from p.

x

p q

365

Amortized Analysis

Let an arbitrary sequence of search requests be given and let G(M)
k

and G
(A)
k the costs in step k for Move-to-Front and A, respectively.

Want estimation of
∑

k G
(M)
k compared with

∑
k G

(A)
k .

⇒ Amortized analysis with potential function Φ.

366

Potential Function
Potential function Φ = Number of inversions of A vs. MTF.

Inversion = Pair x, y such that for the positions of a and y(
p(A)(x) < p(A)(y)

)
6=
(
p(M)(x) < p(M)(y)

)

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

#inversion = #crossings

367

Estimating the Potential Function: MTF
Element i at position
pi := p(M)(i).

access costs C
(M)
k = pi.

xi: Number elements that are
in M before pi and in A after i .

MTF removes xi inversions.

pi − xi − 1: Number elements
that in M are before pi and in
A are before i.

MTF generates pi − 1− xi

inversions.

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

xipi − 1− xi

1 24 7 8 9610 3

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

xipi − 1− xi

1 24 3610 7 8 9

368

Estimating the Potential Function: A

Wlog element i at position
p(A)(i).

X
(A)
k : number movements to

the back (otherwise 0).

access costs for i:
C

(A)
k = p(A)(i) ≥ p(M)(i)− xi.

A increases the number of
inversions maximally by X

(A)
k .

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

1 2 3 4 6 7 8 9 10

Ak+1 1 2 3 4 6 7 5 8 9 10

Mk+1 5 4 1 2 106 3 7 8 9

1 2 3 4 6 7 8 9 10

369

Estimation

Φk+1 − Φk ≤ −xi + (pi − 1− xi) + X
(A)
k

Amortized costs of MTF in step k:

a
(M)
k = C

(M)
k + Φk+1 − Φk

≤ pi − xi + (pi − 1− xi) + X
(A)
k

= (pi − xi) + (pi − xi)− 1 + X
(A)
k

≤ C
(A)
k + C

(A)
k − 1 + X

(A)
k ≤ 2 · C(A)

k + X
(A)
k .

370

Estimation

Summing up costs
∑

k

G
(M)
k =

∑

k

C
(M)
k ≤

∑

k

a
(M)
k ≤

∑

k

2 · C(A)
k + X

(A)
k

≤ 2 ·
∑

k

C
(A)
k + X

(A)
k

= 2 ·
∑

k

G
(A)
k

In the worst case MTF requires at most twice as many operations as
the optimal strategy.

371

13.3 Appendix

Mathematik zur Skipliste

372

[k-Level Skiplist Math]

Let the number of data points n0 and number levels k > 0 be given
and let nl be the numbers of elements skipped per level l, nk = 1.
Maximum number of total steps in the skip list:

f(~n) =
n0

n1
+

n1

n2
+ . . .

nk−1
nk

Minimize f for (n1, . . . , nk−1):
∂f(~n)
∂nt

= 0 for all 0 < t < k,
∂f(~n)
∂nt

= −nt−1

nt
2 + 1

nt+1
= 0 ⇒ nt+1 = n2

t

nt−1
and nt+1

nt
= nt

nt−1
.

373

[k-Level Skiplist Math]

Previous slide⇒ nt

n0
= nt

nt−1

nt−1

nt−2
. . . n1

n0
=
(
n1

n0

)t

Particularly 1 = nk = nk
1

nk−1
0

⇒ n1 = k

√
nk−1
0

Thus nk−1 = n0

n1
= k

√
nk
0

nk−1
0

= k
√
n0.

Maximum number of total steps in the skip list: f(~n) = k · (k
√
n0)

Assume n0 = 2k, then nl

nl+1
= 2 for all 0 ≤ l < k (skiplist halves data

in each step) and f(n) = k · 2 = 2 log2 n ∈ Θ(log n).

374

