10. Sorting lli

Lower bounds for the comparison based sorting, radix- and
bucket-sort

296

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

297

Lower bound for sorting

Up to here: worst case sorting takes 2(n log n) steps.
Is there a better way?

Lower bound for sorting

Up to here: worst case sorting takes 2(n log n) steps.
Is there a better way? No:

Sorting procedures that are based on comparison require in the
worst case and on average at least (2(n logn) key comparisons.

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i=1

.....

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i-1,..,

m At the beginning the algorithm know nothing about the array
structure.

n -

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i-1,..,

m At the beginning the algorithm know nothing about the array
structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

n -

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i-1,..,
m At the beginning the algorithm know nothing about the array

structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

n -

m Nodes contain the remaining possibilities.

Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i-1,..,
m At the beginning the algorithm know nothing about the array

structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

n -

m Nodes contain the remaining possibilities.
m Edges contain the decisions.

Decision tree

abc acb cab bac bea cba

a<b
Yes No
abe ach cab bac bea cba
b<c b<c
a<c a<c

Yi% \\l{o
b cab

bca

Decision tree

A binary tree with L leaves provides K = L — 1 inner nodes.'

The height of a binary tree with L leaves is at least log, L. = The
heigh of the decision tree h > logn! € Q(nlogn).

Thus the length of the longest path in the decision tree € Q(n logn).
Remaining to show: mean length M (n) of a path M (n) € Q(nlogn).

Average lower bound

m Decision tree T;, with n leaves, average height
of a leaf m(T,,)

m Assumption m(7,,) > logn not for all n.

m Choose smalles b with m(7}) < logb = b > 2

Ty, m b +b =bwithy, >0undb, > 0=
1y by < b,b, < b= m(T},) > logb und
l by — m(T;,) > logb,

302

Average lower bound

Average height of a leaf:

S

z b

b
1
(bi(log by + 1) + b, (log by + 1)) = (b log 261 + by log 26,)

m(Ty) = —(m(Ty,) +1) + o~(m(T,) + 1)
>

>

SRS R

(blogb) = logb.

Contradiction. [|
The last inequality holds because f(z) = zlogx is convex (f”(z) = 1/x > 0) and
for a convex function it holds that f((x + v)/2) < 1/2f(x) + 1/2f(y) (z = 2b,,

y = 2b,)."® Enter v = 2b;, y = 2b,, and b; + b, = b.

Bgenerally f(Az + (1 — N)y) < Af(z) + (1 —N)f(y) for0 < XA < 1.

303

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.

Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

m is called the radix of the representation.

Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

Examples

m is called the radix of the representation.

Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

Examples
m = 10 decimal numbers 183 = 18349

m is called the radix of the representation.

Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

m = 10 decimal numbers 183 = 18349
m =2 dual numbers 1015

m = 16 hexadecimal numbers A0i¢

m is called the radix of the representation.

Assumptions

Assumption: keys representable as words from an alphabet
containing m elements.

m = 10 decimal numbers 183 = 18349
m =2 dual numbers 1015

m = 16 hexadecimal numbers A0i¢

m = 26 words “INFORMATIK’

m is called the radix of the representation.

Assumptions

m keys = m-adic numbers with same length.

Assumptions

m keys = m-adic numbers with same length.
m Procedure z for the extraction of digit & in O(1) steps.

Assumptions

m keys = m-adic numbers with same length.
m Procedure z for the extraction of digit & in O(1) steps.

Radix-Exchange-Sort

Keys with radix 2.
Observation: if for some £ > 0:

29(i,) = 29(i,y) forall i > k

and
22(k7 ZIC) < ZQ(ka y);

then it holds that z < y.

Radix-Exchange-Sort

Idea:

m Start with a maximal k.

m Binary partition the data sets with z5(k, -) = 0 vs. 25(k,-) = 1 like
with quicksort.

mk+—k—1

Radix-Exchange-Sort

0111 0110 1000 0011 0001

Radix-Exchange-Sort

0111 0110 1000 0011 0001

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011//1000|

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011/[1000|

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011]/1000)
N~ ~ _~—~

N
0011 0001/(0110 0111]/1000)

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011]/1000)
N~ ~ _~—~

N
0011 00010110 01111000

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011]/1000)
N~ ~ _~—~

N
0011 00010110 01111000

0001//0011/[0110 01111000

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011]/1000)
N~ ~ _~—~

N
0011 00010110 01111000

0001//0011/[0110 01111000

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011]/1000)
N~ ~ _~—~

N
0011 00010110 01111000

0001//0011/[0110 01111000

0001/ /0011/[0110|/0111]/1000)

Algorithm RadixExchangeSort(A, [, r, b)

Input: Array A with length n, left and right bounds 1 <[<r < n, bit
position b
Output: Array A, sorted in the domain [I, 7] by bits [0,...,0] .
if] <rand b >0 then
1+ 1—1
J<r+1
repeat
repeat i < i + 1 until z(b, A[i]) =1ori>j
repeat j < j — 1 until 25(b, A[j]) =0o0ri>j
if i < j then swap(A[i], A[j])
until 7 >
RadixExchangeSort(A,l,i — 1,0 — 1)
RadixExchangeSort(A,i,7,b — 1)

Analysis

RadixExchangeSort provides recursion with maximal recursion
depth = maximal number of digits p.

Worst case run time O(p - n).

Bucket Sort
3 8 18122121 13123211929

Bucket Sort
3 8 18122121 13123211929

Bucket Sort
3 8 18122121 13123211929

Bucket Sort
3 8 18122121 13123211929

Bucket Sort
3 8 18122121 13123211929

122 3

Bucket Sort
3 8 18122121 13123211929

121 122 3

Bucket Sort
3 8 18122121 13123211929

131
121 122 3

Bucket Sort
3 8 18122121 13123211929

131 23
121 122 3

Bucket Sort
3 8 18122121 13123211929

o 1 2 3 4 5 6

21
131 23
121 122 3

Bucket Sort
3 8 18122121 13123211929

o 1 2 3 4 5 6 7 8 9

21
131 23 18
121 122 3 8 19

Bucket Sort
3 8 18122121 13123211929

o 1 2 3 4 5 6 7 8 9

21
131 23 18 29
121 122 3 8 19

Bucket Sort
3 8 18122121 13123211929

o 1 2 3 4 5 6 7 8 9

21
131 23 18 29
121 122 3

p—

12113121122 3 23 8 181929

Bucket Sort

12113121122 3 23 8 181929

Bucket Sort

12113121122 3 23 8 181929
0o 1 20N SN B IS 16

29
23
122
19 21
3 18 121 131

(0]

Bucket Sort

12113121122 3 23 8 181929
0o 1 20N SN B IS 16

29
23
122

8 19 21

3 18 121 131

3 8 1819121 211222329

Bucket Sort
3 8 181912121 12223 29

Bucket Sort

3 8 18191212112223 29

0 1 2 3 4 o5 6 7
29

23
21
19
18 131
8 122
3 121

Bucket Sort

3 8 18191212112223 29

0 1 2 3 4 5 6
29

23
21
19
18 131
8 122
3 121

3 8 1819212329121 122 131

implementation details

Bucket size varies greatly. Possibilities

m Linked list or dynamic array for each digit.

m One array of length n. compute offsets for each digit in the first
iteration.

Assumptions: Input length n , Number bits / integer: k£, Number
Buckets: 2°

Asymptotic running time O(% - (n + 2°).
For Example: k = 32, 2" =256 : £ - (n + 2°) = 4n + 1024.

	Sorting III
	Lower bounds for comparison based sorting
	Radixsort and Bucketsort

