10. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n\log n)$ steps. Is there a better way?

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n \log n)$ steps.

Is there a better way? No:

Theorem

Sorting procedures that are based on comparison require in the worst case and on average at least $\Omega(n \log n)$ key comparisons.

■ An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.
 - Edges contain the decisions.

Decision tree

Decision tree

A binary tree with L leaves provides K = L - 1 inner nodes.¹⁴

The height of a binary tree with L leaves is at least $\log_2 L$. \Rightarrow The heigh of the decision tree $h \ge \log n! \in \Omega(n \log n)$.

Thus the length of the longest path in the decision tree $\in \Omega(n \log n)$.

Remaining to show: mean length M(n) of a path $M(n) \in \Omega(n \log n)$.

30

 $^{^{14}}$ Proof: start with emtpy tree (K=0,L=1). Each added node replaces a leaf by two leaves, i.e.} $K\to K+1 \Rightarrow L\to L+1.$

Average lower bound

- Decision tree T_n with n leaves, average height of a leaf $m(T_n)$
- Assumption $m(T_n) \ge \log n$ not for all n.
- Choose smalles b with $m(T_b) < \log b \Rightarrow b \geq 2$
- $b_l + b_r = b$ with $b_l > 0$ und $b_r > 0 \Rightarrow$ $b_l < b, b_r < b \Rightarrow m(T_{b_l}) \ge \log b_l$ und $m(T_{b_r}) \ge \log b_r$

Average lower bound

Average height of a leaf:

$$m(T_b) = \frac{b_l}{b}(m(T_{b_l}) + 1) + \frac{b_r}{b}(m(T_{b_r}) + 1)$$

$$\geq \frac{1}{b}(b_l(\log b_l + 1) + b_r(\log b_r + 1)) = \frac{1}{b}(b_l \log 2b_l + b_r \log 2b_r)$$

$$\geq \frac{1}{b}(b \log b) = \log b.$$

Contradiction.

The last inequality holds because $f(x)=x\log x$ is convex (f''(x)=1/x>0) and for a convex function it holds that $f((x+y)/2)\leq 1/2f(x)+1/2f(y)$ ($x=2b_l$, $y=2b_r$). In Enter $x=2b_l$, $y=2b_r$, and $b_l+b_r=b$.

 $^{^{15} \}text{generally } f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \text{ for } 0 \leq \lambda \leq 1.$

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Different idea: use more information about the keys.

Assumption: keys representable as words from an alphabet containing m elements.

Assumption: keys representable as words from an alphabet containing m elements.

Examples

Assumption: keys representable as words from an alphabet containing m elements.

Examples

m = 10 decimal numbers $183 = 183_{10}$

Assumption: keys representable as words from an alphabet containing m elements.

Examples

```
m=10 decimal numbers 183=183_{10} m=2 dual numbers 101_2 m=16 hexadecimal numbers A0_{16}
```

Assumption: keys representable as words from an alphabet containing m elements.

Examples

```
m=10 decimal numbers 183=183_{10} m=2 dual numbers 101_2 m=16 hexadecimal numbers A0_{16} m=26 words "INFORMATIK"
```

 \blacksquare keys = m-adic numbers with same length.

- \blacksquare keys = m-adic numbers with same length.
- Procedure z for the extraction of digit k in $\mathcal{O}(1)$ steps.

- \blacksquare keys = m-adic numbers with same length.
- Procedure z for the extraction of digit k in $\mathcal{O}(1)$ steps.

Example

$$z_{10}(0,85) = 5$$

 $z_{10}(1,85) = 8$
 $z_{10}(2,85) = 0$

Keys with radix 2.

Observation: if for some $k \geq 0$:

$$z_2(i,x) = z_2(i,y)$$
 for all $i > k$

and

$$z_2(k,x) < z_2(k,y),$$

then it holds that x < y.

Idea:

- Start with a maximal k.
- Binary partition the data sets with $z_2(k,\cdot)=0$ vs. $z_2(k,\cdot)=1$ like with quicksort.
- $k \leftarrow k 1$.

0111 0110 1000 0011 0001

0111 0110 1000 0011 0001

Algorithm RadixExchangeSort(A, l, r, b)

```
Array A with length n, left and right bounds 1 < l < r < n, bit
Input:
                position b
                Array A, sorted in the domain [l, r] by bits [0, \ldots, b].
Output:
if l < r and b > 0 then
    i \leftarrow l-1
   i \leftarrow r + 1
    repeat
         repeat i \leftarrow i+1 until z_2(b,A[i])=1 or i \geq j
         repeat i \leftarrow i-1 until z_2(b, A[i]) = 0 or i > i
         if i < j then swap(A[i], A[j])
    until i > j
    RadixExchangeSort(A, l, i - 1, b - 1)
    RadixExchangeSort(A, i, r, b - 1)
```

Analysis

RadixExchangeSort provides recursion with maximal recursion depth = maximal number of digits p.

Worst case run time $\mathcal{O}(p \cdot n)$.

3 8 18 122 121 131 23 21 19 29

0	1	2	3	4	5	6	7	8	9

3 8 18 122 121 131 23 21 19 29

121 131 21 122 3 23 8 18 19 29

121 131 21 122 3 23 8 18 19 29

0	1	2	3	4	5	6	7	8	9
		29							
		29 23							
		122							
8	19	21							
3	18	121	131						

121 131 21 122 3 23 8 18 19 29

0	1	2	3	4	5	6	7	8	9
		29							
		23							
		122							
8	19	21							
3	18	121	131						

3 8 18 19 121 21 122 23 29

3 8 18 19 121 21 122 23 29

3 8 18 19 121 21 122 23 29

0	1	2	3	4	5	6	7	8	9
29									
292321									
21									
19									
18	131								
8	122								
3	121								

3 8 18 19 121 21 122 23 29

0	1	2	3	4	5	6	7	8	9
29 23									
23									
21									
19									
18	131								
8	122								
3	121								

3 8 18 19 21 23 29 121 122 131 🙂

implementation details

Bucket size varies greatly. Possibilities

- Linked list or dynamic array for each digit.
- One array of length n. compute offsets for each digit in the first iteration.

Assumptions: Input length n , Number bits / integer: k , Number Buckets: 2^b

Asymptotic running time $\mathcal{O}(\frac{k}{b} \cdot (n+2^b)$.

For Example: k = 32, $2^b = 256$: $\frac{k}{b} \cdot (n+2^b) = 4n + 1024$.