7. Sorting |

Simple Sorting
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Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A’ of A, that is sorted: A'[i] < A’[;] for all
1<i<j<n.
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7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

Algorithm: IsSorted(A)

Input: Array A = (A[1], ..., A[n]) with length n.
Output: Boolean decision “sorted” or “not sorted"”
fori<1ton—1do
if Ali] > A[i + 1] then
| return “not sorted”;

return “sorted”;
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Observation Give ita try

= new idea! ©
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IsSorted(A):“not sorted”, if A[i] > A[i + 1] for any . [6}1{2] (j=2) = Not sorted! ®
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Try it out Algorithm: Bubblesort
[6] [6] [2] [8] [4] [1] j=1,i=1

a5 B

5] 2] [6] [8] [4] [1] (3=23) . _

= = 6 B [ M (;:4) m Apply the procedure Input.. Array A = (A[1],..., Aln]), n > 0.
(5] (2] [6] (4] [&] L] (=5 iterativel Output: Sorted Array A
BB EHEHEH R oy iteratively. fori«< 1ton—1do

=] (5] (6] [ [ & (-9 m For A[l,...,n], for j < 1ton—ido

2 5 4 6 1 8 j=4 . . .
BB B R (v thenA[l...,n-—1], MR A At
2 5 4 1 6 8 ) =2 WAR] '
wallen il M M < s R then A[L,...,n—2], i

2 4 1 5 6 8 j=1,i=4 o
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(2] [1] [4] [5] [6] [8] (=15=5)

L1 2] [4] [5] L[6] [8]
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Analysis

Number key comparisons S/ (n — i) =
Number swaps in the worst case: ©(n?)

@ What is the worst case?
@it Ais sorted in decreasing order.

Selection Sort

m Selection of the smallest

Algorithm: Selection Sort

Input: Array A = (A[1],...,A[n]), n > 0.
Output: Sorted Array A
fori< 1ton—1do

D1

for j < i+ 1tondo
if A[j] < Alp| then
2R

~ swap(Ali, A[p])

6] (1=1) element by search in the
n(n— . unsorted part Ali..n| of
( - U = o(n?). @ (i=2) iy array.p [i..n]
@ (Z = 3) m Swap the smallest
_ element with the first
@ (Z o 4) element of the unsorted
@ (i=15) part.
(6] (i =6) m Unsorted part decreases
£ in size by one element
@ (z — 7+ 1). Repeat until
all is sorted. (i = n)
Analysis

Number comparisons in worst case: ©(n?).
Number swaps in the worst case: n — 1 = O(n)
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Insertion Sort

T|@
T@m 8]

TI\. Il
m

)
) m lterative procedure:
1=1..n
) m Determine insertion
) position for element .
) m Insert element i array
block movement
) potentially required

.
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Algorithm: Insertion Sort

Input: Array A = (A[1],...,A[n]), n > 0.
Output: Sorted Array A
for i < 2 ton do

x <+ Al

p < BinarySearch(A[l...i — 1], x);
for j < ¢ — 1 downto p do
Al + 1]+ Afj]

B Alp] + x

// Smallest p € [1,4] with A[p] >
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Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

® Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

@ The search domain (insertion interval) is already sorted.
Consequently: binary search possible.

Analysis

Number comparisons in the worst case:
"la-logk = alog((n —1)!) € O(nlogn).

Number swaps in the worst case Y7 _,(k — 1) € O(n?)
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Different point of view Different point of view

5 —\5
Sorting node: 6 [
6— 2 4 6
B
! b
g g2l f ls] f o[, m Like selection sort
88— =2 — Tz TS Te \ [and like Bubblesort]
4—4)2-i>%-i>z-i>2- 8
14 12 A NE 16 \v
1—1)2-i>2-i>2-i>2-i>2- 8
e e
1 2 4 5 6 8
Different point of view Conclusion
5 —\5
6— é \6
2-% 2 22 \6 In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
- {2 : 15 — provide the same kind of sort strategy. Will be made more precise. &
8—=z2—2—2 \8 m Like insertion sort
=D oo
RN BN BN CEN R IRy
1 )
1 2 4 5 6 8

6In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.
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Shellsort (Donald Shell 1959)

Insertion sort on subsequences of the form (Ay.;) (i € N) with
decreasing distances k. Last considered distance must be £ = 1.

Worst-case performance critically depends on the chosen subsequences

m Original concept with sequence 1,2,4,8, ..., 2¥. Running time: O(n?)
m Sequence 1,3,7,15,..., 2¥"! (Hibbard 1963). O(n®?)
m Sequence 1,2,3,4,6,8, ..., 2737 (Pratt 1971). O(nlog®n)
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8. Sorting lI

Heapsort, Quicksort, Mergesort
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Shellsort

9 8 7 6 5 4 3 2 1
i 8 7 6 5 4 3 2 9
1 0 7 6 5 4 3 2 9
1 0 3 6 5 4 7 2 9
1 0 3 2 5 4 7 6 9
i 0 3 2 5 4 7 6 9
i 0 3 2 5 4 7 6 9
o 1 2 3 4 5 6 7 8

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

© 0O 0 0O 0 0 O O

insertion sort, £k = 4

insertion sort, £k = 2

insertion sort, k = 1
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Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?
® Yes, but it requires some more thinking...
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Heap as Array

Tree — Array:
. N o 22
m children(i) = {2i.2i + 1} N
m parent(i) = |i/2] s I
parent /N /N

16 12 15 17

‘22|20|18|16|12“15“17”3H2|8|11|14‘ /4 ) /[“I\ /“
3 2 8 11 14
12

12@89101112

(8] [9] [10] [11]
Children

Depends on the starting index®

8For array that start at 0: {2i,2i + 1} — {2i + 1,2i + 2}, |i/2] — (i — 1)/2]
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[Max-]Heap’

Binary tree with the following prop-
erties

B complete up to the lowest
level

Gaps (if any) of the tree in /20\
the last level to the right o .
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

"Heap(data structure), not: as in “heap and stack” (memory allocation)

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

m Worst case number of operations:
O(logn)

18 «——parent

17 «——child

Heap-Condition: [\ I\ ] \ / \

22
20 18

N\ N\ /\
/22\
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Algorithm Sift-Up(A, m)

ture on

Input: Array A with at least m + 1 and Max-Heap-Struc
Al0,...,m —1]
Output: Array A with Max-Heap-Structure on A[0,...,m].

v Alm] // value
c < m // current position
p <+ |(c—=1)/2] // parent node
while ¢ > 0 and v > A[p| do
Alc] + Alp| // Value parent node — current node
¢ < p // parent node — current node
pel(e-1)2)

Alc] < v // value — current node

Remove the maximum

21
20 18

m Replace the maximum by the lower / \
right element

m Reestablish heap property: sink
successively (in the direction of the

15/ \17
14/ A

greater child) / \

m Worst case number of operations:

O(logn) / \

as
A
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Height of a Heap

A complete binary tree with height® h provides
1424448+ . +2"1=>"2=2"—1

nodes. Thus for a heap with height A:
ol _1<n<2h—1

= =l 1< 20

Particularly h(n) = [logy(n+ 1)] and h(n) € O(logn).

here: number of edges from the root to a leaf
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Why this is correct: Recursive heap structure

A heap consists of two heaps:

22
20

/ N\ /\

16 12

: 1/\ /\
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Algorithm SiftDown(A, i, m)

Input: Array A with heap structure for the children of i. Last element
m.
Output: Array A with heap structure for i with last element m.

while 2: < m do
§ 4« 2i; // j left child
if j <m and A[j] < A[j + 1] then
‘ j<«j+1;// jright child with greater key
if Ali] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking down
else
| 4= m; // sift down finished
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!
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Sort heap

All,...,n] is a Heap.
Whilen > 1

m swap(A[l], A[n])

m SiftDown(A, 1,n — 1);
BEn<+<n-—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i < n/2 downto 1 do
- SiftDown(A, i, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], A[i])
SiftDown(A, 1,7 — 1)

// Now A is sorted.

R R R
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N A BB
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1
1
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Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

@ Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.

Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and

movements: v(n) € O(nlogn).

But mean length of the sift-down paths is much
|logn|
v(n) = 2! - ([logn] —1)
(n) ; 25 ([log
=0 number heaps on level | height heaps on level |
|logn| n |logn| L
< Z ?k:n Z 276(9(11)
k=0 k=0

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

smaller:

|logn |

Z 2Uognj —k k
k=0

=2
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Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: merge the two presorted halves of A in O(n).
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Algorithm Merge(A, [, m, )

Input: Array A with length n, indexes 1 <1 <m <r <n.
All,...,m], Alm+1,...,7] sorted
Output: All,...,r] sorted

B < new Array(r — [+ 1)
il jem+1 k<1
while : <m and j < r do
if Ali] < A[j] then Blk] < Ali]; i+ i+1
else Blk]«+ Alj];j+j+1
k<« k+1;
whilei <mdo B[k]+ Alil; i+ i+ 1, k+ k+1
while j <rdo B[k|«+ A[j;j«j+ 1L k+k+1
for k <[ tor do A[k| < B[k — 1+ 1]
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Merge

i1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,..., k] is
sorted and B[k] < A[d], if i < mand Blk| < A[j]if j <.

Proof by induction:
Base case: the empty array BI[1, ..., 0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < Afj],i <m,j <.

m B[l,..., k| is sorted by hypothesis and B[k| < A[i].

m After B[k + 1] < A[i] BI[L,...,k + 1] is sorted.

m Blk+1] = A[i] < Ali + 1] (if i + 1 < m) and B[k + 1] < A[j]if j < r.

m k< k+ 1,79+ ¢+ 1: Statement holds again.
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Analysis (Merge)

If: array A with length n, indexes 1 <l <r <n.m=[(+7)/2]
and A[l,...,m], Aijm+1,...,r] sorted.

Then: in the call of Merge(A, 1, m,r) a number of ©(r — ) key
movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)
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Algorithm (recursive 2-way) Mergesort(A, [, )

Input: Array A with lengthn. 1 <1 <r<n
Output: Array AJl,...,r| sorted.
if [ <r then

m <+ [(I+71)/2]
Mergesort(A, [, m)
Mergesort(A, m + 1,7)
Merge(A, 1, m, 1)

// middle position
// sort lower half
// sort higher half
// Merge subsequences
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Mergesort

5 2 6 1 8 4 3 9

Split
5 2 6 18 4 3 9|

Split
|5 2][6 18 43 9]

Split
Hn

Merge
12 5|1 6|4 83 9]

Merge
1 2 5 63 4 8 9|
I A 1 1 Merge

1 2 3 4 5 6 8 9

Analysis

Recursion equation for the number of comparisons and key
movements:

n n

T(n) = T(M) +T(M) +0(n) € ©(nlogn)
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Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1,2, 4, ... directly

Input: Array A with length n
Output: Array A sorted
length <1
while length < n do // Iterate over lengths n
r <0
while 7 + length < n do // Iterate over subsequences
l—r+1

m < [+ length — 1
r < min(m + length,n)
Merge(A, 1, m, 1)

 length < length - 2
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Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n logn) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.

246

Analysis

Like the recursive variant, the straight 2-way mergesort always
executes a number of ©(n logn) key comparisons and key
movements.

Natural 2-way mergesort

562 4 88 fe]7]]

2 4 5 6 8|3 7 9]1]

e

2 3 4 56 7 8 9|1]

12 3 4 5 6 7 8 9
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Algorithm NaturalMergesort(A)

Input: Array A with length n > 0

Output: Array A sorted

repeat

r <0

while » < n do

l+—r+1

m < I; while m <n and A[m + 1] > A[m] do m <~ m + 1

if m < n then
r < m+1;, while r <nand A[r +1] > Alr]do r < r+1
Merge(A, I, m, 1);

else
L r<n

until [ =1
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8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]
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Analysis

@ Is it also asymptotically better than StraightMergesort on
average?

OnNo. Given the assumption of pairwise distinct keys, on average there are n /2
positions @ with k; > k; .1, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of ©(nlogn) comparisons and memory movements.

Quicksort

@ What is the disadvantage of Mergesort?
® Requires additional ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!
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Use a pivot Algorithm Partition(A|/..7], p)

Input: Array A, that contains the pivot p in the interval [[, 7] at least once.

Choose a (an arbitrary) pivot p Output: Array A partitioned in [l..r] around p. Returns position of p.
Partition A in two parts, one part L with the elements with while [l‘ IS " do
Ali] < p and another part /2 with Afi] > p e <—[l” = do
Quicksort: Recursion on parts L and while A[r] > p do
| r<r—1
<l <l <l<1< swap(A[l], Ar])
e - | | > | if All] = A[r] then
1 r n i L 1+ 1+1
return |-1
Algorithm Quicksort(A[l, ... 7] Quicksort (arbitrary pivot)
2 4 56 8[3|]7 9 1
Input: Array A with length n. 1 <[ <r <n.
Output: Array A, sorted between [ and r. _ BN .
if [ <r then
Choose pivot p € A[l, ..., 7] 1 2 34 5 8/[7]9 6
k « Partition(A[l,...,7],p)
Quicksort(A[L, ...,k —1]) 1 2 3 4 586 7 9 .
 Quicksort(Alk+1,....7])

1 2 3 4 5 6 7 8 9
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Analysis: nhumber comparisons Analysis: number swaps

Result of a call to partition (pivot 3):

Worst case. Pivot = min or max; number comparisons: 5 {1 368 57 9 4

I =T -Dten TW)=0 = T(n) €O @ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.

Analysis: number swaps Randomized Quicksort

Thought experiment

m Each key from the smaller part pays a coin when it is being Despite the worst case running time of ©(n?), quicksort is used
swapped. practically very often.

m After a key has paid a coin the domain containing the key Reason: quadratic running time unlikely provided that the choice of
decreases to half its previous size. the pivot and the pre-sorting are not very disadvantageous.

m Every key needs to pay at most log n coins. But there are only » Avoidance: randomly choose pivot. Draw uniformly from (I, r].
keys.

Consequence: there are O(nlogn) key swaps in the worst case.



Analysis (randomized quicksort)

Expected number of compared keys with input length n:

n

(n— 1)+%Z(T(k— 1)+ T(n—k)), T(0)=T(1)=0
k=1

T(n)=

Claim T'(n) < 4nlogn.

Proof by induction:

Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.
Hypothesis: T'(n) < 4nlogn for some n.

Induction step: (n — 1 — n)
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Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.
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Analysis (randomized quicksort)

n—1 n—1
2 2
T(n):n—l—k—g T(k) <n—1+ E 4k logk
n
k=0 =0

n/2 n—1

—n—1+z4k logh + > dklogk
k=n/2+1

<logn 1 <logn
n/2 n—1
<n1+(logn1 Zk+10gn Z k‘)
k=n/2+1

8 nin—1) n/n
n +n<(ogn) 5 AR >
=4dnlogn —4logn — 3 < 4nlogn
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Practical Considerations

Worst case recursion depth n — 1''. Then also a memory

consumption of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(log n) worst case recursion depth and memory
consumption.

"stack overflow possible!
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Quicksort with logarithmic memory consumption

Array A with lengthn. 1 <[ <r <n.
Array A, sorted between [ and 7.

Input:

Output:

while | < r do

Choose pivot p € A[l,...,r]

k « Partition(A[l,...,7],p)

if k—1<r—kthen
Quicksort(A[l, ..., k —1])

l+—k+1
else
Quicksort(A[k + 1,...,7])
r«—k—1
The call of Quicksort(A[L, . .., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.
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8.4 Appendix

Derivation of some mathematical formulas
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Practical Considerations.

m Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

m There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

m Complex divide-and-conquer algorithms often use a trivial (©(n?))
algorithm as base case to deal with small problem sizes.

logn! € O(nlogn)

logn! = Zlogz’ < Zlogn =nlogn
i=1 i=1

Ln/2] n

Zlogz’: Zlogi—l— Z log 1
i=1 i=1 ln/2|+1
[n/2] n n
> =
> Z log 2 + Z log 5
i=2 [n/2]+1
=([n/2] =2+ 1)+ (n — [n/2])(logn — 1)
—— N——
>n/2—1 >n/2

n
> —1 — 2.
9 ogn
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[n! € o(n")]

[n/2]

nlogn > Zlog2z+ Z log i

i=|n/2]+1
= Zlogz—i— { J10g2

> Zlogi+n/2—1:10gn!+n/2—1
i=1
n" = 2n10g2n > 210g2 n! 2n/2 . 2—1 =nl- 2n/2—1

|
= L <922 g ol e o(n") = O(n™)\Qn")
nn
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[ Ratio Test]

Ratio test for a sequence (f,)nen: If f”“ — )\, then the sequence
” n—o0
f» and the series > | f;

m converge, if A < 1 and
m diverge, if A > 1.

[Evenn! € o((n/c)")V0 < ¢ < e]

Konvergenz oder Divergenz von f,, = (n;l({),,,.
Ratio Test

fnl ( +1) <%>n n " 1 )
f: :( 1)n+1~ p =c- ] —>c-g§1lfc§e

because (1 + )" — e. Even the series 3!, f, converges /
diverges for ¢ < e.

fn diverges for ¢ = e, because (Stirling): n! ~ v/2mn (2)".
[ Ratio Test Derivation ]
Ratio test is implied by Geometric Series

n 1— ,r.n+1

Sn(r) ::Zri: T

=0
converges forn — coifandonly if —1 <r < 1.
Let0 <A< 1:

Ve >03ng: for1/fo < A+eV¥n >ng
=3 >0,Ing: for1/fo < p<1¥n>ng

Thus o .
Z fn < o - Z 1" konvergiert.

n=ng n=ng

(Analogously for divergence)



