7. Sorting I

Simple Sorting

7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

196

Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A' of A, that is sorted: $A'[i] \leq A'[j]$ for all $1 \leq i \leq j \leq n$.

Algorithm: IsSorted(A)

```
Input: Array A = (A[1], ..., A[n]) with length n.

Output: Boolean decision "sorted" or "not sorted" for i \leftarrow 1 to n-1 do

if A[i] > A[i+1] then

return "not sorted";

return "sorted";
```

Observation

IsSorted(A): "not sorted", if A[i] > A[i+1] for any i.

\Rightarrow idea:

$$\begin{array}{c|c} \textbf{for} \ j \leftarrow 1 \ \textbf{to} \ n-1 \ \textbf{do} \\ & \quad | \quad \textbf{if} \ A[j] > A[j+1] \ \textbf{then} \\ & \quad | \quad | \quad \text{swap}(A[j], A[j+1]); \end{array}$$

Give it a try

200

$$5 \mapsto 6$$
 2 8 4 1 $(j=1)$

5 6
$$\leftrightarrow$$
2 8 4 1 $(j=2)$

5 2 6
$$+$$
 8 4 1 $(j=3)$

$$[5]$$
 $[2]$ $[6]$ $[8]$ $[4]$ $[1]$ $(j=4)$

5 2 6 4 8
$$\leftarrow$$
 1 $(j=5)$

- Not sorted! ②.
- But the greatest element moves to the right
 - \Rightarrow new idea!

Try it out

- 2 6 6 6 6 6 4 4 4 5 1 5 5 5 5 2 2 2 2 2 2 2 2 6 6 2 2 2 5 5 5 5 5 4 4 4 1 2 8 8 8 4 4 4 6 1 1 5 5 5 4 4 4 8 1 1 1 6 6 6 6 6 6 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 (j = 1, i = 1)(j = 2)(j = 3)(j = 4)(j = 5)(j = 1, i = 2)(j = 2)(j = 3)(j = 4)(j = 1, i = 3)(j = 2)(j = 3)(j = 1, i = 4)(j = 2)(i = 1, j = 5)
- Apply the procedure iteratively.
- For $A[1,\ldots,n]$, then $A[1,\ldots,n-1]$, then $A[1,\ldots,n-2]$, etc.

Algorithm: Bubblesort

Analysis

Number key comparisons $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2} = \Theta(n^2)$. Number swaps in the worst case: $\Theta(n^2)$

- ? What is the worst case?
- $oldsymbol{\mathbb{O}}$ If A is sorted in decreasing order.

Selection Sort

- $5 \quad 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- 1 2 4 5 6 8 (i=6)
- 1 2 4 5 6 8

- Selection of the smallest element by search in the unsorted part A[i..n] of the array.
- Swap the smallest element with the first element of the unsorted part.
- Unsorted part decreases in size by one element $(i \rightarrow i+1)$. Repeat until all is sorted. (i=n)

204

, ,

Algorithm: Selection Sort

$\begin{array}{ll} \textbf{Input:} & \mathsf{Array}\ A = (A[1], \dots, A[n]),\ n \geq 0. \\ \textbf{Output:} & \mathsf{Sorted}\ \mathsf{Array}\ A \\ \textbf{for}\ i \leftarrow 1\ \textbf{to}\ n - 1\ \textbf{do} \\ & p \leftarrow i \\ & \textbf{for}\ j \leftarrow i + 1\ \textbf{to}\ n\ \textbf{do} \\ & & | \ \mathbf{if}\ A[j] < A[p]\ \textbf{then} \\ & & | \ p \leftarrow j; \\ & \mathsf{swap}(A[i], A[p]) \end{array}$

Analysis

Number comparisons in worst case: $\Theta(n^2)$.

Number swaps in the worst case: $n - 1 = \Theta(n)$

Insertion Sort

- $\uparrow 5 \mid 6 \mid 2 \mid 8 \mid 4 \mid 1 \quad (i = 1) \\
 5 \mid 6 \mid 2 \mid 8 \mid 4 \mid 1 \quad (i = 2) \\
 \uparrow 5 \mid 6 \mid 2 \mid 8 \mid 4 \mid 1 \quad (i = 3) \\
 2 \mid 5 \mid 6 \mid 8 \mid 4 \mid 1 \quad (i = 4) \\
 2 \mid 5 \mid 6 \mid 8 \mid 4 \mid 1 \quad (i = 5) \\
 \uparrow 2 \mid 4 \mid 5 \mid 6 \mid 8 \mid 1 \mid (i = 6) \\
 1 \mid 2 \mid 4 \mid 5 \mid 6 \mid 8 \\$
- Iterative procedure: i = 1...n
- Determine insertion position for element *i*.
- Insert element i array block movement potentially required

Insertion Sort

- What is the disadvantage of this algorithm compared to sorting by selection?
- ① Many element movements in the worst case.
- What is the advantage of this algorithm compared to selection sort?
- ① The search domain (insertion interval) is already sorted. Consequently: binary search possible.

208

Algorithm: Insertion Sort

Analysis

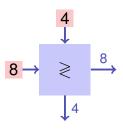
Number comparisons in the worst case:

$$\sum_{k=1}^{n-1} a \cdot \log \dot{k} = a \log((n-1)!) \in \mathcal{O}(n \log n).$$

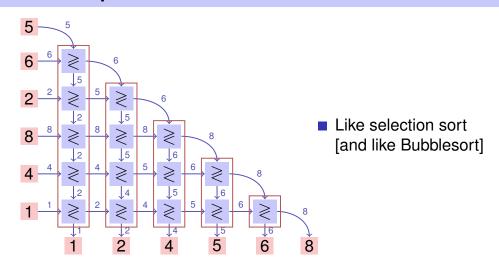
Number swaps in the worst case $\sum_{k=2}^{n} (k-1) \in \Theta(n^2)$

Different point of view

Sorting node:



Different point of view



212

Different point of view

Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort provide the same kind of sort strategy. Will be made more precise. ⁶

⁶In the part about parallel sorting networks. For the sequential code of course the observations as described above still

Shellsort (Donald Shell 1959)

Insertion sort on subsequences of the form $(A_{k\cdot i})$ $(i\in\mathbb{N})$ with decreasing distances k. Last considered distance must be k=1. Worst-case performance critically depends on the chosen subsequences

- Original concept with sequence $1, 2, 4, 8, ..., 2^k$. Running time: $\mathcal{O}(n^2)$
- Sequence $1, 3, 7, 15, ..., 2^{k-1}$ (Hibbard 1963). $\mathcal{O}(n^{3/2})$
- Sequence $1, 2, 3, 4, 6, 8, ..., 2^p 3^q$ (Pratt 1971). $\mathcal{O}(n \log^2 n)$

8. Sorting II

Heapsort, Quicksort, Mergesort

Shellsort

	0	1	2	3	4	5	6	7	8	9
insertion sort, $k=4$	0	9	2	3	4	5	6	7	8	1
	8	9	2	3	4	5	6	7	0	1
	8	9	2	7	4	5	6	3	0	1
	8	9	6	7	4	5	2	3	0	1
insertion sort, $k=2$	8	9	6	7	4	5	2	3	0	1
	8	9	6	7	4	5	2	3	0	1
insertion sort. $k=1$	9	8	7	6	5	4	3	2	1	0

216

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

Heapsort

Inspiration from selectsort: fast insertion

Inspiration from insertion sort: fast determination of position

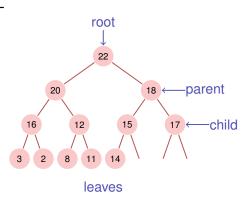
② Can we have the best of both worlds?

① Yes, but it requires some more thinking...

[Max-]Heap⁷

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right
- Max-(Min-)Heap: key of a child smaller (greater) that that of the parent node



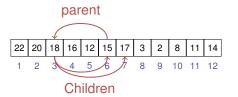
⁷Heap(data structure), not: as in "heap and stack" (memory allocation)

220

Heap as Array

Tree \rightarrow Array:

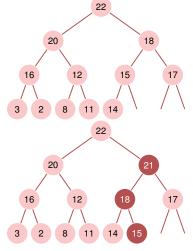
- children $(i) = \{2i, 2i + 1\}$
- \blacksquare parent(i) = |i/2|



Depends on the starting index⁸

Insert

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively
- Worst case number of operations: $\mathcal{O}(\log n)$



²² [1] 20 18 [2] 16 12 15 17 (4) (5) (6) (7) (8) [9] [10] [11] [12]

⁸For array that start at 0: $\{2i,2i+1\} \to \{2i+1,2i+2\}, \lfloor i/2 \rfloor \to \lfloor (i-1)/2 \rfloor$

Algorithm Sift-Up(A, m)

 $A[0,\ldots,m-1]$

Output: Array A with Max-Heap-Structure on $A[0, \ldots, m]$.

Height of a Heap

A complete binary tree with height h provides

$$1 + 2 + 4 + 8 + \dots + 2^{h-1} = \sum_{i=0}^{h-1} 2^i = 2^h - 1$$

nodes. Thus for a heap with height h:

$$2^{h-1} - 1 < n \le 2^h - 1$$

 $\Leftrightarrow 2^{h-1} < n + 1 \le 2^h$

Particularly $h(n) = \lceil \log_2(n+1) \rceil$ and $h(n) \in \Theta(\log n)$.

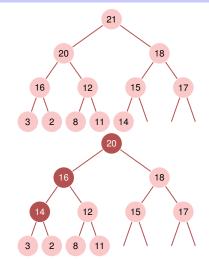
⁹here: number of edges from the root to a leaf

224

Remove the maximum

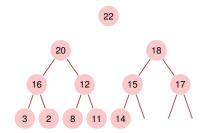
 $A[c] \leftarrow v // \text{ value} \rightarrow \text{current node}$

- Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)
- Worst case number of operations: $\mathcal{O}(\log n)$



Why this is correct: Recursive heap structure

A heap consists of two heaps:



~

Algorithm SiftDown(A, i, m)

 $i \leftarrow m$; // sift down finished

Sort heap

228

229

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

Analysis: sorting a heap

SiftDown traverses at most $\log n$ nodes. For each node 2 key comparisons. \Rightarrow sorting a heap costs in the worst case $2\log n$ comparisons.

Number of memory movements of sorting a heap also $\mathcal{O}(n \log n)$.

Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

But mean length of the sift-down paths is much smaller:

$$\begin{split} v(n) &= \sum_{l=0}^{\lfloor \log n \rfloor} \underbrace{2^l}_{\text{number heaps on level I}} \cdot \underbrace{\left(\lfloor \log n \rfloor - l \right)}_{\text{height heaps on level I}} = \sum_{k=0}^{\lfloor \log n \rfloor} 2^{\lfloor \log n \rfloor - k} \cdot k \\ &\leq \sum_{k=0}^{\lfloor \log n \rfloor} \frac{n}{2^k} \cdot k = n \cdot \sum_{k=0}^{\lfloor \log n \rfloor} \frac{k}{2^k} \in \mathcal{O}(\mathbf{n}) \end{split}$$

with
$$s(x) := \sum_{k=0}^\infty k x^k = \frac{x}{(1-x)^2} \quad (0 < x < 1) \ ^{\rm 10}$$
 and $s(\frac{1}{2}) = 2$

$$^{10}f(x) = \frac{1}{1-x} = 1 + x + x^2 \dots \Rightarrow f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + \dots$$

Intermediate result

Heapsort: $\mathcal{O}(n \log n)$ Comparisons and movements.

- ② Disadvantages of heapsort?
- Missing locality: heapsort jumps around in the sorted array (negative cache effect).
- Two comparisons required before each necessary memory movement.

8.2 Mergesort

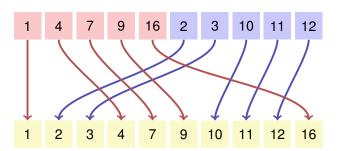
[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Mergesort

Merge

Divide and Conquer!

- Assumption: two halves of the array *A* are already sorted.
- Minimum of *A* can be evaluated with two comparisons.
- Iteratively: merge the two presorted halves of A in $\mathcal{O}(n)$.



236

Algorithm Merge(A, l, m, r)

```
Input: Array A with length n, indexes 1 \leq l \leq m \leq r \leq n. A[l,\ldots,m],\ A[m+1,\ldots,r] sorted

Output: A[l,\ldots,r] sorted

B \leftarrow \text{new Array}(r-l+1)
i \leftarrow l;\ j \leftarrow m+1;\ k \leftarrow 1

while i \leq m and j \leq r do

if A[i] \leq A[j] then B[k] \leftarrow A[i];\ i \leftarrow i+1
else B[k] \leftarrow A[j];\ j \leftarrow j+1
k \leftarrow k+1;

while i \leq m do B[k] \leftarrow A[j];\ j \leftarrow j+1;\ k \leftarrow k+1
while j \leq r do B[k] \leftarrow A[j];\ j \leftarrow j+1;\ k \leftarrow k+1
for k \leftarrow l to r do A[k] \leftarrow B[k-l+1]
```

Correctness

Hypothesis: after k iterations of the loop in line 3 B[1, ..., k] is sorted and $B[k] \le A[i]$, if $i \le m$ and $B[k] \le A[j]$ if $j \le r$.

Proof by induction:

Base case: the empty array $B[1, \ldots, 0]$ is trivially sorted. Induction step $(k \to k+1)$:

- \blacksquare wlog $A[i] \leq A[j], i \leq m, j \leq r$.
- B[1,...,k] is sorted by hypothesis and $B[k] \leq A[i]$.
- After $B[k+1] \leftarrow A[i] \ B[1,\ldots,k+1]$ is sorted.
- $B[k+1] = A[i] \le A[i+1]$ (if $i+1 \le m$) and $B[k+1] \le A[j]$ if $j \le r$.
- $k \leftarrow k+1, i \leftarrow i+1$: Statement holds again.

Analysis (Merge)

Mergesort

Lemma

If: array A with length n, indexes $1 \le l < r \le n$. $m = \lfloor (l+r)/2 \rfloor$ and $A[l,\ldots,m]$, $A[m+1,\ldots,r]$ sorted. Then: in the call of $\operatorname{Merge}(A,l,m,r)$ a number of $\Theta(r-l)$ key movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

5	2	6	1	8	4	3	9	
5	2	6	1	8	4	3	9	
5	2	6	1	8	4	3	9	
5	2	6	1	8	4	3	9	
2	5	1	6	4	8	3	9	
1	2	5	6	3	4	8	9	
1	2	3	4	5	6	8	9	

Split

Split

Split

Merge

Merge

Merge

240

Algorithm (recursive 2-way) Mergesort(A, l, r)

Analysis

 $\begin{array}{lll} \textbf{Input:} & \text{Array } A \text{ with length } n. \ 1 \leq l \leq r \leq n \\ \textbf{Output:} & \text{Array } A[l,\ldots,r] \text{ sorted.} \\ \textbf{if } l < r \ \textbf{then} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor & \text{// middle position} \\ & \text{Mergesort}(A,l,m) & \text{// sort lower half} \\ & \text{Mergesort}(A,m+1,r) & \text{// sort higher half} \\ & \text{Merge}(A,l,m,r) & \text{// Merge subsequences} \\ \end{array}$

Recursion equation for the number of comparisons and key movements:

$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lceil \frac{n}{2} \right\rceil) + \Theta(n) \in \Theta(n \log n)$$

Algorithm StraightMergesort(*A*)

Avoid recursion: merge sequences of length 1, 2, 4, ... directly

```
\begin{array}{lll} \textbf{Input:} & \text{Array } A \text{ with length } n \\ \textbf{Output:} & \text{Array } A \text{ sorted} \\ length \leftarrow 1 \\ \textbf{while } length < n \textbf{ do} & // \text{ Iterate over lengths } n \\ \hline & r \leftarrow 0 \\ \textbf{while } r + length < n \textbf{ do} & // \text{ Iterate over subsequences} \\ \hline & l \leftarrow r+1 \\ & m \leftarrow l + length-1 \\ & r \leftarrow \min(m+length,n) \\ & \text{Merge}(A,l,m,r) \\ \hline & length \leftarrow length \cdot 2 \\ \hline \end{array}
```

Analysis

Like the recursive variant, the straight 2-way mergesort always executes a number of $\Theta(n \log n)$ key comparisons and key movements.

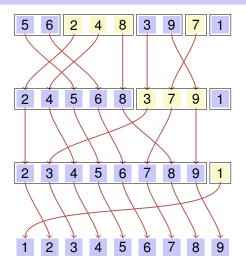
244

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

- ? How can partially presorted arrays be sorted better?
- ① Recursive merging of previously sorted parts (runs) of A.

Natural 2-way mergesort



Algorithm NaturalMergesort(*A*)

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Analysis

Is it also asymptotically better than StraightMergesort on average?

①No. Given the assumption of pairwise distinct keys, on average there are n/2 positions i with $k_i > k_{i+1}$, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of $\Theta(n \log n)$ comparisons and memory movements.

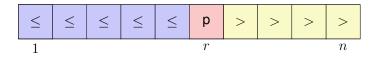
248

Quicksort

- What is the disadvantage of Mergesort?
- \bigcirc Requires additional $\Theta(n)$ storage for merging.
- ? How could we reduce the merge costs?
- ① Make sure that the left part contains only smaller elements than the right part.
- ? How?
- ① Pivot and Partition!

Use a pivot

- Choose a (an arbitrary) pivot p
- Partition A in two parts, one part L with the elements with $A[i] \leq p$ and another part R with A[i] > p
- Quicksort: Recursion on parts L and R



Algorithm Partition(A[l..r], p)

Input: Array A, that contains the pivot p in the interval [l, r] at least once. **Output:** Array A partitioned in [l..r] around p. Returns position of p.

 $\begin{array}{c|c} \textbf{while} \ l \leq r \ \textbf{do} \\ & \textbf{while} \ A[l] p \ \textbf{do} \\ & \bot \ r \leftarrow r-1 \\ & \textbf{swap}(A[l], \ A[r]) \\ & \textbf{if} \ A[l] = A[r] \ \textbf{then} \\ & \bot \ l \leftarrow l+1 \end{array}$

return |-1

252

Algorithm Quicksort($A[l, \ldots, r]$

 $\mbox{ Input:} \qquad \mbox{ Array A with length n. $1 \leq l \leq r \leq n$.}$

Output: Array A, sorted between l and r.

if l < r then

Choose pivot $p \in A[l, ..., r]$ $k \leftarrow \mathsf{Partition}(A[l, ..., r], p)$ Quicksort(A[l, ..., k-1])Quicksort(A[k+1, ..., r])

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Analysis: number comparisons

Analysis: number swaps

Worst case. Pivot = min or max; number comparisons:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

- ? How many swaps have taken place?
- ① 2. The maximum number of swaps is given by the number of keys in the smaller part.

Analysis: number swaps

Randomized Quicksort

Thought experiment

- Each key from the smaller part pays a coin when it is being swapped.
- After a key has paid a coin the domain containing the key decreases to half its previous size.
- \blacksquare Every key needs to pay at most $\log n$ coins. But there are only n keys.

Consequence: there are $\mathcal{O}(n \log n)$ key swaps in the worst case.

Despite the worst case running time of $\Theta(n^2)$, quicksort is used practically very often.

Reason: quadratic running time unlikely provided that the choice of the pivot and the pre-sorting are not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l,r].

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

$$T(n) = (n-1) + \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)), \ T(0) = T(1) = 0$$

Claim $T(n) \le 4n \log n$.

Proof by induction:

Base case straightforward for n = 0 (with $0 \log 0 := 0$) and for n = 1.

Hypothesis: $T(n) \leq 4n \log n$ for some n.

Induction step: $(n-1 \rightarrow n)$

Analysis (randomized quicksort)

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\mathsf{H}}{\leq} n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} 4k \log k$$

$$= n - 1 + \sum_{k=1}^{n/2} 4k \underbrace{\log k}_{\leq \log n - 1} + \sum_{k=n/2+1}^{n-1} 4k \underbrace{\log k}_{\leq \log n}$$

$$\leq n - 1 + \frac{8}{n} \left((\log n - 1) \sum_{k=1}^{n/2} k + \log n \sum_{k=n/2+1}^{n-1} k \right)$$

$$= n - 1 + \frac{8}{n} \left((\log n) \cdot \frac{n(n-1)}{2} - \frac{n}{4} \left(\frac{n}{2} + 1 \right) \right)$$

$$= 4n \log n - 4 \log n - 3 \leq 4n \log n$$

260

Analysis (randomized quicksort)

Theorem

On average randomized quicksort requires $\mathcal{O}(n \cdot \log n)$ comparisons.

Practical Considerations

Worst case recursion depth $n-1^{11}$. Then also a memory consumption of $\mathcal{O}(n)$.

Can be avoided: recursion only on the smaller part. Then guaranteed $\mathcal{O}(\log n)$ worst case recursion depth and memory consumption.

ok overnow possible:

¹¹stack overflow possible!

Quicksort with logarithmic memory consumption

```
 \begin{array}{lll} \textbf{Input:} & \text{Array $A$ with length $n.$ } 1 \leq l \leq r \leq n. \\ \textbf{Output:} & \text{Array $A$, sorted between $l$ and $r$.} \\ \textbf{while $l < r$ do} \\ & \text{Choose pivot $p \in A[l, \ldots, r]$} \\ & k \leftarrow \text{Partition}(A[l, \ldots, r], p) \\ & \textbf{if $k - l < r - k$ then} \\ & \text{Quicksort}(A[l, \ldots, k - 1]) \\ & l \leftarrow k + 1 \\ & \textbf{else} \\ & \text{Quicksort}(A[k + 1, \ldots, r]) \\ & r \leftarrow k - 1 \\ \end{array}
```

The call of $\operatorname{Quicksort}(A[l,\ldots,r])$ in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

8.4 Appendix

Derivation of some mathematical formulas

Practical Considerations.

- Practically the pivot is often the median of three elements. For example: Median3(A[l], A[r], A[|l+r/2|]).
- There is a variant of quicksort that requires only constant storage. Idea: store the old pivot at the position of the new pivot.
- Complex divide-and-conquer algorithms often use a trivial $(\Theta(n^2))$ algorithm as base case to deal with small problem sizes.

264

$\log n! \in \Theta(n \log n)$

$$\log n! = \sum_{i=1}^{n} \log i \le \sum_{i=1}^{n} \log n = n \log n$$

$$\sum_{i=1}^{n} \log i = \sum_{i=1}^{\lfloor n/2 \rfloor} \log i + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log i$$

$$\ge \sum_{i=2}^{\lfloor n/2 \rfloor} \log 2 + \sum_{\lfloor n/2 \rfloor + 1}^{n} \log \frac{n}{2}$$

$$= (\lfloor n/2 \rfloor - 2 + 1) + (\underbrace{n - \lfloor n/2 \rfloor}_{\ge n/2})(\log n - 1)$$

$$> \frac{n}{2} \log n - 2.$$

$[n! \in o(n^n)]$

$$n\log n \ge \sum_{i=1}^{\lfloor n/2\rfloor} \log 2i + \sum_{i=\lfloor n/2\rfloor+1}^{n} \log i$$

$$= \sum_{i=1}^{n} \log i + \left\lfloor \frac{n}{2} \right\rfloor \log 2$$

$$> \sum_{i=1}^{n} \log i + n/2 - 1 = \log n! + n/2 - 1$$

$$n^{n} = 2^{n \log_{2} n} \ge 2^{\log_{2} n!} \cdot 2^{n/2} \cdot 2^{-1} = n! \cdot 2^{n/2 - 1}$$

$$\Rightarrow \frac{n!}{n^{n}} \le 2^{-n/2 + 1} \xrightarrow{n \to \infty} 0 \Rightarrow n! \in o(n^{n}) = \mathcal{O}(n^{n}) \backslash \Omega(n^{n})$$

[Even $n! \in o((n/c)^n) \, \forall \, 0 < c < e$]

Konvergenz oder Divergenz von $f_n = \frac{n!}{(n/c)^n}$.

Ratio Test

$$\frac{f_{n+1}}{f_n} = \frac{(n+1)!}{\left(\frac{n+1}{c}\right)^{n+1}} \cdot \frac{\left(\frac{n}{c}\right)^n}{n!} = c \cdot \left(\frac{n}{n+1}\right)^n \longrightarrow c \cdot \frac{1}{e} \le 1 \text{ if } c \le e$$

because $\left(1+\frac{1}{n}\right)^n \to e$. Even the series $\sum_{i=1}^n f_n$ converges / diverges for $c \leqslant e$.

 f_n diverges for c=e, because (Stirling): $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

[Ratio Test]

Ratio test for a sequence $(f_n)_{n\in\mathbb{N}}$: If $\frac{f_{n+1}}{f_n} \xrightarrow[n\to\infty]{} \lambda$, then the sequence f_n and the series $\sum_{i=1}^n f_i$

- lacksquare converge, if $\lambda < 1$ and
- diverge, if $\lambda > 1$.

[Ratio Test Derivation]

Ratio test is implied by Geometric Series

$$S_n(r) := \sum_{i=0}^n r^i = \frac{1 - r^{n+1}}{1 - r}.$$

converges for $n \to \infty$ if and only if -1 < r < 1.

Let $0 \le \lambda < 1$:

$$\forall \varepsilon > 0 \,\exists n_0 : f_{n+1}/f_n < \lambda + \varepsilon \,\forall n \ge n_0$$

$$\Rightarrow \exists \varepsilon > 0, \exists n_0 : f_{n+1}/f_n \le \mu < 1 \,\forall n \ge n_0$$

Thus

$$\sum_{n=n_0}^{\infty} f_n \le f_{n_0} \cdot \sum_{n=n_0}^{\infty} \cdot \mu^{n-n_0} \quad \text{konvergiert.}$$

(Analogously for divergence)

26