7. Sorting |

Simple Sorting

196

Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A’ of A, that is sorted: A'[i] < A’[;] for all
1<i<j<n.

198

7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

Algorithm: IsSorted(A)

Input: Array A = (A[1], ..., A[n]) with length n.
Output: Boolean decision “sorted” or “not sorted"”
fori<1ton—1do
if Ali] > A[i + 1] then
| return “not sorted”;

return “sorted”;

197

199

Observation Give ita try

= new idea! ©

o
N
)
>
.
I
at

[5}—{6] =1
IsSorted(A):“not sorted”, if A[i] > A[i + 1] for any . [6}1{2] (j=2) = Not sorted! ®
f:> @ea: d [6}—1{8] (j=3) m Butthe greatest
or %fz[?.]ti Zl[_y 1+ 1?then element moves to the
" swap(A[j], AL + 1)) 6] (8L 4] (=4 right
()

o
N

6] [4] [1]

200 201

Try it out Algorithm: Bubblesort
[6] [6] [2] [8] [4] [1] j=1,i=1

a5 B

5] 2] [6] [8] [4] [1] (3=23) . _

= = 6 B [M (;:4) m Apply the procedure Input.. Array A = (A[1],..., Aln]), n > 0.
(5] (2] [6] (4] [&] L] (=5 iterativel Output: Sorted Array A
BB EHEHEH R oy iteratively. fori«< 1ton—1do

=] (5] (6] [[& (-9 m For A[l,...,n], for j < 1ton—ido

2 5 4 6 1 8 j=4 . . .
BB B R (v thenA[l...,n-—1], MR A At
2 5 4 1 6 8) =2 WAR] '
wallen il M M < s R then A[L,...,n—2], i

2 4 1 5 6 8 j=1,i=4 o

eafll o ee i R

(2] [1] [4] [5] [6] [8] (=15=5)

L1 2] [4] [5] L[6] [8]

202 203

Analysis

Number key comparisons S/ (n — i) =
Number swaps in the worst case: ©(n?)

@ What is the worst case?
@it Ais sorted in decreasing order.

Selection Sort

m Selection of the smallest

Algorithm: Selection Sort

Input: Array A = (A[1],...,A[n]), n > 0.
Output: Sorted Array A
fori< 1ton—1do

D1

for j < i+ 1tondo
if A[j] < Alp| then
2R

~ swap(Ali, A[p])

6] (1=1) element by search in the
n(n— . unsorted part Ali..n| of
(- U = o(n?). @ (i=2) iy array.p [i..n]
@ (Z = 3) m Swap the smallest
_ element with the first
@ (Z o 4) element of the unsorted
@ (i=15) part.
(6] (i =6) m Unsorted part decreases
£ in size by one element
@ (z — 7+ 1). Repeat until
all is sorted. (i = n)
Analysis

Number comparisons in worst case: ©(n?).
Number swaps in the worst case: n — 1 = O(n)

206

205

Insertion Sort

T|@
T@m 8]

TI\. Il
m

)
) m lterative procedure:
1=1..n
) m Determine insertion
) position for element .
) m Insert element i array
block movement
) potentially required

.

208

Algorithm: Insertion Sort

Input: Array A = (A[1],...,A[n]), n > 0.
Output: Sorted Array A
for i < 2 ton do

x <+ Al

p < BinarySearch(A[l...i — 1], x);
for j < ¢ — 1 downto p do
Al + 1]+ Afj]

B Alp] + x

// Smallest p € [1,4] with A[p] >

210

Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

® Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

@ The search domain (insertion interval) is already sorted.
Consequently: binary search possible.

Analysis

Number comparisons in the worst case:
"la-logk = alog((n —1)!) € O(nlogn).

Number swaps in the worst case Y7 _,(k — 1) € O(n?)

209

Different point of view Different point of view

5 —\5
Sorting node: 6 [
6— 2 4 6
B
! b
g g2l f ls] f o[, m Like selection sort
88— =2 — Tz TS Te \ [and like Bubblesort]
4—4)2-i>%-i>z-i>2- 8
14 12 A NE 16 \v
1—1)2-i>2-i>2-i>2-i>2- 8
e e
1 2 4 5 6 8
Different point of view Conclusion
5 —\5
6— é \6
2-% 2 22 \6 In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
- {2 : 15 — provide the same kind of sort strategy. Will be made more precise. &
8—=z2—2—2 \8 m Like insertion sort
=D oo
RN BN BN CEN R IRy
1)
1 2 4 5 6 8

6In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.
214 215

Shellsort (Donald Shell 1959)

Insertion sort on subsequences of the form (Ay.;) (i € N) with
decreasing distances k. Last considered distance must be £ = 1.

Worst-case performance critically depends on the chosen subsequences

m Original concept with sequence 1,2,4,8, ..., 2¥. Running time: O(n?)
m Sequence 1,3,7,15,..., 2¥"! (Hibbard 1963). O(n®?)
m Sequence 1,2,3,4,6,8, ..., 2737 (Pratt 1971). O(nlog®n)

216

8. Sorting lI

Heapsort, Quicksort, Mergesort

218

Shellsort

9 8 7 6 5 4 3 2 1
i 8 7 6 5 4 3 2 9
1 0 7 6 5 4 3 2 9
1 0 3 6 5 4 7 2 9
1 0 3 2 5 4 7 6 9
i 0 3 2 5 4 7 6 9
i 0 3 2 5 4 7 6 9
o 1 2 3 4 5 6 7 8

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

© 0O 0 0O 0 0 O O

insertion sort, £k = 4

insertion sort, £k = 2

insertion sort, k = 1

217

219

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of both worlds?
® Yes, but it requires some more thinking...

220

Heap as Array

Tree — Array:
. N o 22
m children(i) = {2i.2i + 1} N
m parent(i) = |i/2] s I
parent /N /N

16 12 15 17

‘22|20|18|16|12“15“17”3H2|8|11|14‘ /4) /[“I\ /“
3 2 8 11 14
12

12@89101112

(8] [9] [10] [11]
Children

Depends on the starting index®

8For array that start at 0: {2i,2i + 1} — {2i + 1,2i + 2}, |i/2] — (i — 1)/2]
222

[Max-]Heap’

Binary tree with the following prop-
erties

B complete up to the lowest
level

Gaps (if any) of the tree in /20\
the last level to the right o .
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

"Heap(data structure), not: as in “heap and stack” (memory allocation)

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

m Worst case number of operations:
O(logn)

18 «——parent

17 «——child

Heap-Condition: [\ I\] \ / \

22
20 18

N\ N\ /\
/22\
2 0

Algorithm Sift-Up(A, m)

ture on

Input: Array A with at least m + 1 and Max-Heap-Struc
Al0,...,m —1]
Output: Array A with Max-Heap-Structure on A[0,...,m].

v Alm] // value
c < m // current position
p <+ |(c—=1)/2] // parent node
while ¢ > 0 and v > A[p| do
Alc] + Alp| // Value parent node — current node
¢ < p // parent node — current node
pel(e-1)2)

Alc] < v // value — current node

Remove the maximum

21
20 18

m Replace the maximum by the lower / \
right element

m Reestablish heap property: sink
successively (in the direction of the

15/ \17
14/ A

greater child) / \

m Worst case number of operations:

O(logn) / \

as
A

224

226

Height of a Heap

A complete binary tree with height® h provides
1424448+ . +2"1=>"2=2"—1

nodes. Thus for a heap with height A:
ol _1<n<2h—1

= =l 1< 20

Particularly h(n) = [logy(n+ 1)] and h(n) € O(logn).

here: number of edges from the root to a leaf

225

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22
20

/ N\ /\

16 12

: 1/\ /\

227

Algorithm SiftDown(A, i, m)

Input: Array A with heap structure for the children of i. Last element
m.
Output: Array A with heap structure for i with last element m.

while 2: < m do
§ 4« 2i; // j left child
if j <m and A[j] < A[j + 1] then
‘ j<«j+1;// jright child with greater key
if Ali] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking down
else
| 4= m; // sift down finished

228

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

230

Sort heap

All,...,n] is a Heap.
Whilen > 1

m swap(A[l], A[n])

m SiftDown(A, 1,n — 1);
BEn<+<n-—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i < n/2 downto 1 do
- SiftDown(A, i, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], A[i])
SiftDown(A, 1,7 — 1)

// Now A is sorted.

R R R

>

N A BB
= DD DD OO ;0

~ B~~~ S

1
1
1
6]
6
2 HOH
2HOH
4]5]6]7]

1 AEEH
1]2]4]506]7]

[\ \C R S %2 B o >R \C RN |
- == B~ b OO0 O O O

229

231

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

@ Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons required before each necessary memory
movement.

Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and

movements: v(n) € O(nlogn).

But mean length of the sift-down paths is much
|logn|
v(n) = 2! - ([logn] —1)
(n) ; 25 ([log
=0 number heaps on level | height heaps on level |
|logn| n |logn| L
< Z ?k:n Z 276(9(11)
k=0 k=0

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

smaller:

|logn |

Z 2Uognj —k k
k=0

=2

235

o oA WN -

0 ~

Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: merge the two presorted halves of A in O(n).

236

Algorithm Merge(A, [, m,)

Input: Array A with length n, indexes 1 <1 <m <r <n.
All,...,m], Alm+1,...,7] sorted
Output: All,...,r] sorted

B < new Array(r — [+ 1)
il jem+1 k<1
while : <m and j < r do
if Ali] < A[j] then Blk] < Ali]; i+ i+1
else Blk]«+ Alj];j+j+1
k<« k+1;
whilei <mdo B[k]+ Alil; i+ i+ 1, k+ k+1
while j <rdo B[k|«+ A[j;j«j+ 1L k+k+1
for k <[tor do A[k| < B[k — 1+ 1]

238

Merge

i1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,..., k] is
sorted and B[k] < A[d], if i < mand Blk| < A[j]if j <.

Proof by induction:
Base case: the empty array BI[1, ..., 0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < Afj],i <m,j <.

m B[l,..., k| is sorted by hypothesis and B[k| < A[i].

m After B[k + 1] < A[i] BI[L,...,k + 1] is sorted.

m Blk+1] = A[i] < Ali + 1] (if i + 1 < m) and B[k + 1] < A[j]if j < r.

m k< k+ 1,79+ ¢+ 1: Statement holds again.

239

Analysis (Merge)

If: array A with length n, indexes 1 <l <r <n.m=[(+7)/2]
and A[l,...,m], Aijm+1,...,r] sorted.

Then: in the call of Merge(A, 1, m,r) a number of ©(r —) key
movements and comparisons are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)

240

Algorithm (recursive 2-way) Mergesort(A, [,)

Input: Array A with lengthn. 1 <1 <r<n
Output: Array AJl,...,r| sorted.
if [<r then

m <+ [(I+71)/2]
Mergesort(A, [, m)
Mergesort(A, m + 1,7)
Merge(A, 1, m, 1)

// middle position
// sort lower half
// sort higher half
// Merge subsequences

242

Mergesort

5 2 6 1 8 4 3 9

Split
5 2 6 18 4 3 9|

Split
|5 2][6 18 43 9]

Split
Hn

Merge
12 5|1 6|4 83 9]

Merge
1 2 5 63 4 8 9|
I A 1 1 Merge

1 2 3 4 5 6 8 9

Analysis

Recursion equation for the number of comparisons and key
movements:

n n

T(n) = T(M) +T(M) +0(n) € ©(nlogn)

243

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1,2, 4, ... directly

Input: Array A with length n
Output: Array A sorted
length <1
while length < n do // Iterate over lengths n
r <0
while 7 + length < n do // Iterate over subsequences
l—r+1

m < [+ length — 1
r < min(m + length,n)
Merge(A, 1, m, 1)

 length < length - 2

244

Natural 2-way mergesort

Observation: the variants above do not make use of any presorting
and always execute O(n logn) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.

246

Analysis

Like the recursive variant, the straight 2-way mergesort always
executes a number of ©(n logn) key comparisons and key
movements.

Natural 2-way mergesort

562 4 88 fe]7]]

2 4 5 6 8|3 7 9]1]

e

2 3 4 56 7 8 9|1]

12 3 4 5 6 7 8 9

245

247

Algorithm NaturalMergesort(A)

Input: Array A with length n > 0

Output: Array A sorted

repeat

r <0

while » < n do

l+—r+1

m < I; while m <n and A[m + 1] > A[m] do m <~ m + 1

if m < n then
r < m+1;, while r <nand A[r +1] > Alr]do r < r+1
Merge(A, I, m, 1);

else
L r<n

until [=1

248

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

250

Analysis

@ Is it also asymptotically better than StraightMergesort on
average?

OnNo. Given the assumption of pairwise distinct keys, on average there are n /2
positions @ with k; > k; .1, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of ©(nlogn) comparisons and memory movements.

Quicksort

@ What is the disadvantage of Mergesort?
® Requires additional ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!

249

Use a pivot Algorithm Partition(A|/..7], p)

Input: Array A, that contains the pivot p in the interval [[, 7] at least once.

Choose a (an arbitrary) pivot p Output: Array A partitioned in [l..r] around p. Returns position of p.
Partition A in two parts, one part L with the elements with while [l‘ IS " do
Ali] < p and another part /2 with Afi] > p e <—[l” = do
Quicksort: Recursion on parts L and while A[r] > p do
| r<r—1
<l <l <l<1< swap(A[l], Ar])
e - | | > | if All] = A[r] then
1 r n i L 1+ 1+1
return |-1
Algorithm Quicksort(A[l, ... 7] Quicksort (arbitrary pivot)
2 4 56 8[3|]7 9 1
Input: Array A with length n. 1 <[<r <n.
Output: Array A, sorted between [and r. _ BN .
if [<r then
Choose pivot p € A[l, ..., 7] 1 2 34 5 8/[7]9 6
k « Partition(A[l,...,7],p)
Quicksort(A[L, ...,k —1]) 1 2 3 4 586 7 9 .
 Quicksort(Alk+1,....7])

1 2 3 4 5 6 7 8 9

254

Analysis: nhumber comparisons Analysis: number swaps

Result of a call to partition (pivot 3):

Worst case. Pivot = min or max; number comparisons: 5 {1 368 57 9 4

I =T -Dten TW)=0 = T(n) €O @ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.

Analysis: number swaps Randomized Quicksort

Thought experiment

m Each key from the smaller part pays a coin when it is being Despite the worst case running time of ©(n?), quicksort is used
swapped. practically very often.

m After a key has paid a coin the domain containing the key Reason: quadratic running time unlikely provided that the choice of
decreases to half its previous size. the pivot and the pre-sorting are not very disadvantageous.

m Every key needs to pay at most log n coins. But there are only » Avoidance: randomly choose pivot. Draw uniformly from (I, r].
keys.

Consequence: there are O(nlogn) key swaps in the worst case.

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

n

(n— 1)+%Z(T(k— 1)+ T(n—k)), T(0)=T(1)=0
k=1

T(n)=

Claim T'(n) < 4nlogn.

Proof by induction:

Base case straightforward for n = 0 (with 0log 0 := 0) and for n = 1.
Hypothesis: T'(n) < 4nlogn for some n.

Induction step: (n — 1 — n)

260

Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.

262

Analysis (randomized quicksort)

n—1 n—1
2 2
T(n):n—l—k—g T(k) <n—1+ E 4k logk
n
k=0 =0

n/2 n—1

—n—1+z4k logh + > dklogk
k=n/2+1

<logn 1 <logn
n/2 n—1
<n1+(logn1 Zk+10gn Z k‘)
k=n/2+1

8 nin—1) n/n
n +n<(ogn) 5 AR >
=4dnlogn —4logn — 3 < 4nlogn

261

Practical Considerations

Worst case recursion depth n — 1''. Then also a memory

consumption of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(log n) worst case recursion depth and memory
consumption.

"stack overflow possible!
263

Quicksort with logarithmic memory consumption

Array A with lengthn. 1 <[<r <n.
Array A, sorted between [and 7.

Input:

Output:

while | < r do

Choose pivot p € A[l,...,r]

k « Partition(A[l,...,7],p)

if k—1<r—kthen
Quicksort(A[l, ..., k —1])

l+—k+1
else
Quicksort(A[k + 1,...,7])
r«—k—1
The call of Quicksort(A[L, . .., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.

264

8.4 Appendix

Derivation of some mathematical formulas

266

Practical Considerations.

m Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

m There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

m Complex divide-and-conquer algorithms often use a trivial (©(n?))
algorithm as base case to deal with small problem sizes.

logn! € O(nlogn)

logn! = Zlogz’ < Zlogn =nlogn
i=1 i=1

Ln/2] n

Zlogz’: Zlogi—l— Z log 1
i=1 i=1 ln/2|+1
[n/2] n n
> =
> Z log 2 + Z log 5
i=2 [n/2]+1
=([n/2] =2+ 1)+ (n — [n/2])(logn — 1)
—— N——
>n/2—1 >n/2

n
> —1 — 2.
9 ogn

265

267

[n! € o(n")]

[n/2]

nlogn > Zlog2z+ Z log i

i=|n/2]+1
= Zlogz—i— { J10g2

> Zlogi+n/2—1:10gn!+n/2—1
i=1
n" = 2n10g2n > 210g2 n! 2n/2 . 2—1 =nl- 2n/2—1

|
= L <922 g ol e o(n") = O(n™)\Qn")
nn

268

[Ratio Test]

Ratio test for a sequence (f,)nen: If f”“ —)\, then the sequence
” n—o0
f» and the series > | f;

m converge, if A < 1 and
m diverge, if A > 1.

[Evenn! € o((n/c)")V0 < ¢ < e]

Konvergenz oder Divergenz von f,, = (n;l({),,,.
Ratio Test

fnl (+1) <%>n n " 1)
f: :(1)n+1~ p =c-] —>c-g§1lfc§e

because (1 +)" — e. Even the series 3!, f, converges /
diverges for ¢ < e.

fn diverges for ¢ = e, because (Stirling): n! ~ v/2mn (2)".
[Ratio Test Derivation]
Ratio test is implied by Geometric Series

n 1— ,r.n+1

Sn(r) ::Zri: T

=0
converges forn — coifandonly if —1 <r < 1.
Let0 <A< 1:

Ve >03ng: for1/fo < A+eV¥n >ng
=3 >0,Ing: for1/fo < p<1¥n>ng

Thus o .
Z fn < o - Z 1" konvergiert.

n=ng n=ng

(Analogously for divergence)

