4. Suchen

Lineare Suche, Binäre Suche, (Interpolationssuche,) Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

Das Suchproblem

Gegeben

Menge von Datensätzen.

Beispiele

Telefonverzeichnis, Wörterbuch, Symboltabelle

- Jeder Datensatz hat einen Schlüssel k.
- Schlüssel sind vergleichbar: eindeutige Antwort auf Frage $k_1 \le k_2$ für Schlüssel k_1 , k_2 .

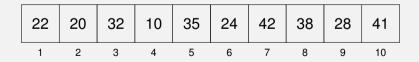
Aufgabe: finde Datensatz nach Schlüssel k.

Suche in Array

Gegeben

- **Array** A mit n Elementen $(A[1], \ldots, A[n])$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".



Durchlaufen des Arrays von A[1] bis A[n].

■ *Bestenfalls* 1 Vergleich.

12

- *Bestenfalls* 1 Vergleich.
- Schlimmstenfalls n Vergleiche.

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

Durchlaufen des Arrays von A[1] bis A[n].

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{n+1}{2}.$$

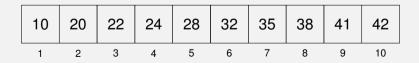
12

Suche im sortierten Array

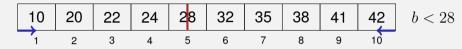
Gegeben

- Sortiertes Array A mit n Elementen $(A[1], \ldots, A[n])$ mit $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".



10	20	22	24	28	32	35	38	41	42
1	2	3	4	5	6	7	8	9	10





10	20	22	24	28	32	35	38	41	42	b < 28
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 20
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 22
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b < 24
1	2	3	4	5	6	7	8	9	10	

b < 28	42	41	38	35	32	28	24	22	20	10
,	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
'	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1

Binärer Suchalgorithmus BSearch(A[l..r], b)

```
Input: Sortiertes Array A von n Schlüsseln. Schlüssel b. Bereichsgrenzen
       1 < l < r < n oder l > r beliebig.
Output: Index des gefundenen Elements. 0, wenn erfolglos.
m \leftarrow \lfloor (l+r)/2 \rfloor
if l > r then // erfolglose Suche
    return NotFound
else if b = A[m] then// gefunden
    return m
else if b < A[m] then// Element liegt links
    return BSearch(A[l..m-1], b)
else //b > A[m]: Element liegt rechts
    return BSearch(A[m+1..r], b)
```

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c$$

Rekurrenz ($n = 2^k$)

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c$$

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$
$$= T\left(\frac{n}{2^{i}}\right) + i \cdot c$$

Rekurrenz ($n = 2^k$)

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$

$$= T\left(\frac{n}{2^i}\right) + i \cdot c$$

$$= T\left(\frac{n}{n}\right) + \log_2 n \cdot c = d + c \cdot \log_2 n \in \Theta(\log n)$$

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

Induktionsanfang: T(1) = d.

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$
- Schritt $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

Resultat

Theorem

Der Algorithmus zur binären sortierten Suche benötigt $\Theta(\log n)$ Elementarschritte.

Iterativer binärer Suchalgorithmus

```
Input: Sortiertes Array A von n Schlüsseln. Schlüssel b.
Output: Index des gefundenen Elements. 0, wenn erfolglos.
l \leftarrow 1: r \leftarrow n
while l < r do
    m \leftarrow \lfloor (l+r)/2 \rfloor
    if A[m] = b then
         return m
    else if A[m] < b then
         l \leftarrow m+1
    else
      r \leftarrow m-1
return NotFound:
```

Korrektheit

Algorithmus bricht nur ab, falls A[l..r] leer oder b gefunden.

Invariante: Falls b in A, dann im Bereich A[l..r]

Beweis durch Induktion

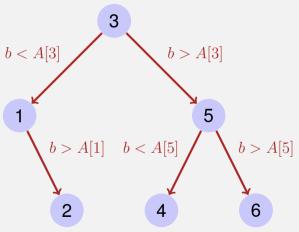
- Induktionsanfang: $b \in A[1..n]$ (oder nicht)
- Hypothese: Invariante gilt nach i Schritten
- Schritt:

$$b < A[m] \Rightarrow b \in A[l..m-1]$$

 $b > A[m] \Rightarrow b \in A[m+1..r]$

Untere Schranke

Binäre Suche (im schlechtesten Fall): $\Theta(\log n)$ viele Vergleiche. Gilt für *jeden* Suchalgorithms in sortiertem Array (im schlechtesten Fall): Anzahl Vergleiche = $\Omega(\log n)$?



- Für jede Eingabe b = A[i]muss Algorithmus erfolgreich sein \Rightarrow Baum enthält mindestens n Knoten.
- Anzahl Vergleiche im schlechtesten Fall = Höhe des Baumes = maximale Anzahl Knoten von Wurzel zu Blatt.

Binärer Baum der Höhe h hat höchstens $2^0+2^1+\cdots+2^{h-1}=2^h-1<2^h$ Knoten.

Binärer Baum der Höhe h hat höchstens $2^0 + 2^1 + \cdots + 2^{h-1} = 2^h - 1 < 2^h$ Knoten.

$$2^h > n \Rightarrow h > \log_2 n$$

Entscheidungsbaum mit n Knoten hat mindestens Höhe $\log_2 n$.

Binärer Baum der Höhe h hat höchstens $2^0 + 2^1 + \cdots + 2^{h-1} = 2^h - 1 < 2^h$ Knoten.

$$2^h > n \Rightarrow h > \log_2 n$$

Entscheidungsbaum mit n Knoten hat mindestens Höhe $\log_2 n$.

Anzahl Entscheidungen = $\Omega(\log n)$.

Theorem

Jeder Algorithmus zur vergleichsbasierten Suche in sortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(\log n)$ Vergleichsschritte.

Untere Schranke für Suchen in unsortiertem Array

Theorem¹

Jeder vergleichsbasierte Algorithmus zur Suche in unsortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(n)$ Vergleichsschritte.

Versuch

? Korrekt?

"Beweis": Um b in A zu finden, muss b mit jedem Element A[i] $(1 \le i \le n)$ verglichen werden.

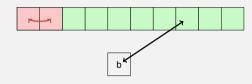
136

Versuch

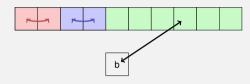
? Korrekt?

"Beweis": Um b in A zu finden, muss b mit jedem Element A[i] $(1 \le i \le n)$ verglichen werden.

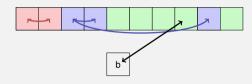
① Falsch! Vergleiche zwischen Elementen von A möglich!



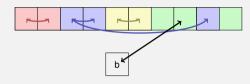
- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.



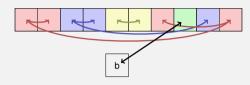
- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.



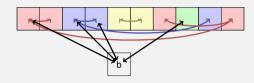
- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.



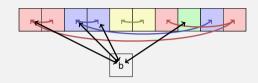
- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.



- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.



- Unterteilung der Vergleiche: Anzahl Vergleiche mit b: e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.
- Mindestens ein Element pro Gruppe muss mit b verglichen werden: $e \ge g$.



- Unterteilung der Vergleiche: Anzahl Vergleiche mit b:e Anzahl Vergleiche untereinander ohne b:i
- Vergleiche erzeugen g Gruppen. Initial: g = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: $n-g \le i$.
- Mindestens ein Element pro Gruppe muss mit b verglichen werden: $e \ge g$.
- Anzahl Vergleiche $i + e \ge n g + g = n$.

5. Auswählen

Das Auswahlproblem, Randomisierte Berechnung des Medians, Lineare Worst-Case Auswahl [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

Das Auswahlproblem

Eingabe

- Unsortiertes Array $A = (A_1, ..., A_n)$ paarweise verschiedener Werte
- \blacksquare Zahl $1 \leq k \leq n$.

Ausgabe: A[i] mit $|\{j : A[j] < A[i]\}| = k - 1$

Spezialfälle

k=1: Minimum: Algorithmus mit n Vergleichsoperationen trivial.

k=n: Maximum: Algorithmus mit n Vergleichsoperationen trivial.

 $k = \lfloor n/2 \rfloor$: Median.

Naiver Algorithmus

Naiver Algorithmus

Wiederholt das Minimum entfernen / auslesen: $\Theta(k \cdot n)$.

 \rightarrow Median in $\Theta(n^2)$

Bessere Ansätze

Bessere Ansätze

Sortieren (kommt bald): $\Theta(n \log n)$

Bessere Ansätze

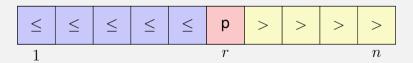
- Sortieren (kommt bald): $\Theta(n \log n)$
- Pivotieren: $\Theta(n)$!

f 1 Wähle ein (beliebiges) Element p als Pivotelement

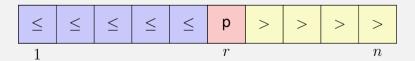
- **11** Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \leq p$ gezählt werden.

- **11** Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \leq p$ gezählt werden.

- **11** Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \leq p$ gezählt werden.



- **11** Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \leq p$ gezählt werden.
- Rekursion auf dem relevanten Teil. Falls k=r, dann gefunden.



Algorithmus Partition(A[l..r], p)

Input: Array A, welches den Pivot p im Intervall [l,r] mindestens einmal enthält.

Output: Array A partitioniert in [l..r] um p. Rückgabe der Position von p. while $l \le r$ do

```
\begin{array}{l} \textbf{while} \ A[l]  p \ \textbf{do} \\ \  \  \, \bigsqcup \ r \leftarrow r-1 \\ \textbf{swap}(A[l], \ A[r]) \\ \textbf{if} \ A[l] = A[r] \ \textbf{then} \\ \  \  \, \bigsqcup \ l \leftarrow l+1 \end{array}
```

return |-1

Korrektheit: Invariante

```
Invariante I: A_i  p \ \forall i \in (r, n], \exists k \in [l, r] : A_k = p.
while l < r do
     while A[l] < p do
     l \leftarrow l+1
                                         -I und A[l] > p
     while A[r] > p do
     r \leftarrow r - 1
                                         -I und A[r] < p
     swap(A[l], A[r])
                                          -I \text{ und } A[l] \leq p \leq A[r]
    if A[l] = A[r] then
    l \leftarrow l+1
```

return |-1

Korrektheit: Fortschritt

```
\begin{array}{c|c} \textbf{while } l \leq r \ \textbf{do} \\ & \textbf{while } A[l]  p \ \textbf{do} \\ & \bot \ r \leftarrow r-1 \\ & \textbf{swap}(A[l], A[r]) \\ & \textbf{if } A[l] = A[r] \ \textbf{then} \\ & \bot \ l \leftarrow l+1 \end{array} \qquad \begin{array}{c} \textbf{Fortschritt wenn } A[l]  p \ \textbf{oder } A[r]
```

return |-1

p_1									
-------	--	--	--	--	--	--	--	--	--

p_1	p_2								
-------	-------	--	--	--	--	--	--	--	--

p_1	p_2	p_3							
-------	-------	-------	--	--	--	--	--	--	--

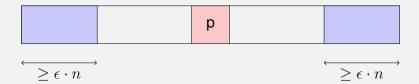
p_1	p_2	p_3	p_4						
-------	-------	-------	-------	--	--	--	--	--	--

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

Das Minimum ist ein schlechter Pivot: worst Case $\Theta(n^2)$

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

Ein guter Pivot hat linear viele Elemente auf beiden Seiten.



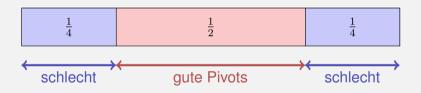
Analyse

Unterteilung mit Faktor q (0 < q < 1): zwei Gruppen mit $q \cdot n$ und $(1-q) \cdot n$ Elementen (ohne Einschränkung $q \geq 1-q$).

$$\begin{split} T(n) &\leq T(q \cdot n) + c \cdot n \\ &= c \cdot n + q \cdot c \cdot n + T(q^2 \cdot n) = \ldots = c \cdot n \sum_{i=0}^{\log_q(n)-1} q^i + T(1) \\ &\leq c \cdot n \sum_{i=0}^{\infty} q^i \quad + d = c \cdot n \cdot \frac{1}{1-q} + d = \mathcal{O}(n) \end{split}$$

Wie bekommen wir das hin?

Der Zufall hilft uns (Tony Hoare, 1961). Wähle in jedem Schritt einen zufälligen Pivot.



Wahrscheinlichkeit für guten Pivot nach einem Versuch: $\frac{1}{2} =: \rho$. Wahrscheinlichkeit für guten Pivot nach k Versuchen: $(1-\rho)^{k-1} \cdot \rho$. Erwartete Anzahl Versuche: $1/\rho = 2$ (Erwartungswert der

geometrischen Verteilung:)

Algorithmus Quickselect (A[l..r], k)

```
Input: Array A der Länge n. Indizes 1 \le l \le k \le r \le n, so dass für alle
        x \in A[l..r] : |\{j|A[j] < x\}| > l \text{ und } |\{j|A[j] < x\}| < r.
Output: Wert x \in A[l..r] mit |\{j|A[j] < x\}| > k und
           |\{i|x < A[i]\}| > n - k + 1
if l=r then
    return A[l];
x \leftarrow \mathsf{RandomPivot}(A[l..r])
m \leftarrow \mathsf{Partition}(A[l..r], x)
if k < m then
     return QuickSelect(A[l..m-1], k)
else if k > m then
    return QuickSelect(A[m+1..r], k)
else
     return A[k]
```

Algorithmus RandomPivot (A[l..r])

```
Input: Array A der Länge n. Indizes 1 < l < i < r < n
Output: Zufälliger "guter" Pivot x \in A[l..r]
repeat
     wähle zufälligen Pivot x \in A[l..r]
     p \leftarrow l
     for i = l to r do
          if A[j] \leq x then p \leftarrow p+1
until \left| \frac{3l+r}{4} \right| \leq p \leq \left\lceil \frac{l+3r}{4} \right\rceil
return x
```

Dieser Algorithmus ist nur von theoretischem Interesse und liefert im Erwartungswert nach 2 Durchläufen einen guten Pivot. Praktisch kann man im Algorithmus Quickselect direkt einen zufälligen Pivot uniformverteilt ziehen oder einen deterministischen Pivot wählen, z.B. den Median von drei Elementen.

Median der Mediane

Ziel: Finde einen Algorithmus, welcher im schlechtesten Fall nur linear viele Schritte benötigt.

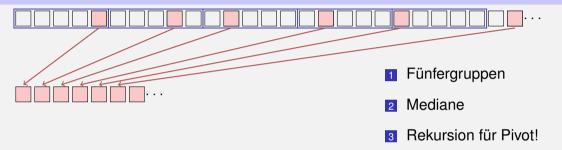
Algorithmus Select (k-smallest)

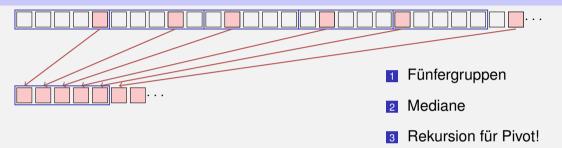
- Fünfergruppen bilden.
- Median jeder Gruppe bilden (naiv).
- Select rekursiv auf den Gruppenmedianen.
- Partitioniere das Array um den gefundenen Median der Mediane. Resultat: i
- Wenn i = k, Resultat. Sonst: Select rekursiv auf der richtigen Seite.

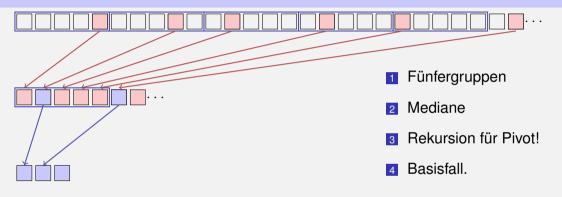
Median der Mediane

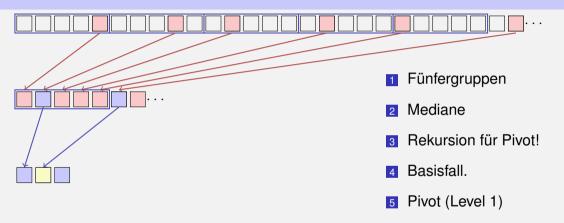
Fünfergruppen

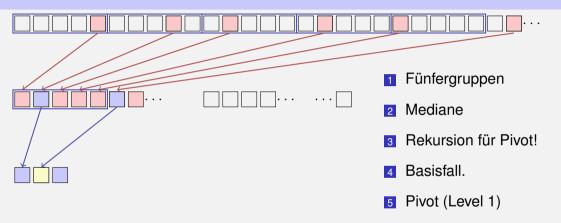
- Fünfergruppen
- Mediane

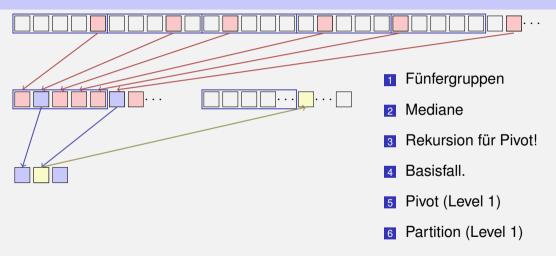


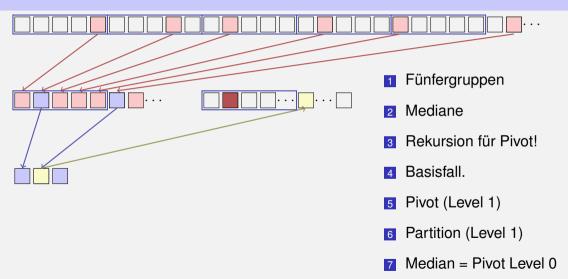


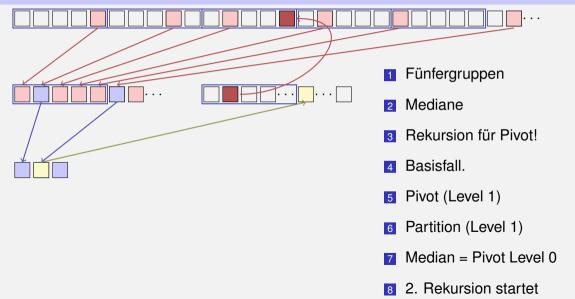


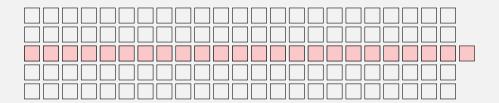


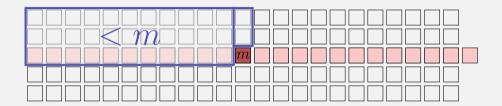


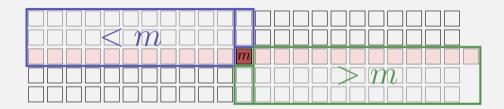


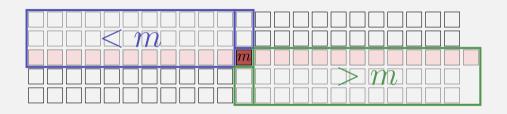






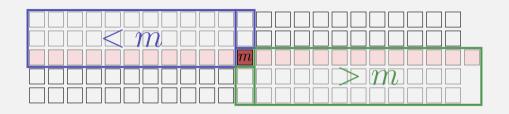






Anzahl Punkte links / rechts vom Median der Mediane (ohne Mediangruppe und ohne Restgruppe) $\geq 3 \cdot (\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \geq \frac{3n}{10} - 6$

15



Anzahl Punkte links / rechts vom Median der Mediane (ohne Mediangruppe und ohne Restgruppe) $\geq 3 \cdot (\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \geq \frac{3n}{10} - 6$ Zweiter Aufruf mit maximal $\lceil \frac{7n}{10} + 6 \rceil$ Elementen.

154

Analyse

Rekursionsungleichung:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n.$$

mit einer Konstanten d.

Behauptung:

$$T(n) = \mathcal{O}(n).$$

Beweis

Induktionsanfang: Wähle c so gross, dass

$$T(n) \le c \cdot n$$
 für alle $n \le n_0$.

Induktionsannahme:

$$T(i) \leq c \cdot i$$
 für alle $i < n$.

Induktionsschritt:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n$$
$$= c \cdot \left\lceil \frac{n}{5}\right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6\right\rceil + d \cdot n.$$

Beweis

Induktionsschritt:

$$T(n) \le c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6 \right\rceil + d \cdot n$$

$$\le c \cdot \frac{n}{5} + c + c \cdot \frac{7n}{10} + 6c + c + d \cdot n = \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n.$$

Wähle $c \geq 80 \cdot d$ und $n_0 = 91$.

$$T(n) \le \frac{72}{80} \cdot c \cdot n + 8c + \frac{1}{80} \cdot c \cdot n = c \cdot \underbrace{\left(\frac{73}{80}n + 8\right)}_{\leq n \text{ für } n > n_0} \le c \cdot n.$$

Resultat

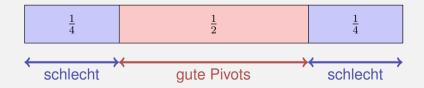
Theorem

Das i-te Element einer Folge von n Elementen kann im schlechtesten Fall in $\Theta(n)$ Schritten gefunden werden.

Überblick

Median of Medians (Blum)

1. Wiederholt Minimum finden $\mathcal{O}(n^2)$ 2. Sortieren und A[i] ausgeben $\mathcal{O}(n \log n)$ 3. Quickselect mit zufälligem Pivot $\mathcal{O}(n)$ im Mittel



 $\mathcal{O}(n)$ im schlimmsten Fall

5.1 Anhang

Herleitung einiger mathematischen Formeln

[Erwartungswert der geometrischen Verteilung]

Zufallsvariable $X\in\mathbb{N}^+$ mit $\mathbb{P}(X=k)=(1-p)^{k-1}\cdot p.$ Erwartungswert

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot (1-q)$$

$$= \sum_{k=1}^{\infty} k \cdot q^{k-1} - k \cdot q^k = \sum_{k=0}^{\infty} (k+1) \cdot q^k - k \cdot q^k$$

$$= \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$