4. Suchen

Lineare Suche, Binäre Suche, (Interpolationssuche,) Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

Das Suchproblem

Gegeben

Menge von Datensätzen.

Beispiele

Telefonverzeichnis, Wörterbuch, Symboltabelle

- Jeder Datensatz hat einen Schlüssel k.
- Schlüssel sind vergleichbar: eindeutige Antwort auf Frage $k_1 \le k_2$ für Schlüssel k_1, k_2 .

Aufgabe: finde Datensatz nach Schlüssel k.

118

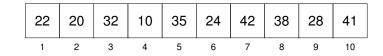
110

Suche in Array

Gegeben

- Array A mit n Elementen $(A[1], \ldots, A[n])$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".



Lineare Suche

Durchlaufen des Arrays von A[1] bis A[n].

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Suche im sortierten Array

Gegeben

- Sortiertes Array A mit n Elementen $(A[1], \ldots, A[n])$ mit $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".

Divide and Conquer!

Suche b = 23.

b < 28	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1

122

Binärer Suchalgorithmus BSearch(A[l..r], b)

Input: Sortiertes Array A von n Schlüsseln. Schlüssel b. Bereichsgrenzen $1 \le l \le r \le n$ oder l > r beliebig.

Output: Index des gefundenen Elements. 0, wenn erfolglos.

 $m \leftarrow \lfloor (l+r)/2 \rfloor$

if l > r then // erfolglose Suche

return NotFound

else if b = A[m] then// gefunden

return m

else if b < A[m] then// Element liegt links

return BSearch(A[l..m-1], b)

else //b > A[m]: Element liegt rechts

return BSearch(A[m+1..r],b)

Analyse (schlechtester Fall)

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Teleskopieren:

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$

$$= T\left(\frac{n}{2^i}\right) + i \cdot c$$

$$= T\left(\frac{n}{n}\right) + \log_2 n \cdot c = d + c \cdot \log_2 n \in \Theta(\log n)$$

Analyse (schlechtester Fall)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$
- \blacksquare Schritt $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

Resultat

Theorem

Der Algorithmus zur binären sortierten Suche benötigt $\Theta(\log n)$ Elementarschritte.

126

Iterativer binärer Suchalgorithmus

Input: Sortiertes Array A von n Schlüsseln. Schlüssel b. **Output:** Index des gefundenen Elements. 0, wenn erfolglos.

$$\begin{array}{l} l \leftarrow 1; \ r \leftarrow n \\ \text{while} \ l \leq r \ \text{do} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor \\ & \text{if} \ A[m] = b \ \text{then} \\ & | \ \text{return} \ m \\ & \text{else} \ \text{if} \ A[m] < b \ \text{then} \\ & | \ l \leftarrow m+1 \\ & \text{else} \\ & | \ r \leftarrow m-1 \end{array}$$

return NotFound:

Korrektheit

Algorithmus bricht nur ab, falls A[l..r] leer oder b gefunden.

Invariante: Falls b in A, dann im Bereich A[l..r]

Beweis durch Induktion

- Induktionsanfang: $b \in A[1..n]$ (oder nicht)
- Hypothese: Invariante gilt nach i Schritten
- Schritt:

$$b < A[m] \Rightarrow b \in A[l..m-1]$$

 $b > A[m] \Rightarrow b \in A[m+1..r]$

[Geht es noch besser?]

Annahme: Gleichverteilung der Werte im Array.

Beispiel

Name "Becker" würde man im Telefonbuch vorne suchen.

"Wawrinka" wohl ziemlich weit hinten.

Binäre Suche vergleicht immer zuerst mit der Mitte.

Binäre Suche setzt immer $m = \left\lfloor l + \frac{r-l}{2} \right\rfloor$.

[Interpolations suche]

Erwartete relative Position von b im Suchintervall [l, r]

$$\rho = \frac{b - A[l]}{A[r] - A[l]} \in [0, 1].$$

Neue "Mitte": $l + \rho \cdot (r - l)$

Anzahl Vergleiche im Mittel $\mathcal{O}(\log \log n)$ (ohne Beweis).

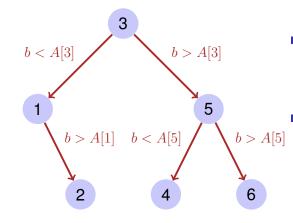
- 1 Ist Interpolations such e also immer zu bevorzugen?
- \bigcirc Nein: Anzahl Vergleiche im schlimmsten Fall $\Omega(n)$.

130

Untere Schranke

Binäre Suche (im schlechtesten Fall): $\Theta(\log n)$ viele Vergleiche. Gilt für *jeden* Suchalgorithms in sortiertem Array (im schlechtesten Fall): Anzahl Vergleiche = $\Omega(\log n)$?

Entscheidungsbaum



- Für jede Eingabe b = A[i] muss Algorithmus erfolgreich sein \Rightarrow Baum enthält mindestens n Knoten.
- Anzahl Vergleiche im schlechtesten Fall = Höhe des Baumes = maximale Anzahl Knoten von Wurzel zu Blatt.

1

Entscheidungsbaum

Binärer Baum der Höhe *h* hat höchstens $2^0 + 2^1 + \dots + 2^{h-1} = 2^h - 1 < 2^h$ Knoten.

$$2^h > n \Rightarrow h > \log_2 n$$

Entscheidungsbaum mit n Knoten hat mindestens Höhe $\log_2 n$. Anzahl Entscheidungen = $\Omega(\log n)$.

Theorem

Jeder Algorithmus zur vergleichsbasierten Suche in sortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(\log n)$ Vergleichsschritte.

Untere Schranke für Suchen in unsortiertem Array

Theorem

Jeder vergleichsbasierte Algorithmus zur Suche in unsortierten Daten der Länge n benötigt im schlechtesten Fall $\Omega(n)$ Veraleichsschritte.

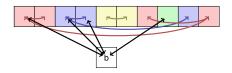
Versuch

? Korrekt?

"Beweis": Um b in A zu finden, muss b mit jedem Element A[i] $(1 \le i \le n)$ verglichen werden.

f O Falsch! Vergleiche zwischen Elementen von A möglich!

Besseres Argument



- \blacksquare Unterteilung der Vergleiche: Anzahl Vergleiche mit b:e Anzahl Vergleiche untereinander ohne b: i
- Vergleiche erzeugen q Gruppen. Initial: q = n.
- Vereinigen zweier Gruppen benötigt mindestens einen (internen Vergleich: n - q < i.
- Mindestens ein Element pro Gruppe muss mit *b* verglichen werden: e > q.
- Anzahl Vergleiche i + e > n q + q = n.

5. Auswählen

Das Auswahlproblem, Randomisierte Berechnung des Medians, Lineare Worst-Case Auswahl [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

Das Auswahlproblem

Eingabe

- Unsortiertes Array $A = (A_1, \dots, A_n)$ paarweise verschiedener Werte
- \blacksquare Zahl $1 \leq k \leq n$.

Ausgabe: A[i] mit $|\{j : A[j] < A[i]\}| = k - 1$

Spezialfälle

k=1: Minimum: Algorithmus mit n Vergleichsoperationen trivial.

k = n: Maximum: Algorithmus mit n Vergleichsoperationen trivial.

 $k = \lfloor n/2 \rfloor$: Median.

38

Naiver Algorithmus

Wiederholt das Minimum entfernen / auslesen: $\Theta(k \cdot n)$. \to Median in $\Theta(n^2)$

Min und Max

 $oldsymbol{?}$ Separates Finden von Minimum und Maximum in $(A[1],\ldots,A[n])$ benötigt insgesamt 2n Vergleiche. (Wie) geht es mit weniger als 2n Vergleichen für beide gemeinsam?

 \bigcirc Es geht mit $\frac{3}{2}n$ Vergleichen: Vergleiche jeweils 2 Elemente und deren kleineres mit Min und grösseres mit Max.⁴ Possible with $\frac{3}{2}n$ comparisons: compare 2 elements each and then the smaller one with min and the greater one with max.⁵

0

⁴Das liefert einen Hinweis darauf, dass der naive Algorithmus verbessert werden kann

⁵An indication that the naive algorithm can be improved.

Bessere Ansätze

■ Sortieren (kommt bald): $\Theta(n \log n)$

■ Pivotieren: $\Theta(n)$!

Pivotieren

- lacktriangle Wähle ein (beliebiges) Element p als Pivotelement
- **2** Teile A in zwei Teile auf, bestimme dabei den Rang von p, indem die Anzahl der Indizes i mit $A[i] \leq p$ gezählt werden.
- Rekursion auf dem relevanten Teil. Falls k=r, dann gefunden.

$$\leq$$
 \leq \leq \leq p $>$ $>$ $>$ $>$ $>$ n

142

Algorithmus Partition(A[l..r], p)

Input: Array A, welches den Pivot p im Intervall [l,r] mindestens einmal enthält.

 $\textbf{Output:} \ \, \mathsf{Array} \,\, A \,\, \mathsf{partitioniert} \,\, \mathsf{in} \,\, [l..r] \,\, \mathsf{um} \,\, p. \,\, \mathsf{R\"{u}ckgabe} \,\, \mathsf{der} \,\, \mathsf{Position} \,\, \mathsf{von} \,\, p.$

 $\text{while } l \leq r \text{ do}$

return |-1

Korrektheit: Invariante

Invariante $I: A_i \leq p \ \forall i \in [0, l), A_i \geq p \ \forall i \in (r, n], \ \exists k \in [l, r]: A_k = p.$

$$\begin{array}{c|c} \textbf{while } l \leq r \ \textbf{do} \\ \hline & \textbf{while } A[l] p \ \textbf{do} \\ \hline & \bot \ r \leftarrow r-1 \\ \hline & \underline{ swap(A[l], A[r]) } \\ \hline & \textbf{if } A[l] = A[r] \ \textbf{then} \\ \hline & \bot \ l \leftarrow l+1 \\ \hline \end{array}$$

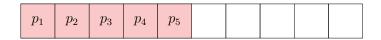
return |-1

Korrektheit: Fortschritt

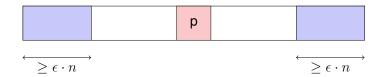
return |-1

Wahl des Pivots

Das Minimum ist ein schlechter Pivot: worst Case $\Theta(n^2)$



Ein guter Pivot hat linear viele Elemente auf beiden Seiten.



146

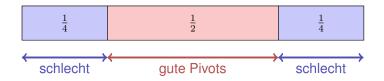
Analyse

Unterteilung mit Faktor q (0 < q < 1): zwei Gruppen mit $q \cdot n$ und $(1-q) \cdot n$ Elementen (ohne Einschränkung $q \geq 1-q$).

$$\begin{split} T(n) &\leq T(q \cdot n) + c \cdot n \\ &= c \cdot n + q \cdot c \cdot n + T(q^2 \cdot n) = \ldots = c \cdot n \sum_{i=0}^{\log_q(n)-1} q^i + T(1) \\ &\leq c \cdot n \sum_{i=0}^{\infty} q^i \quad + d = c \cdot n \cdot \frac{1}{1-q} + d = \mathcal{O}(n) \end{split}$$
 geom. Reihe

Wie bekommen wir das hin?

Der Zufall hilft uns (Tony Hoare, 1961). Wähle in jedem Schritt einen zufälligen Pivot.



Wahrscheinlichkeit für guten Pivot nach einem Versuch: $\frac{1}{2}=:\rho$. Wahrscheinlichkeit für guten Pivot nach k Versuchen: $(1-\rho)^{k-1}\cdot\rho$.

Erwartete Anzahl Versuche: $1/\rho = 2$ (Erwartungswert der geometrischen Verteilung:)

Algorithmus Quickselect (A[l..r], k)

```
Input: Array A der Länge n. Indizes 1 \leq l \leq k \leq r \leq n, so dass für alle x \in A[l..r]: |\{j|A[j] \leq x\}| \geq l und |\{j|A[j] \leq x\}| \leq r. Output: Wert x \in A[l..r] mit |\{j|A[j] \leq x\}| \geq k und |\{j|x \leq A[j]\}| \geq n-k+1 if l=r then \lfloor r eturn A[l]; k \in R andomPivot(A[l..r]) k \in R andomPivot(A[l..r]) if k < m then \lfloor r return QuickSelect(A[l..m-1],k) else if k > m then \lfloor r return QuickSelect(A[m+1..r],k) else \lfloor r return A[k]
```

Algorithmus RandomPivot (A[l..r])

```
\begin{array}{l} \textbf{Input:} \  \, \mathsf{Array} \, A \  \, \mathsf{der} \  \, \mathsf{L\"{a}nge} \, \, n. \  \, \mathsf{Indizes} \, 1 \leq l \leq i \leq r \leq n \\ \textbf{Output:} \  \, \mathsf{Zuf\"{a}lliger} \, \, \text{"guter"} \, \, \mathsf{Pivot} \, \, x \in A[l..r] \\ \textbf{repeat} \\ & \quad \text{w\"{a}hle zuf\"{a}lligen} \, \, \mathsf{Pivot} \, \, x \in A[l..r] \\ & \quad p \leftarrow l \\ & \quad \text{for} \, \, j = l \, \, \mathbf{to} \, \, r \, \, \mathbf{do} \\ & \quad \quad \big\lfloor \quad \mathbf{if} \, \, A[j] \leq x \, \, \mathbf{then} \, \, p \leftarrow p + 1 \\ & \quad \mathbf{until} \, \, \, \big\lfloor \frac{3l+r}{4} \big\rfloor \leq p \leq \big\lceil \frac{l+3r}{4} \big\rceil \\ & \quad \mathbf{return} \, \, x \\ \end{array}
```

Dieser Algorithmus ist nur von theoretischem Interesse und liefert im Erwartungswert nach 2 Durchläufen einen guten Pivot. Praktisch kann man im Algorithmus Quickselect direkt einen zufälligen Pivot uniformverteilt ziehen oder einen deterministischen Pivot wählen, z.B. den Median von drei Elementen.

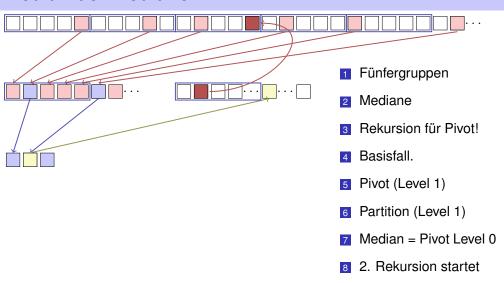
Median der Mediane

Ziel: Finde einen Algorithmus, welcher im schlechtesten Fall nur linear viele Schritte benötigt.

Algorithmus Select (k-smallest)

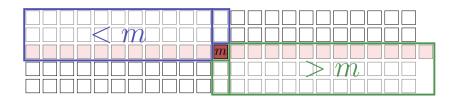
- Fünfergruppen bilden.
- Median jeder Gruppe bilden (naiv).
- Select rekursiv auf den Gruppenmedianen.
- Partitioniere das Array um den gefundenen Median der Mediane. Resultat: i
- Wenn i = k, Resultat. Sonst: Select rekursiv auf der richtigen Seite.

Median der Mediane



151

Was bringt das?



Anzahl Punkte links / rechts vom Median der Mediane (ohne Mediangruppe und ohne Restgruppe) $\geq 3 \cdot (\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \geq \frac{3n}{10} - 6$ Zweiter Aufruf mit maximal $\lceil \frac{7n}{10} + 6 \rceil$ Elementen.

Analyse

Rekursionsungleichung:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n.$$

mit einer Konstanten d.

Behauptung:

$$T(n) = \mathcal{O}(n).$$

Beweis

Induktionsanfang: Wähle c so gross, dass

$$T(n) < c \cdot n$$
 für alle $n < n_0$.

Induktionsannahme:

$$T(i) \le c \cdot i$$
 für alle $i < n$.

Induktionsschritt:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n$$
$$= c \cdot \left\lceil \frac{n}{5}\right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6\right\rceil + d \cdot n.$$

Beweis

154

Induktionsschritt:

$$T(n) \le c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6 \right\rceil + d \cdot n$$

$$\le c \cdot \frac{n}{5} + c + c \cdot \frac{7n}{10} + 6c + c + d \cdot n = \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n.$$

Wähle $c > 80 \cdot d$ und $n_0 = 91$.

$$T(n) \leq \frac{72}{80} \cdot c \cdot n + 8c + \frac{1}{80} \cdot c \cdot n = c \cdot \underbrace{\left(\frac{73}{80}n + 8\right)}_{\leq n \text{ für } n > n_0} \leq c \cdot n.$$

Resultat

Theorem

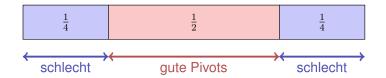
Das i-te Element einer Folge von n Elementen kann im schlechtesten Fall in $\Theta(n)$ Schritten gefunden werden.

5.1 Anhang

Herleitung einiger mathematischen Formeln

Überblick

- Wiederholt Minimum finden
- $\mathcal{O}(n^2)$
- 2. Sortieren und A[i] ausgeben
- $\mathcal{O}(n\log n)$
- 3. Quickselect mit zufälligem Pivot $\mathcal{O}(n)$
 - $\mathcal{O}(n)$ im Mittel
- 4. Median of Medians (Blum)
- $\mathcal{O}(n)$ im schlimmsten Fall



158

[Erwartungswert der geometrischen Verteilung]

Zufallsvariable $X\in\mathbb{N}^+$ mit $\mathbb{P}(X=k)=(1-p)^{k-1}\cdot p.$ Erwartungswert

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot (1-q)$$

$$= \sum_{k=1}^{\infty} k \cdot q^{k-1} - k \cdot q^k = \sum_{k=0}^{\infty} (k+1) \cdot q^k - k \cdot q^k$$

$$= \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$